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Abstract – Future wireless networks will be characterized by heterogeneous trafϔic requirements. Examples can be low‑
latency or minimum‑througput requirements. Therefore, the network has to adjust to different needs. Usually, users with
low‑latency requirements have to deliver their demand within a speciϔic time frame, i.e., before a deadline, and they coexist
with throughput oriented users. In addition, mobile devices have a limited‑power budget and therefore, a power‑efϔicient
scheduling scheme is required by the network. In this work, we cast a stochastic network optimization problem for minimiz‑
ing the packet drop rate while guaranteeing a minimum throughput and taking into account the limited‑power capabilities
of the users. We apply tools from Lyapunov optimization theory in order to provide an algorithm, named Dynamic Power
Control (DPC) algorithm, that solves the formulated problem in real time. It is proved that the DPC algorithm gives a solu‑
tion arbitrarily close to the optimal one. Simulation results show that our algorithm outperforms the baseline Largest‑Debt‑
First (LDF) algorithm for short deadlines and multiple users.

Keywords – Deadline‑constrained trafϐic, dynamic algorithms, heterogeneous trafϐic, Lyapunov optimization, power‑
efϐicient algorithms, scheduling.

1. INTRODUCTION
5G and beyond networks are poised to support a mixed
set of applications that require different types of services.
There are two main categories of applications. The ϐirst
category includes applications that require bandwidth‑
hungry services and the second includes delay‑sensitive
applications. The second category differentiates the cur‑
rent networks from future networks. These applications
require low‑latency services and increase the need for
time‑critical networking. In time‑critical networking, ap‑
plications are required to deliver their demands within a
speciϐic time duration [1]. In other words, each packet
or a batch of packets has a deadline within which data
must be transmitted, otherwise, it is dropped and re‑
moved from the system [2]. This is connectedwith the no‑
tion of timely throughput. Timely throughput measures
the long‑term time average number of successful deliv‑
eries before the deadline expiration [3, 4]. Each time‑
critical application belongs to a different category. For
example, motion control, smart grid control, and process
monitoring belong to the industrial control category. Fur‑
thermore, the growing popularity of real‑time media ap‑
plications increases the need for designing networks that
can offer services with low latency. Such applications are
media production, interactive Virtual Reality (VR), cloud
computing, etc, that are under the umbrella of the Tactile
Internet [5].
With the pervasiveness of mobile communications, such
applications need to performoverwireless devices. In or‑
der to achieve reliable communication, the devices have
to adapt their power transmission according to chan‑

nel conditions. However, many devices may have a lim‑
ited power budget. Therefore, energy‑efϐicient commu‑
nications have become a very important issue. In this
work, we propose a scheduling algorithm that handles
a heterogeneous set of users with heterogeneous traf‑
ϐic. In particular, we consider a network with deadline‑
constrained users and users with minimum‑throughput
requirements, with a limited‑power budget. We provide
an algorithm that solves the scheduling problem in real
time. We prove that the obtained solution is arbitrarily
close to the optimal.

1.1 Related works
Delay‑constrained network optimization and perfor‑
mance analysis have been extensively investigated [6]. A
variety of approaches have been applied to different sce‑
narios. There is a line of work that considers the control
of the maximum number of retransmissions before the
deadline expiration. In [7], the authors consider a user
transmitting packets over awireless channel to a receiver.
An optimal scheduling scheme is proposed that provides
the optimal number of retransmissions for a packet. In
[8], the authors consider users with packets with dead‑
lines in a random‑access network. They show how the
number of maximum retransmissions affects the packet
drop rate. In [9], the authors consider a single transmit‑
ter that transmits symbols to a receiver. Each symbol
has a deadline and a corresponding distortion function.
The authors consider the distortion‑minimization prob‑
lem while fulϐilling deadline constraints. In [10], the au‑
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thors consider a systemwith an Age‑of‑Information (AoI)
oriented user and a deadline‑constrained user. The au‑
thors provide the distribution of the AoI and the packet
drop rate and they examine the interplay between them.
Furthermore, energy and power efϐicient scheduling
schemes for delay‑constrained trafϐic have attracted a lot
of attention over the last the few years [11–16]. In [11],
the authors consider the minimization of drop rate for
users with a limited power‑budget. They propose an
approximated algorithm that performs in real time. In
[12], the authors propose an algorithm that minimizes
the time average power consumption while guaranteeing
minimum throughput and reducing the queueing delay.
They also consider a hybridmultiple access systemwhere
the scheduler decides if the transmitter serves a user by
orthogonal multiple access or non‑orthogonal multiple
access. In [13], [14], the authors utilize Markov decision
theory to provide an optimal energy‑efϐicient algorithm
for delay‑constrained users.
Lyapunov optimization theory has been widely applied
for developing dynamic algorithms that schedule users
with packets with deadlines. In [17–20], the authors con‑
sider the rate maximization under power and delay con‑
straints. In [17], the authors consider the power alloca‑
tion for users with hard‑deadline constraints. In [18], the
authors consider the rate maximization of non‑real‑time
users while satisfying the packet drop rate for users with
packets with deadlines. In [19,20], consider packets with
deadlines for scheduling real‑time trafϐic in wireless en‑
vironments. A novel approach for minimizing the packet
drop rate while guaranteeing stability is provided in [21].
The authors combine tools from Lyapunov optimization
theory andMarkov decision processes in order to develop
an optimal algorithm for minimizing the drop rate under
stability constraints. However, the algorithm is able to
solve small network scenarios because of the curse of di‑
mensionality problem.
Besides delay‑constrained trafϐic management,
throughput‑optimal algorithms have been developed
over the years. Following the seminal work in [22],
many researchers developed different solutions for
the throughput‑maximization problem by proposing
a variety of approaches [23–25]. In [23], the authors
consider the throughput‑maximization while guaran‑
teeing certain interservice times for all the links. They
propose the time‑since‑last‑service metric. They com‑
bine the last with the queue length of each user and
they propose a max‑weight policy based on Lyapunov
optimization. In [24], [25], the authors consider the
throughput‑maximization in networks with dynamic
ϐlows. More speciϐically, in [24], the authors consider a
hybrid system with both persistent and dynamic ϐlows.
They provide a queue‑maximum‑weight based algorithm
that guarantees throughput‑optimality while reducing
the latency. In [25], the authors consider a network
with dynamic ϐlows of random size and they arrive in
random size at the base station. The service times for
each ϐlow varies randomly because of the wireless chan‑

nel. The authors provide a delay‑MaxWeight scheduler
that has proven its throughput is optimal. Research on
scheduling heterogeneous trafϐic with Ultra‑Reliable Low
Latency (URLLC) users and enhanced Mobile Brodband
(eMBB) has attracted a lot of attention by the com‑
munity [26]‑ [33]. In [26], [27], the authors show the
beneϐits of ϐlexible Transmission Time Interval (TTI) for
scheduling users with different types of requirements.
In [28], the authors propose an algorithm that jointly
schedules URLLC and eMBB trafϐic. They consider a
slotted time system in which the slots are divided into
mini slots. They consider the frequency and mini‑slots
allocation over one slot. In [29], the authors consider the
resource allocation for URLLC users. They study resource
allocation for different scenarios: i) OFDMA system,
ii) system that includes retransmissions. In [30], [31],
the authors propose a low‑complexity algorithm for
scheduling URLLC users. The authors in [32] consider
the throughput maximization and HARQ optimization for
URLLC users. Furthermore, reliable transmission is an
important issue of URLLC communications. In [33], the
authors consider a network in which multiple unreliable
transmissions are combined to achieve reliable latency.
The authors model the problem as a constrained Markov
decision problem, and they provide the optimal policy
that is based on dynamic programming.

1.2 Contributions
In this work, we consider two sets of users with hetero‑
geneous trafϐic and a limited‑power budget. The ϐirst
set includes users with packets with deadlines and the
second set includes users with minimum‑throughput re‑
quirements. We provide a dynamic algorithm that sched‑
ules the users in real time and minimizes the drop rate
while guaranteeing minimum throughput and limited‑
power consumption. The contributions of this work are
the following.

• We formulate an optimization problem for minimiz‑
ing the drop rate with minimum‑throughput con‑
straints and time average power consumption con‑
straints.

• We provide a novel objective function forminimizing
the drop rate. The objective function does not take
into account only if a packet is going to expire or not,
but also the remaining time of a packet before its ex‑
piration.

• We apply tools from the Lyapunov optimization the‑
ory to satisfy the time average constraints: through‑
put and power consumption.

• The proposed algorithm is proved to provide a solu‑
tion arbitrarily close to the optimal.

• Simulation results show that our algorithm outper‑
forms the baseline algorithm proposed in [3] for
short deadlines and multiple users.
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2. SYSTEMMODEL

We consider N users transmitting packets to a single re‑
ceiver overwireless fading channels. LetN , {1, . . . , N}
be the set of the total users in the system. Time is assumed
to be slotted, and t ∈ Z denotes the tth slot.

Actuation/Control
VR/AR

Tactile Internet

Fig. 1 – Example of the systemmodel with time‑critical users with pack‑
ets with deadlines and users with minimum‑throughput requirements.

We consider the users to be synchronized and controlled
by a scheduler. In our systemmodel, at most one user can
transmit at each time slot. We consider two sets of users.
The ϐirst set includes users that have arrivals of packets
with deadlines. We denote the set of users with pack‑
ets with deadlines by R ⊆ N . The second set of users,
U ⊆ N , contains the users that have throughput require‑
ments. We consider that each user u ∈ U is saturated
and therefore, it has always packet to transmit. Note that
U ∪ R = N and U ∩ R = ∅. An example of our system
model is shown in Fig. 1.
For the deadline‑constrained users, each packet that ar‑
rives in the queue of the users has a deadline bywhich the
packet must be transmitted. Otherwise, it is dropped and
removed from the system. We assume that the deadlines
of the packets in the same queue are the same. However,
deadlines of different queues may vary. We denote the
packet deadline of the rth queue with mr ∈ Z+, ∀r ∈ R.
Let dr(t) be the number of slots left in the tth slot be‑
fore the packet that is at the head of queue r expires. Let
Qr(t) be the number of packets in queue r in the tth slot.
A packet arrives with probability πr at every time slot
in the queue of user r. Let α(t) , {αr(t)}r∈R, where
αr(t) ∈ {0, 1}, represents the packet arrival process for
each user r in the tth slot. The random variables of the
packet arrival process are independent and identically
distributed (i.i.d.). Let λr denote the arrival rate for user
r and E{αr(t)} = λr . Furthermore, at most one packet
can be transmitted at each time slot and no collisions are
allowed. In each queue of every user r ∈ R, packets are
served in the order that they arrive following the First In
First Out (FIFO) discipline.
We assume that the channel state at the beginning of each
time slot is known. The channel state remains constant
within one slot but it changes from slot to slot. Let S(t) ,

{Si(t)}i∈N represent the channel state for each user i
during slot t. Also, the channel can be either in “Bad” state
(deep fading) or in “Good” state (mild fading). The possi‑
ble channel states of each user i are described by the set
S , {B,G}, and Si(t) ∈ S , ∀i ∈ N . For simplicity, we
assume that the random variables of the channel process
S(t) are i.i.d. from one slot to the next.
Let p(t) , [p1(t), . . . , pN (t)] denote the power allocation
vector in the tth slot. We consider a set of discrete power
levels

{
0, P (Low), P (High)}. The required power to have a

successful transmission under “Bad” and “Good” channel
conditions is denoted by PHigh and P Low, respectively. At
each time slot, the set of selectable power levels Pi(t) for
each user is conditioned on the channel state Si(t). For
example, if the current channel state is “Bad”, then P (Low)

cannot be selected. Thus, we have

pi(t) ∈

{{
0, P (High)} , if Si(t) = B{
0, P (Low)} , if Si(t) = G , ∀i ∈ N . (1)

Let µi(t) be the power allocation, or packet serving, indi‑
cator for the user i in the tth slot, we have

µi(t) ,
{
1, if pi(t) > 0

0, otherwise , ∀i ∈ N . (2)

At most one packet can be transmitted in a timeslot t, i.e.,
the vector p(t) has atmost one non‑zero element. The set
of power constraints for p(t) is then deϐined by

P(t) ,
{
p(t) :

N∑
i=1

1{µi(t)=1} ≤ 1

}
, (3)

where 1{·} denotes the indicator function. For each user
r ∈ R, a packet is dropped if its deadline has expired.
Since the queue follows the FIFO discipline, a packet is
dropped under the following conditions: 1) it is at the
head of the queue; 2) the remaining number of the slots
to serve the packet is 1; and 3) power is not assigned to
user r at the current slot. LetDr(t) be the indicator of the
packet drop for user r at time t. The queue evolution for
each user r ∈ R is described as

Qr(t+ 1) = max [Qr(t)− µr(t), 0] + αr(t)−Dr(t), ∀i ∈ R.
(4)

We deϐine the packet drop rate for each user r ∈ R, the
average power consumption for each user i ∈ N , and the
throughput for each user u ∈ U as

Dr , lim
t→∞

Dr(t), ∀r ∈ R, (5)

pi , lim
t→∞

pi(t), ∀i ∈ N , (6)

µu = lim
t→∞

µ̄u(t), ∀u ∈ U , (7)

respectively, where, Dr(τ) = 1
t

t−1∑
τ=0

Dr(t), pi(t) =

1
t

t−1∑
τ=0

pi(τ), and µ̄u(t) = 1
t

t−1∑
τ=0

µu(τ). The packet drop

gachetc
Text Box
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Table 1 – Notation Table.

N Set of the total users in the system Pi(t) Set of selectable power levels of
user i

R Set of the deadline‑constrained users Zu(t) Length of throughput‑dept queue
of user u

U Set of the minimum‑throughput requirements users fr(t) Cost function for user r
t tth slot µr(t) Power allocation indicator of user

i
Qr(t) Number of packets in queue r P(t) Set of power constraints for p(t)
πr Packet arrival probability of user i Dr(t) Packet drop indicator of user r

αr(t) Packet arrival indicator of user r Dr Packet drop rate of user r
mr Deadline of packet of user r pr Average power consumption of

user r
dr(t) Number of slots left before the deadline of user r Xr(t) Length of virtual queue of user i
S(t) Channel states L(·) Quadratic Lyapunov function
p(t) Power allocation vector ∆(L(·)) Lyapunov drift
γi Allowed average power consumption for user i α(t) Packet arrival indicator vector

rate represents the average number of dropped packets
per time slot. The average power consumption repre‑
sents the average of transmit power over all time slots.
The throughput represents the average served packets
per time slot for each user u ∈ U .
These metrics are connected and we will show in the fol‑
lowing sections how the average power consumption af‑
fects the packet drop rate and the throughput.

3. PROBLEM FORMULATION
Ourgoal is to achieve theminimumdrop rate fordeadline‑
constrained users while providing a minimum through‑
put for each user u ∈ U and keeping the average power
consumption for every user below a threshold. To this
end, we provide the following stochastic optimization
problem

min
p(t)

∑
r∈R

Dr (8)a

s. t. pi ≤ γi, ∀i ∈ N , (8)b
µ̄u ≥ δu, u ∈ U , (8)c
p(t) ∈ P(t), (8)d

where γi ∈
[
0, P (High)] indicates the allowed average

power consumption for each user i. Also, δu denotes the
minimum throughput requirement for each user u ∈ U .
The constraint in (8)b ensures that average power con‑
sumption of each user i remains below γi power units.
The formulation above represents our intended goal
which is the minimization of the packet drop rate. How‑
ever, the objective function in (8)a makes the solution
approach non‑trivial. The decision variable, p(t) (power
allocation), is optimized slot‑by‑slot for minimization of
the objective function that is deϐined over an inϐinite time
horizon. We have to cope with one critical point: we do

not have prior knowledge about the future states of the
channel and packet arrivals in the system. Therefore, we
are not able to predict the values of the objective function
in the future slots in order to decide on the power allo‑
cation that minimizes the cost. We aim to design a func‑
tion whose future values are affected by the current deci‑
sion and the remaining expiration time of the packets. To
this end, we introduce a function incorporating the rela‑
tive difference between the packet deadline mr and the
number of remaining future slots (dr(t)−1) before its ex‑
piration as described below

fr(t) ,
mr − (dr(t)− 1)

mr
1{µr(t)=0}, ∀r ∈ R. (9)

The function in (9) takes its extreme value, fr(t) = 0,
when a packet of user r ∈ R is served, or fr(t) = 1when
a packet of user r ∈ R is dropped. Therefore, that func‑
tion takes the same valueswith those of (5) in the extreme
cases. In addition, the function in (9) assigns the cost ac‑
cording to the remaining time of a packet to expire in the
intermediate states, i.e., when a packet is waiting in the
queue. The cost increases when there is less time left for
serving the packet with respect to the deϐined deadline.
The time average of fr(t) is

fr , lim
t→∞

fr(t), ∀r ∈ R, (10)

where fr(t) , 1
t

t−1∑
τ=0

fr(τ) and

f =
∑
r∈R

fr(t). (11)
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Finally, we formulate a minimization problem by using
(10) as shown below

min
p(t)

∑
r∈R

fr (12)a

s. t. pi ≤ γi, ∀i ∈ N , (12)b
µ̄u ≥ δu, u ∈ U , (12)c
p(t) ∈ P(t). (12)d

4. PROPOSED APPROXIMATE SOLUTION
The problem in (12) includes time average constraints.
In order to satisfy these constraints, we aim to develop a
policy that uses techniques different from standard opti‑
mizationmethods based on static and deterministicmod‑
els. Our approach is based on Lyapunov optimization the‑
ory [34].
In particular, we apply the technique developed in [35]
and further discussed in [34] and [36] in order to develop
a policy that ensures that the constraints in (12)b and
(12)c are satisϐied.
Each inequality constraint in (12)b and (12)c is mapped
to a virtual queue. We show below that the power con‑
straint and minimum throughput constraints problems
are transformed into queue stability problems.
Before describing the motivation behind the mapping
of average constraints in (12)b and (12)c to virtual
queues, let us recall one basic theorem that comes from
the general theory of stability of stochastic processes
[37]. Consider a system with K queues. The number
of unϐinished jobs of queue i is denoted by qk(t), and
q(t) = {qk(t)}Kk=1. The Lyapunov function and the Lya‑
punov drift are denoted by L(q(t)) and ∆(L(q(t))) ,
E {L(q(t+ 1))− L(q(t))|q(t)} respectively [37]. Below
we provide the deϐinition of the Lyapunov function [37].
Deϔinition 1 (Lyapunov function): A function L : RK → R
is said to be a Lyapunov function if it has the following
properties

• L(x) ≥ 0, ∀x ∈ RK ,

• It is non‑decreasing in any of its arguments,

• L(x)→ +∞, as ||x|| → +∞.

Theorem1 (Lyapunov Drift). If there exist positive values
B, ϵ such that for all time slots twe have∆(L(q(t)) ≤ B−

ϵ
K∑

k=1

qk(t), then the system q(t) is strongly stable.

The intuition behindTheorem1 is that ifwehave a queue‑
ing system, andweprovide a scheduling scheme such that
the Lyapunov drift is bounded and the sum of the length
of the queues are multiplied by a negative value, then the
system is stable. Our goal is to ϐind a scheduling scheme
for which the inequality of Theorem 1 holds for our appli‑
cation.
Let {Xi(t)}i∈N and {Zu(t)}u∈U be the virtual queues as‑
sociated with constraints (12)b and (12)c, respectively.

We update each virtual queueXi(t) at each time slot t as
Xi(t+ 1) = max [Xi(t)− γi, 0] + pi(t), (13)

and each virtual queue Zu(t) as
Zu(t+ 1) = max [Zu(t)− µu(t), 0] + δu. (14)

Process Xi(t) can be viewed as a queue with “arrivals”
pi(t) and “service rate” γi. Process Zu(t) can be also
viewed as a queue with “arrivals” δu and “service rate”
µu(t).
We will show that the average constraints in (12)b and
(12)c are transformed into queue stability problems.
Then, we develop a dynamic algorithm and we prove that
the algorithm satisϐies Theorem 1 and achieves stability.
Lemma1. IfXi(t)andZu(t)are rate stable1, then the con‑
straints in (12)b and (12)c are satisϔied.
Proof. See Appendix B.
Note that strong stability implies all of the other forms
of stability [34, Chapter 2] including the rate stability.
Therefore, the problem is transformed into a queue sta‑
bility problem. In order to stabilize the virtual queues
Xi(t), ∀i ∈ N and Zu(t), ∀u ∈ U , we ϐirst deϐine the Lya‑
punov function as

L(Θ(t)) =
1

2

∑
i∈N

X2
i (t) +

1

2

∑
u∈R

Z2
u(t), (15)

where Θ(t) = [{Xi(t)}i∈N , {Zu(t)}u∈U ], and the Lya‑
punov drift as

∆(Θ(t)) , E {L(Θ(t+ 1))− L(Θ(t))|Θ(t)} . (16)

The above conditional expectation is with respect to the
random channel states and the arrivals.
To minimize the time average of the desired cost fr(t)
while stabilizing the virtual queues Xi(t), ∀i ∈ N ,
Zu(t), ∀u ∈ U , we use the drift‑plus‑penaltyminimization
approach introduced in [36]. The approach seeks to min‑
imize an upper bound on the following drift‑plus‑penalty
expression at every slot t

∆(Θ(t)) + V
∑
r∈R

E {fr(t)|Θ(t)} , (17)

where V > 0 is an “importance” weight to scale the
penalty. An upper bound for the expression in (17) is
shown below

∆(Θ(t)) + V
∑
r∈R

E{fr(t)|Θ(t)} ≤ B

+
∑
i∈N

E{Xi(t)(pi(t)− γi)|Θ(t)}

+
∑
r∈R

E{Zu(t)(δu − µu(t))|Θ(t)}

+ V
∑
r∈R

E{fr(t)|Θ(t)}, (18)

1A discrete time processQ(t) is rate stable if lim
t→∞

Q(t)
t

= 0with prob‑
ability 1 [34].
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where B < ∞ and B ≥ 1
2

∑
i∈N

E{p2i (t) + γ2
i (t)|Θ(t)} +

1
2

∑
r∈R

E{δ2r +µ2
r(t)|Θ(t)}+ 1

2

∑
r∈R

E{α2
r(t)+µ2

r(t)|Θ(t)}.
The complete derivation of the above bound can be found
in Appendix A.

4.1 Min‑Drift‑Plus‑Penalty Algorithm
We observe that the power allocation decision at each
time slot does not affect the value ofB. TheminimumDPC
algorithm observes the virtual queue backlogs of the vir‑
tual queues, the actual queue, and the channel states and
makes a control action to solve the following optimization
problem

min
p(t)

∑
i∈N

Xi(t)(pi(t)− γi) +
∑
r∈R

Zu(t)(δu − µu(t))

+ V
∑
r∈R

fr(t) (19)a

s. t. p(t) ∈ P(t). (19)b

Lemma2. The optimal solution to problem (19)minimizes
the upper bound of the drift‑plus‑penalty expression given
in the right‑hand‑side of (18).

Proof. See Appendix C.

Theorem 2 (Optimality of DPC algorithm and queue sta‑
bility). The DPC algorithm guarantees that the virtual and
the actual queues are strongly stable and therefore, accord‑
ing to Lemma 1, the time average constraints in (12)b and
(12)c are satisϔied. In particular, the time average expected
value of the queues is bounded as

lim
t→∞

1

t

t−1∑
τ=0

(∑
i∈N

E {Xi(t)}+
∑
u∈U

E {Zu(t)}

)
≤

B + V (f∗(ϵ)− f opt)

ϵ
. (20)

In addition, the expected time average of function f(t) is
bounded as

lim
t→∞

sup 1

t

t−1∑
τ=0

E{f(τ)} ≤ f opt +
B

V
. (21)

Proof. See Appendix D.

We summarize the steps of the DPC algorithm that solves
the power control problem in (19) in Algorithm 1.

Algorithm 1: DPC
1 Input constant V , Initialization:

Xi(0) = 0, γi, ∀i ∈ N , Zu(0) = 0, ∀u ∈ U .
2 for t = 1 : . . . do
3 MinObj ←∞
4 for i = 1 : (|N |+ 1) do
5 pi(t) ∈ P(t), Calculate fr(t), ∀r ∈ R
6 Obj ← V

∑
r∈R

fr(t) +
∑
r∈R

Xr(t)(pi(t)− γr)

+ ∑
u∈U

Zu(t)(δu − µi(t))

7 if MinObj>Obj then
8 p′(t)← p(t)
9 MinObj ← Obj

10 p(t)← p′(t)
11 Xj(t+1)← max [Xj(t)− γj , 0]+pj(t), ∀j ∈ N
12 Zu(t+1) = max [Zu(t)− µu(t), 0]+ δu, ∀u ∈ U

In step 1, we initialize the importance factor V and the
lengthof virtual queuesXi(0),∀i ∈ N , andZu(0),∀u ∈ U .
We try all the possible power allocations from the setP in
step 4, and we ϐind the corresponding value of the objec‑
tive function in step 6. In step 7, we check if the candidate
power allocation gives a smaller value of the objective so
far. In steps 11 − 12, we updated the virtual queues. Af‑
ter the search, we obtain the solution, p′(t), for which the
objective function takes its minimum value,MinObj.

5. SIMULATION RESULTS
In this section, we provide results that show the perfor‑
mance of the DPC algorithm regarding the packet drop
rate and the convergence time for the time average con‑
straints, i.e, throughput, and average power consumption
constraints. We use a MATLAB environment to perform
our simulations. For the time average performance, we
run each algorithm for 106 slots.
We ϐirst show the results of a system with two users. Our
goal is to show the performance of DPC for different val‑
ues of the importance factor V . Second, we compare our
proposed algorithm with a baseline algorithm called LDF
algorithm proposed in [3].

5.1 Performance and convergence of DPC al‑
gorithm for different values of V

In Fig. 2, we provide results for a system with two users;
user 1: deadline‑constrained user, user 2: user with
minimum‑throughput requirements. The average power
thresholds are γ1 = 0.7 and γ2 = 0.65 for user 1 and user
2, respectively. The minimum‑throughput requirements
for user 2 is δ2 = 0.4 packets/slot, and the deadlines of
the packet of user 1 ism = 10 slots.

The probability of the channel being in “Good” state and
in “Bad” state is 0.4 and 0.6, respectively. The high level
power and the low level power is PHigh = 2 power units
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Fig. 2 – DPC algorithm performance for different values of V . λ1 = 0.5,
γ1 = 0.7, γ2 = 0.65, δ2 = 0.4,m = 10.
and P Low = 1 power units, respectively.

In Fig. 2a, we show the convergence of the algorithm re‑
garding the minimum‑throughput constraints for differ‑
ent values of the importance factor V . We observe that as
the value of V increases, the time convergence increases
as well. However, we observe that after approximately
2500 slots, the algorithm converges and the minimum‑
throughput requirements are satisϐied. In Fig. 2b, we pro‑
vide results for the converge of the DPC algorithm regard‑
ing the average power consumption constraints of user 1.
The algorithm converges after approximately 8000 slots
for each value of V . The probability of the channel of user
1 being in “Good” state is 0.4. Therefore, the user needs
to transmit with a high power level for a large portion
of the time and that affects the average power consump‑
tion. Thus, the average power consumption constraint
with γ2 = 0.7 is a tight constraint and the algorithmneeds

more time to converge.
In Fig. 2c, we show the trade‑off between the packet drop
rate and average power consumption of user 1. We ob‑
serve that as the value of V increases the average power
consumption increases and approaches threshold γ1. For
V = 10, we observe that the average power consump‑
tion is far from the threshold. In this case, the value of
the virtual queue that corresponds to the average power
consumption is larger than the cost function for a large
period of time because the importance factor is relatively
small. Therefore, the DPC seeks to minimize the larger
term of the objective function that is the value of the vir‑
tual queue. On the other hand, as we increase V , the cost
function is weighted more and therefore, the DPC algo‑
rithm seeks to minimize the cost function which is the
most weighted term in the objective function. However,
the average power consumption remains always below
threshold γ1.

5.2 DPC vs LDF
In this subsection, we compare the performance of our al‑
gorithm with that of LDF. The LDF algorithm allocates
power to the user with the largest‑debt. Algorithm LDF
selects, at each time slot t, the nodewith the highest value
of yi(t), where yi(t) is the throughput debt and is deϐined
as

yi(t+ 1) = tqi −
t∑
τ

µi(t), (22)

where qi is the throughput requirements for user i. In our
case, for the users with throughput requirements, qi = δi.
For the deadline‑constrained users, qi will be equal to the
percentage of the desired served packets for users with
deadlines. For example, if our goal is to achieve a zero
drop ratewe set qi = λi. However, this is not always feasi‑
ble, i.e., zero drop rate and satisfaction of the throughput
constraints. Therefore, in this case, we get a higher drop
rate and lower throughput. Note that the LDF algorithm
does not account for the average power constraints. It
was shown in [3] that LDF is throughput optimalwhen the
problem is feasible for systems with users with through‑
put requirements.
In this set‑up, we consider one user with packets with
deadlines and a set with multiple users with minimum‑
throughput requirements. The probability that the chan‑
nel is in “good” state is equal to 0.9 for all the users. In or‑
der to observe a fair comparison between the algorithm,
we consider that the average power threshold is 2 for all
the users. Therefore, the average power constraint for ev‑
ery user is always satisϐied. The arrival rate for user 1 is
λ1 = 0.35 packets/slot.
In Fig. 3, we compare the performance of the algorithms
regarding the packet drop rate as the number of users
with minimum‑throughput requirements increases. In
Fig. 3a, the deadline for the packets of user 1 is m =
10. We observe that the DPC algorithm outperforms the
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Fig. 3 – DPC vs LDF. Drop rate comparison for different values of packet
deadlinem.
LDF algorithm in terms of drop rate as the number of
minimum‑throughput requirements increases. In Fig. 3b,
the deadline for the packets of user 1 is m = 30. We ob‑
serve that the performance of LDF has been improved.
However, the DPC outperforms LDF in this case as well.
We observe that LDF is more sensitive on the size of the
deadline of the packets.
In Fig. 4, we compare the performance of the algo‑
rithm regarding the average total throughput of users
with minimum‑throughput requirements. In Fig. 4a, we
show results for packets deadline that ism = 10. Also in
this case, we observe that the DPC algorithm outperforms
the LDF. However, for larger deadlines, the performance
of the LDF is improved, as shown in Fig. 4b.
In Fig. 5, we provide results for the convergence time
of throughput requirements of one user. In this set‑up,
we consider a system with one user with packets with
deadlines and six users with minimum‑throughput re‑
quirements. In the previous results that are shown in
Figures. 4 and 3, we observe that as we increase the
value of m, we get a better performance of the LDF al‑
gorithm. In the system of which the results are shown
in Fig. 5, we set a very large value to the deadlines of
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Fig. 4 – DPC vs LDF. Throughput comparison for different values of
packet deadlinem.
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Fig. 5 – DPC vs LDF. Min‑throughput requirements convergence. Pack‑
ets deadline: m = 100 slots.
user 1. We observe that the DPC algorithm converges
much earlier than the LDF algorithm. However, both algo‑
rithms converge after many slots. This explains the phe‑
nomenon of worst performance of LDF for small values of
m. Since the LDF algorithm allocates power to the users
with largest throughput‑debt, it does not consider the re‑
maining slots for each packet. Therefore, when the dead‑
line, m, is small, the packets expire before the algorithm
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converges in terms of throughput requirements and the
drop rate increases.

6. CONCLUSIONS AND FUTUREWORK
In this work, we considered heterogeneous trafϐic with
two sets of users. The ϐirst set contains users with pack‑
ets with deadlines, and the second contains users with
minimum‑throughput requirements, all with a limited
power budget. We considered the packet drop rate min‑
imization with minimum‑throughput guarantees. A dy‑
namic algorithm was provided that solves the schedul‑
ing problem in real time. We proved that our scheduling
scheme provides a solution arbitrarily close to the opti‑
mal. Simulation results show that the proposed algorithm
outperforms the baseline algorithm, LDF, when the dead‑
lines are short, and it is faster in terms of convergence.
An interesting direction, for futurework, would be the as‑
sumption that packets of the same user can have different
deadlines, and there are multiple power levels.
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Appendices
A. UPPER BOUND ON THE LYAPUNOV

DRIFT OF DPC
Using the fact that (max[Q− b, 0]+A)2 ≤ Q2+A2+ b2+
2Q(A− b),we rewrite (13), (14), as

X2
i (t+ 1) ≤ X2

i (t) + p2i + γ2
i + 2Xi(t)(pi(t)− γi),

(23)
Z2
u(t+ 1) ≤ Z2

u(t) + δ2u + µ2
u(t) + 2Zu(t)(δu − µu(t)),

(24)

respectively. Rearranging the terms in (23) and (24), di‑
viding them by two, and taking the summations, we ob‑
tain∑

i∈N

X2
i (t+ 1)−X2

i (t)

2
≤
∑
i∈R

p2i (t) + γ2
i

2

+
∑
i∈N

Xi(t)(pi(t)− γi), (25)

∑
u∈U

Z2
u(t+ 1)− Z2

u(t)

2
≤
∑
u∈U

δ2u + µ2
u(t)

2

+
∑
u∈U

Zu(t)(δu − µu(t)). (26)

Taking the conditional expectations in (25) and (26), and
adding them together, we obtain the bound for the Lya‑
punov drift in (18). To prove that B is bounded, we have
to ϐind an example and a scheduling scheme for which B

takes its maximum value that is bounded. We consider
the following set‑up:

• The scheduler allocates power at every time slotwith
the maximum power level,

• γi = PHigh, ∀i ∈ N ,

• δu = 1, ∀u ∈ U ,

• λi = 1, ∀i ∈ N .

Then, for the above scheduling scheme, we set B =
1
2

∑
i∈N

E{p2i (t)+γ2
i (t)|Θ(t)}+ 1

2

∑
r∈R

E{δ2r+µ2
r(t)|Θ(t)}+

1
2

∑
r∈R

E{α2
r(t)+µ2

r(t)|Θ(t)} = 1
2 |N +1|(PHigh)2+ 1

2 |R+

1|+ 1
2 |R+ 1| <∞. We observe that even in the scenario

in which we take the maximum values of γi, δu, and λi,B
is bounded.

B. PROOF OF LEMMA 1

Proof. Using the basic sample property [34, Lemma 2.1,
Chapter 2], we have

Xi(t)

t
− Xi(0)

t
≥ 1

t

t−1∑
τ=0

pi(τ)−
1

t

t−1∑
τ=0

γi, (27)

Zu(t)

t
− Zu(0)

t
≥ 1

t

t−1∑
τ=0

δu −
1

t

t−1∑
τ=0

µu(t). (28)

Therefore, if Xi(t) and Zu(t) are rate stable 2 , so that
Xi(t)

t → 0, ∀i ∈ N , and Zu(t)
t → 0, ∀u ∈ U , with probabil‑

ity 1, then constraints (12)b and (12)c are satisϐied with
probability 1 [38].

C. PROOF OF LEMMA 2

Proof. Let p(t) represent any, possibly randomized,
power allocation decision made at slot t. Suppose that
p∗(t) is the optimal solution to problem (19), and un‑
der action p∗(t) the value of fi(t) yields f∗

i (t) and that of
µu(t), µ∗

u(t). Then, we have

V f∗(t) +
∑
i∈N

Xi(t)(p
∗(t)− γi) +

∑
u∈U

Zu(t)(δu − µ∗
u(t))

≤ V f(t) +
∑
i∈N

Xi(t)(p(t)− γi) +
∑
u∈U

Zu(t)(δu − µu(t)).

(29)

2A discrete time process Q(t) is strongly stable if
lim supt→∞

1
t

∑t−1
τ=0 E{|Q(τ)|} < ∞, [34].
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Taking the conditional expectations of (29), we have the
result as

V E{f∗(t)|Θ(t)}+
∑
i∈N

E{Xi|Θ(t)}(t)(p∗i (t)− γi)

+
∑
u∈U

E{Zu(t)|Θ(t)}(δu − µ∗
u(t)) ≤

V E{f(t)|Θ(t)}+
∑
i∈N

E{Xi|Θ(t)}(t)(pi(t)− γi)

+
∑
u∈U

E{Zu(t)|Θ(t)}(δu − µu(t)).

D. PROOF OF THEOREM 2
Proof. Suppose that a feasible policy ω exists, i.e., con‑
straints (12)b and (12)c are satisϐied. Furthermore, as‑
sume that, for the ω policy, the following holds

E{pi(t)− γi} ≤ −ϵ, (30)
E{δu − µu(t)} ≤ −ϵ, (31)

E{f∗(ϵ)} = f∗(ϵ), (32)

where f∗(ϵ) is a sub‑optimal solution. Applying (30) and
(31) into (18), we obtain

E{L(Θ(t+ 1))} − E{L(Θ(t))}+ V E{f(t)} ≤

B − ϵ

(∑
i∈N

E{Xi(t)}+
∑
u∈U

E{Zu(t)}

)
+ V f∗(ϵ),

taking ϵ→ 0 and the sum over τ = 0, . . . , t− 1we obtain

1

t

t−1∑
τ=0

E{f(τ)} ≤ −E{L(Θ(t))}+ E{L(Θ(0))}+Bt

V t

+ fopt, (33)

taking t→∞, we obtain

lim
t→∞

sup 1

t

t−1∑
τ=0

E{f(τ)} ≤ fopt +
B

V
. (34)

That concludes the second part of Theorem 2. In order to
prove the stability of the queues, we manipulate (33)(∑

i∈N
E {Xi(t)}+

∑
u∈U

E {Zu(t)}

)
≤

B

ϵ
− E{L(Θ(t+ 1))} − E{L(Θ(t))}

ϵ
− V (f∗(ϵ)− f(t))

ϵ
.

(35)

By taking the sum over τ = 0, . . . , t − 1 and divide by t,
we obtain
1

t

t−1∑
τ=0

(∑
i∈N

E {Xi(t)}+
∑
u∈U

E {Zu(t)}

)
≤

B

ϵ
− E{L(Θ(t))} − E{L(Θ(0))}

tϵ
+

V (f∗(ϵ)− f(t))

ϵ
,

(36)

neglecting the negative term and taking t→∞, we have

lim
t→∞

1

t

t−1∑
τ=0

(∑
i∈N

E {Xi(t)}+
∑
u∈U

E {Zu(t)}

)
≤

B + V (f∗(ϵ)− f(t))

ϵ
. (37)

Consider that E{f(t)} ≥ fopt, we obtain the ϐinal result
as

lim
t→∞

1

t

t−1∑
τ=0

(∑
i∈N

E {Xi(t)}+
∑
u∈U

E {Zu(t)}

)
≤

B + V (f∗(ϵ)− fopt)

ϵ
. (38)

This shows that the queues are strongly stable for ϵ > 0.
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