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Abstract – A new Deep Neural Network (DNN)‑based error correction encoder architecture for channels with feedback,
called Deep Extended Feedback (DEF), is presented in this paper. The encoder in the DEF architecture transmits an informa‑
tion message followed by a sequence of parity symbols which are generated based on the message as well as the observations
of the past forward channel outputs sent to the transmitter through a feedback channel. DEF codes generalize Deepcode [1]
in several ways: parity symbols are generated based on forward channel output observations over longer time intervals in
order to provide better error correction capability; and high‑order modulation formats are deployed in the encoder so as to
achieve increased spectral efϔiciency. Performance evaluations show that DEF codes have better performance compared to
other DNN‑based codes for channels with feedback.
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1. INTRODUCTION
The ϐifth generation (5G) wireless cellular networks’ New 
Radio (NR) access technology has been recently speci‑ 
ϐied by the 3rd Generation Partnership Project (3GPP). NR 
already fulϐills demanding requirements of throughput, 
reliability and latency. However, new use cases stem‑ 
ming from new application domains (such as industrial 
automation, vehicular communications or medical appli‑ 
cations) call for further signiϐicant enhancements. For in‑ 
stance, some typical Industrial Internet of Things (IIoT) 
applications would need considerably higher reliability 
and shorter transmission delay compared to what 5G/NR 
can provide nowadays.

Error correction coding is a key physical layer functional‑ 
ity for guaranteeing the required performance levels. In 
conventional systems, error correction is accomplished 
by linear binary codes such as polar codes [2], Low Den‑ 
sity Parity Check (LDPC) codes [3] or turbo codes [4], pos‑ 
sibly combined with retransmission mechanisms such as 
Hybrid Automatic Request (HARQ) [5]. HARQ performs 
an initial transmission followed by a variable number of 
subsequent incremental redundancy transmissions un‑ 
til the receiver notiϐies successful decoding to the trans‑ 
mitter. Short Acknowledgment (ACK) or Negative ACK 
(NACK) messages are sent through a feedback channel in 
order to inform the transmitter about decoding success. 
By usage of simple ACK/NACK feedback messages, con‑ 
ventional HARQ practically limits the gains that could po‑ 
tentially be obtained by an extensive and more efϐicient 
use of the feedback channel. Codes that make full use of 
feedback potentially achieve improved performance com‑ 
pared to conventional codes, as predicted in [6]. 

Finding good codes for channels with feedback is a no-
toriously difϐicult problem. Several coding methods for 
channels with feedback have been proposed; see for ex‑ 
ample [7,8,9,10,11]. However, all known solutions either 
do not approach the performance predicted in [6] or ex‑ 
hibit unaffordable complexity. Promising progress has 
been made recently by applying Machine Learning (ML) 
methods [1], where both encoder and decoder are imple‑ 
mented as two separate Deep Neural Networks (DNNs). 
The DNNs’ coefϐicients are determined through a joint 
encoder‑decoder training procedure whereby encoder 
and decoder inϐluence each other. In that sense, the cho‑ 
sen decoder structure has impact on the resulting code –
a previously unseen feature. Known DNN‑based feedback 
codes [1] use different recurrent Neural Network (NN) ar‑ 
chitectures, Recurrent NNs (RNNs) and Gated Recurrent 
Units (GRUs) are used in [1]; Long‑Short Term Memory 
(LSTM) architectures have been mentioned in a preprint 
of [1] as a potential alternative to RNNs for the encoder.

A new DNN‑based code for channels with feedback called 
Deep Extended Feedback (DEF) code is presented in this 
paper. The encoder transmits an information message 
followed by a sequence of parity symbols which are gen‑ 
erated based on the message and on observations of the 
past forward channel outputs obtained through the feed‑ 
back channel. Known DNN‑based codes for channels with 
feedback [1] compute their parity symbols based on the 
information message and on the most recent information 
received through the feedback channel. The DEF code is 
based on feedback extension, which consists of extending 
the encoder input so as to comprise delayed versions of 
feedback signals. Thus, the DEF encoder input comprises 
the most recent feedback signal and a set of past feed‑ 
back signals within a given time window. A similar

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 6, 13 September 2021

©International Telecommunication Union, 2021 
Some rights reserved. This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/. 

More information regarding the license and suggested citation, additional permissions and disclaimers is available at: 
https://www.itu.int/en/journal/j-fet/Pages/default.aspx 



Modulator

Parity Symbol Generator
(kth iteration)

𝐧0Buffer

 𝐱

 𝐩𝑘−1

 𝐱

𝑥(𝑘)

𝐩𝑘

 𝐩𝑘−1

𝐦

Transmitter Receiver

2nd

phase

1st

phase

S

-
+ 1st

phase

2nd

phase
S

-
+

DD ...

𝑛
0
(𝑘
)

𝑛
0
(𝑘

−
𝛿
0
)

Buffer

𝐱

𝐯𝑘−1

De-
mux

DD ...

𝑟 0
(𝑘

−
1
)

𝑟 0
(𝑘

−
2
)

DD ...

𝑟 𝑃
−
1
(𝑘

−
1
)

𝑟 𝑃
−
1
(𝑘

−
2
)

𝑟 𝑃
−
1
(𝑘

−
𝛿
𝑃
)

...

...

...

..
.

1st

phase

2nd

phase

Codeword

..
.

..
.

..
.

..
.

...
...

...

Po
w

er
 r

ea
ll.

 (
a,
w

)

𝑛
0
(𝑘

−
1
)

𝑟 0
(𝑘

−
𝛿 1
)

𝐫0

𝐫𝑃−1

D

Fig. 1 – DEF encoder structure. Each “𝐷” block represents a unit‑time delay. Blue blocks and signals denote new functionalities compared to prior
solutions.

approach could be used in the decoder to extend its input 
so as to comprise delayed versions of received signals in a 
given time window. However, it can be shown that such a 
generalization of the decoder does not bring any beneϐit 
and therefore it will not be considered in the deϐinition of 
DEF codes. The extended‑feedback encoder architecture 
is combined with different NN architectures of recurrent 
type, namely RNN, GRU and LSTM. The DEF code general‑ 
izes Deepcode [1] along several directions. Its major ben‑ 
eϐits can be summarized as follows:

• Improved error correction capability obtained
by feedback extension. The DEF code generates
parity symbols based on feedbacks in a longer time
window, thereby introducing long‑range dependen‑
cies between parity symbols. As the above long‑
range dependencies are a necessary ingredient of
all good error correcting codes, it is expected that
feedback extensionwill bring performance improve‑
ments.

• Higher spectral efϐiciency obtained by usage
of QAM/PAM modulations. The DEF code uses
Quadrature Amplitude Modulation (QAM) with ar‑
bitrary order, thereby potentially achieving higher
spectral efϐiciency.

In thiswork, we initially focus onDEF codes’ performance
evaluation over channels with noiseless feedback, where
the forward‑channel output observations are sent uncor‑
rupted to the encoder.
Notation: Lower case and upper case letters denote
scalar (real or complex) values. For any pair of positive
integers 𝑎 and 𝑏with 𝑎 < 𝑏, [𝑎 ∶ 𝑏] denotes the sequence of
integers [𝑎, 𝑎 + 1, … , 𝑏], sorted in increasing order. Bold‑
face lower case letters (e.g., b) denote vectors; unless oth‑
erwise speciϐied, all vectors are assumed to be column
vectors. 𝑏(𝑖) denotes the 𝑖th element of b; b(𝑗 ∶ 𝑘), 𝑗 < 𝑘,

denotes the sub‑vector that contains the elements of b
with indices in [𝑗 ∶ 𝑘]. Boldface upper case letters like
A denote matrices; 𝑎𝑖,𝑗 represents the element of A in the
𝑖th row and 𝑗th column. Notation 𝑓(v), where 𝑓 is a func‑
tion taking a scalar input, indicates the vector obtained by
applying 𝑓 to each element of v. Hadamard (i.e., element‑
wise) product is denoted by ∘.

2. DEFINITION OF DEEP EXTENDED FEED‑
BACK CODE

The Deep Extended Feedback (DEF) code is the set of
codewords produced by the DEF encoder shown in Fig. 1.
Blue blocks and signals in Fig. 1 denote the new func‑
tionalities of the DEF code compared to Deepcode [1], ex‑
tended feedback is shown by the unit‑time delay blocks la‑
beled “𝐷” and their corresponding input/ouput signals;
QAM/PAM symbols are produced by the block labeled
“Modulator”. DEF code and Deepcode operate according
to the same encoding procedure as described later on.
The novel DEF code features will be treated in dedicated
subsections.
The encoding procedure consists of two phases. In
the ϔirst phase, an 𝐿‑bit information message m =
(𝑚(0), … , 𝑚(𝐿−1)) is mapped to a sequence of real sym‑
bols x = (𝑥(0), … , 𝑥(𝐾 − 1)), hereafter called systematic
symbols.
Themodulation sequence x is transmitted on the forward
channel. The corresponding sequence x̄ observed by the
receiver is given by

x̄ = x + n0 (1)

where n0 represents Additive White Gaussian Noise
(AWGN) and other possible forward‑channel impair‑
ments. In the performance evaluations of Section 4, n0 is
modeled as a sequence of white Gaussian noise samples.
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The receiver stores the observed signal x̄ locally and im‑
mediately echoes it back to the transmitter through the
feedback channel. A corresponding sequence

x̃ = x̄ + g0 (2)

is obtained at the transmitter, where g0 represents ad‑
ditive white Gaussian noise and other possible feedback‑
channel impairments.
In the second phase, for each element 𝑥(𝑘) of x, the en‑
coder computes a corresponding sequence of parity sym‑
bols

p𝑘 = (𝑝𝑘(0), … , 𝑝𝑘(𝑃 − 1)), 𝑘 = 0, … , 𝐾 − 1 (3)

and transmits it through the forward channel. 𝑃 is the
number of parity symbols that the encoder generates per
systematic symbol. Thus, the total number of transmitted
symbols is 𝐾(1 + 𝑃). The DEF code rate is deϐined as the
ratio of the message length 𝐿 over 𝐾(1 + 𝑃), that is:

𝑅DEF ≜ 𝐿
𝐾(1 + 𝑃 ) . (4)

The receiver observes a set of corresponding parity sym‑
bols sequences p̄𝑘, 𝑘 = 0, … , 𝐾 − 1. p̄𝑘 can be written as
follows:

p̄𝑘 = p𝑘 + v𝑘, (5)

where v𝑘 = (𝑣𝑘(0), … , 𝑣𝑘(𝑃 − 1)) represents additive
white Gaussian noise and other forward channel impair‑
ments. p̄𝑘 is immediately echoed back to the transmitter
through the feedback channel so as to obtain

p̃𝑘 = p̄𝑘 + g𝑘, (6)

where g𝑘 represents additive white Gaussian noise and
other feedback channel impairments.
The DEF codeword is deϐined as z =
(𝑧(0), … , 𝑧((𝑃 + 1)𝐾 − 1)). The 𝑗th codeword sym‑
bol is deϐined as follows:

𝑧(𝑗) = { 𝑤(0)𝑎(𝑗)𝑥(𝑗), 0 ≤ 𝑗≤𝐾 − 1
𝑤(𝑙 + 1)𝑎(𝑘)𝑝𝑘(𝑙), 𝐾 ≤𝑗≤(𝑃 + 1)𝐾 − 1(7)

𝑙 = (𝑗 − 𝐾) mod 𝑃 ,
𝑘 = ⌊(𝑗 − 𝐾)/𝑃⌋ ,

where 𝑤(0) and 𝑤(𝑙 + 1), 𝑙 = 0, … , 𝑃 − 1, are codeword
power levels, 𝑎(𝑘), 𝑘 = 0, … , 𝐾−1, are symbol power lev‑
els, 𝑥(𝑗) is the 𝑗th systematic symbol, and 𝑝𝑘(𝑙) is the 𝑙th
symbol of the 𝑘th parity sequence (3). Codeword power
levels reallocate the power among codeword symbols as
follows: the systematic symbols are scaled by 𝑤(0); the
1st parity symbol of each parity sequence is scaled by
𝑤(1), the 2nd parity symbol of each parity sequence is
scaled by 𝑤(2), etc. Symbol power levels reallocate the
power among codeword symbols as follows: 𝑎(0) scales
the amplitude of the 1st systematic symbol 𝑥(0) and of
the symbols of the 1st parity symbol sequence p0, 𝑎(1)
scales the amplitude of the 2nd systematic symbol 𝑥(1)

and of the symbols of the 2nd parity symbol sequence p1,
… 𝑎(𝐾 − 1) scales the amplitude of the 𝐾th systematic
symbol 𝑥(𝐾 − 1) and of the symbols of the 𝐾th parity
symbol sequence p𝐾−1. Power levels 𝑤(𝑙) and 𝑎(𝑘) are
obtained by NN training. The following constraints pre‑
serve the codeword’s average power:

𝑃
∑
𝑙=0

𝑤2(𝑙) = 1,
𝐾−1
∑
𝑘=0

𝑎2(𝑘) = 1. (8)

2.1 QAM/PAMmodulator
TheDEF codemodulatormaps the𝐿‑bit informationmes‑
sagem = (𝑚(0), … , 𝑚(𝐿 − 1)) to a sequence of real sym‑
bols x = (𝑥(0), … , 𝑥(𝐾 − 1)), hereafter called systematic
symbols. Each pair of consecutive symbols (𝑥(2𝑖), 𝑥(2𝑖 +
1)), 𝑖 = 0, … , 𝐾/2 − 1, orms a complex QAM symbol√f
𝑞(𝑖) = 𝑥(2𝑖) + 𝑥(2𝑖 + 1) −1, where 𝑞(𝑖) is obtained by 
mapping 𝑄 consecutive bits of m to 2𝑄‑QAM. The above 
mapping produces 𝐾 = 2𝐿/𝑄 real systematic symbols at 
the modulator output.
Examples of QAM/PAM mapping of order 𝑄 = 2 and 𝑄 = 
4 are shown in Table 1 and Table 2.

2.2 Extended feedback
We call Parity Symbol Generator (PSG) the encoder block 
that computes the parity symbol sequences (see Fig. 1). 
Extended feedback consists of sending to the PSG a 
sequence of forward‑channel output observations over 
longer time intervals compared to Deepcode [1]. 

Table 1 – Example of QAM/PAM mapping of order 𝑄 = 2.

𝑚(2𝑖), 𝑚(2𝑖 + 1) 𝑥(2𝑖) 𝑥(2𝑖 + 1)
0, 0 1 1
0, 1 1 ‑1
1, 0 ‑1 1
1, 1 ‑1 ‑1

Table 2 – Example of QAM/PAMmapping of order 𝑄 = 4.

𝑚(4𝑖), 𝑚(4𝑖 + 1), 𝑚(4𝑖 + 2), 𝑚(4𝑖 + 3) 𝑥(2𝑖), 𝑥(2𝑖 + 1)
0, 0, 0, 0 3, 3
0, 0, 0, 1 3, 1
0, 0, 1, 0 3, ‑3
0, 0, 1, 1 3, ‑1
0, 1, 0, 0 1, 3
0, 1, 0, 1 1, 1
0, 1, 1, 0 ‑1, ‑3
0, 1, 1, 1 ‑1, ‑1
1, 0, 0, 0 ‑3, 3
1, 0, 0, 1 ‑3, 1
1, 0, 1, 0 ‑3, ‑3
1, 0, 1, 1 ‑3, ‑1
1, 1, 0, 0 ‑1, 3
1, 1, 0, 1 ‑1, 1
1, 1, 1, 0 ‑1, ‑3
1, 1, 1, 1 ‑1, ‑1
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The PSG input column vector at the 𝑘t h iteration is 
deϐined as follows:

i𝑘 =
⎡
⎢
⎢
⎢
⎣

𝑥(𝑘)
n0(𝑘 − 𝛿0 ∶ 𝑘)

r0(𝑘 − 𝛿1 ∶ 𝑘 − 1)
…

r𝑃−1(𝑘 − 𝛿𝑃 ∶ 𝑘 − 1)

⎤
⎥
⎥
⎥
⎦

, (9)

where 𝑥(𝑘) is the 𝑘th systematic symbol, n0(𝑘 − 𝛿0 ∶ 𝑘)
is a column vector of length 𝛿0 + 1 which contains noise
samples from the sequence n0 of (1), r𝑙(𝑘 − 𝛿𝑙 ∶ 𝑘 − 1)
(𝑙 = 0, … , 𝑃 − 1) is a column vector of length 𝛿𝑙 which
contains noise samples from the sequence r𝑙 of forward‑
channel noise samples that corrupt the 𝑙th symbol of each
parity symbol sequence, that is:

r𝑙 ≜ (𝑣0(𝑙), … , 𝑣𝐾−1(𝑙)), (10)

where 𝑣𝑘(𝑙) (𝑘 = 0, … , 𝐾 −1) is the 𝑙th sample of v𝑘 in (5)
and 𝛿0, … , 𝛿𝑃 are arbitrary positive integers (𝛿0 can be 0),
hereafter called the encoder input extensions. Wenote that
the Deepcode [1] encoder can be recovered as a special
case by setting 𝛿0 = 0 and 𝛿1 = … = 𝛿𝑃 = 1, which
means that, in each iteration, only a single noise sample
for each systematic or parity check symbol is used. The
buffers in the DEF encoder contain the systematic sym‑
bol sequence x and the corresponding forward‑noise se‑
quence n0 of (1). Those sequences are generated during
the ϐirst encodingphase andusedby thePSG in the second
phase.

2.3 Parity Symbol Generator (PSG)
The core functionality of the DEF encoder is the compu‑
tation of the parity check symbols, which is performed by
the block denoted (PSG) (see Fig. 1). PSG computes the
𝑘th parity symbol sequence p𝑘 based on the 𝑘th modula‑
tion symbol 𝑥𝑘 and a subset of the past forward‑channel
outputs.
Fig. 2 shows the structure of the PSG. In the 𝑘th encoding
iteration, the PSG generates a 𝑘th parity symbol sequence
p𝑘 which consists of𝑃 real parity symbols obtained as fol‑
lows:

p𝑘 = Norm(𝑒(h𝑘)), (11)
whereh𝑘, a real vector of arbitrary length𝐻0, denotes the
PSG state at time instant 𝑘, while function 𝑒(⋅) consists of a
linear transformationapplied to thePSGstateh𝑘 obtained
as follows:

𝑒(h𝑘) = Ah𝑘 + c, (12)
where A has size 𝑃 × 𝐻0 and c has length 𝑃 . The above
matricesW,Y,A andvectorsb, c are obtainedbyNN train‑
ing. The Norm(⋅) function normalizes the PSG output so
that each parity symbol has zero mean and unit variance.
The PSG state h𝑘 is recursively computed as

h𝑘 = 𝑓(i𝑘,h𝑘−1), (13)

where function 𝑓(⋅) will be discussed below, and i𝑘 is de‑
ϐined in (9). As for the initialization, we set h0 as the all‑
zero vector.

𝑓
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Fig. 2 – Structure of the PSG.

Functions 𝑒 and 𝑓 will be parameterized using DNNs.
The structure of Fig. 2 corresponds to a recurrent ar‑
chitecture, and therefore, we will consider the following
three recurrent architectures to model it: RNNs, GRUs
and LSTMs.

2.3.1 RNN
When modeled with an RNN, the function 𝑓(⋅) in (13) is
deϐined as follows:

𝑓(i𝑘,h𝑘−1) = tanh(Wh𝑘−1 + Yi𝑘 + b), (14)

where W is a state‑transition matrix of size 𝐻0 × 𝐻0, Y
is an input‑state matrix of size 𝐻0 × 𝐼 (𝐼 is the length of
vector i𝑘), and b is a bias vector of length 𝐻0. W, Y and b
are obtained by NN training.

2.3.2 GRU
With a GRU, the function 𝑓(⋅) of (13) is deϐined as follows:

𝑓(i𝑘,h𝑘−1) = 𝑓0(i𝑘,h𝑘−1) ∘ (1 − 𝑧(i𝑘,h𝑘−1))
+ h𝑘−1 ∘ 𝑧(i𝑘,h𝑘−1). (15)

The function 𝑓0(⋅) in (15) is deϐined as follows:

𝑓0(i𝑘,h𝑘−1) = tanh((W𝑓h𝑘−1 + bℎ) ∘ 𝑟(i𝑘,h𝑘−1)
+ Y𝑓 i𝑘 + b𝑖). (16)

The functions 𝑧(⋅) in (15) and 𝑟(⋅) in (16) are deϐined as
follows:

𝑧(i𝑘,h𝑘−1) = 𝜎(W𝑧h𝑘−1 + Y𝑧i𝑘 + b𝑧) (17)
𝑟(i𝑘,h𝑘−1) = 𝜎(W𝑟h𝑘−1 + Y𝑟i𝑘 + b𝑟) (18)

where 𝜎(𝑥) ≜ (1 + 𝑒−𝑥)−1 denotes the sigmoid function.
In equations (15)‑(18), matrices W𝑓 ,W𝑧,W𝑟,Y𝑓 ,Y𝑧,Y𝑟
and vectors bℎ,b𝑖,b𝑧,b𝑟 are obtained by NN training.

2.3.3 LSTM
As for LSTM, the function 𝑓(⋅) of (13) is deϐined as follows:

𝑓(i𝑘,h𝑘−1) = 𝑓1(i𝑘,h𝑘−1) ∘ tanh(s𝑘) (19)

where s𝑘 is the cell state at time instant 𝑘. The cell state
provides long‑term memory capability to the LSTM NN,
whereas the state h𝑘 provides short‑term memory capa‑
bility. The cell state is recursively computed as follows:

s𝑘 = 𝑓2(i𝑘,h𝑘−1) ∘ s𝑘−1
+ 𝑓3(i𝑘,h𝑘−1) ∘ 𝑓4(i𝑘,h𝑘−1). (20)
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The function 𝑓1 in (19) and functions 𝑓2, 𝑓3 and 𝑓4 in (20)
are deϐined as follows:

𝑓1(i𝑘,h𝑘−1) = 𝜎(W1h𝑘−1 + Y1i𝑘 + b1) (21)
𝑓2(i𝑘,h𝑘−1) = 𝜎(W2h𝑘−1 + Y2i𝑘 + b2) (22)
𝑓3(i𝑘,h𝑘−1) = 𝜎(W3h𝑘−1 + Y3i𝑘 + b3) (23)
𝑓4(i𝑘,h𝑘−1) = tanh(W4h𝑘−1 + Y4i𝑘 + b4) (24)

In equations (21)‑(24), matrices W1, W2, W3, W4, Y1, Y2, 
Y3, Y4 and vectors b1, b2, b3, b4 are obtained by NN train‑ 
ing.

2.4 Mitigation of unequal bit error 
distribution

It has been observed in [1] that the feedback codes based
on RNNs exhibit a non‑uniform bit error distribution, i.e.,
the ϐinal message bits typically have a signiϐicantly larger
error rate compared to other bits. In order tomitigate the
detrimental effect of non‑uniform bit error distribution,
[1] introduced two countermeasures:

• Zero‑padding. Zero‑padding consists in appending at
least one information bit with predeϐined value (e.g.,
zero) at the end of themessage. The appended infor‑
mation bit(s) are discarded at the decoder, such that
the positions affected by higher error rates carry no
information.

• Power reallocation. Zero‑padding alone is not
enough to mitigate unequal errors, and moreover it
reduces the effective code rate. Instead, power re‑
allocation redistributes the power among the code‑
word symbols so as to provide better error protec‑
tion to the message bits whose positions are more
error‑prone, i.e., the initial and ϐinal positions.

2.5 DEF decoder
In DNN‑based codes, encoder and decoder are imple‑
mented as two separate DNNs whose coefϐicients are de‑
termined through a joint encoder‑decoder training proce‑
dure. Therefore, the encoder structure has impact on the
decoder coefϐicients obtained through training, and vice‑
versa. In that sense, the chosen decoder structure has im‑
pact on the resulting code.
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Fig. 3 – DEF decoder.

TheDEFdecoder (see Fig. 3)maps the receivedDEF code‑
word to a decoded message m̂ as follows:

m̂ = 𝑔(x̄, p̄(1), … , p̄(𝐾)). (25)

The decoder consists of a bidirectional recurrent NN (a
GRU or LSTM) followed by a linear transformation and a
sigmoid function. The bidirectional recurrent NN com‑
putes a sequence of forward‑states h′

𝑘 and backward‑
states h″

𝑘 as follows:

h′
𝑘 = 𝑓 ′(ȳ𝑘,h′

𝑘−1) (26)
h″

𝑘−1 = 𝑓″(ȳ𝑘,h″
𝑘) (27)

where functions 𝑓 ′, 𝑓″ are deϐined as in (15) for the GRU‑
based decoder and as in (19) for the LSTM‑based decoder,
and the input column vector ȳ𝑘 is deϐined as follows:

ȳ𝑘 =
⎡
⎢⎢
⎣

x̄(𝑘 − 𝛾0 ∶ 𝑘)
q̄0(𝑘 − 𝛾1 ∶ 𝑘)

…
q̄𝑃−1(𝑘 − 𝛾𝑃 ∶ 𝑘)

⎤
⎥⎥
⎦

, (28)

where x̄(𝑘 − 𝛾0 ∶ 𝑘) is a column vector of length 𝛾0 + 1
which contains symbols from the received systematic se‑
quence x̄ of (1), and q̄𝑙(𝑘 − 𝛾𝑙 ∶ 𝑘), 𝑙 = 0, … , 𝑃 − 1, is a
column vector of length 𝛾𝑙 + 1 containing symbols from
the sequence q̄𝑙, which consists of the 𝑙th symbol of each
received parity sequence p̄𝑘 (5). q̄𝑙 is deϐined as follows:

q̄𝑙 ≜ ( ̄𝑝0(𝑙), … , ̄𝑝𝐾−1(𝑙)), 𝑙 = 0, … , 𝑃 − 1. (29)

Finally, the values𝛾0, … , 𝛾𝑃 are arbitrarynon‑negative in‑
tegers, hereafter called the decoder input extensions. The
initial forward NN state h′

0 and the initial backward NN
state h″

𝐾 are set as all‑zero vectors.
The 𝑘th decoder output is obtained as follows:

m̂𝑘 = ℎ(h̃′
𝑘, h̃″

𝑘−1) ≜ 𝜎 (C [ h̃′
𝑘

h̃″
𝑘−1

] + d) , (30)

where 𝜎(⋅) is the sigmoid function, C is a matrix of size
𝑄/2 × 2𝐻0, and d is a vector of size 𝑄/2. C and d are ob‑
tained by NN training. Vectors h̃′

𝑘 and h̃″
𝑘 are obtained by

normalizing vectors h′
𝑘 and h″

𝑘 so that each element of h̃′
𝑘

and h̃″
𝑘 has zero mean and unit variance. Vector m̂𝑘 pro‑

vides the estimates of themessage bits in a corresponding
𝑄/2‑tuple, that is:

m̂𝑘 = (𝑚̂(𝑘𝑄/2), … , 𝑚̂((𝑘 + 1)𝑄/2 − 1)). (31)

The Deepcode decoder from [1] is recovered by setting
𝛾𝑙 = 0, 𝑙 = 0, 1, ..., 𝑃 in (28).

3. TRANSCEIVER TRAINING
The coding andmodulation schemes used in conventional
communication systems are optimized for a given SNR
range. We take the same approach for DNN‑based codes:
as DNN code training produces different codes depending
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on the training SNR, we divide the target range of forward
SNRs into (small) non‑overlapping intervals and select a
single training SNR within each interval.
Encoder and decoder are implemented as two separate
DNNs whose coefϐicients are determined through a joint
training procedure. The training procedure consists in
the transmission of batches of randomly generated mes‑
sages. The number of batches is 2 × 104, where each
batch contains 2 × 103 messages. DNN coefϐicients are
updated by anAdaptiveMoment (ADAM) estimation opti‑
mizer based on the Binary Cross‑Entropy (BCE) loss func‑
tion. For each batch, a loss value is obtained by computing
the BCE between the messages in that batch and the cor‑
responding decoder outputs. The learning rate is initially
set to 0.02 and divided by 10 after the ϐirst group of 103

batches. The gradient magnitude is clipped to 1.
By monitoring the BCE loss value throughout the entire
training session, we noticed that the loss trajectory has
high peaks which appear more frequently during the ini‑
tial phases of training. Thosepeaks indicate that the train‑
ing process is driving the encoder/decoder NNs away
from their optimal performances. In order tomitigate the
detrimental effect of the above events, the following coun‑
termeasures have been taken:

• usage of a larger batch size, 10 times larger than [1].
Usage of large batches stabilizes training1 and ac‑
celerates convergence of NN weights towards values
that produce good performance;

• implementation of a training roll‑back mechanism
that discards theNNweight updates of the last epoch
if the loss value produced by the NNs with updated
weights is at least 10 times larger than the loss pro‑
duced by the NNs with previous weights.

Asweobserved that the outcomeof training is sensitive to
the random number generators’ initialization, each train‑
ing is repeated three times with different initialization
seeds. For each repetition, we record the ϐinal NNweights
and the NN weights that produced the smallest loss dur‑
ing training. After training, Link‑Level Simulations (LLS)
are performed using all the recorded weights. The set of
weights that provides the lowest Block Error Rate (BLER)
is kept and the others are discarded.
As described in Subsection 2.3 and illustrated in Fig. 2, the
PSG output is normalized so that each coded symbol has
zeromean andunit variance. DuringNN training, normal‑
ization subtracts the batchmean from the PSG output and
divides the result of subtraction by the batch standard de‑
viation. After training, encoder calibration is performed in
order to compute the mean and the variance of the RNN
outputs over a given number of codewords. Calibration
is done over 106 codewords in the simulations here re‑
ported. In LLS, normalization is done using the mean and
variance values computed during calibration.
1By training stabilization we mean that the loss function produces
smoother trajectories during training.

The training strategy for the encoder’s codeword and
symbol power levels has been optimized empirically. The
levels are initialized to unit value, and kept constant for
a given number of epochs as early start of training pro‑
duces codes with poor performance. On the other hand,
if training of levels is started too late, they remain close to
their initial unit value, and therefore produce no beneϐits.
It has been found empirically that starting to train code‑
word power levels at epoch 100 and symbol power levels
at epoch 200 provides the best results.
As suggested in [1], it may be beneϐicial to perform train‑
ing with longer messages compared to link level evalu‑
ation as training with short messages does not produce
good codes. According to our observations, training with
longermessages, twice the length of LLSmessages, is ben‑
eϐicial. However, according to our observations, the ben‑
eϐit of using longermessages vanisheswhen trainingwith
larger batches. Therefore, in our evaluations the length of
training messages and LLS messages is the same.
The above training method produces codes with better
performance compared to the method of [1], as the per‑
formance evaluations of Section 4 will show. Training pa‑
rameters are summarized in Table 3.

4. PERFORMANCE EVALUATIONS
In this section, we assess the BLER performance of DEF
codes and compare their performance with the perfor‑
mance of the NR LDPC code reported in [12] and the per‑
formance of Deepcode [1] for the same Spectral Efϐiciency
(SE). The SE is deϐined as the ratio of the number of infor‑
mation bits 𝐿 over the number of forward‑channel time‑
frequency resources used for transmission of the corre‑
sponding codeword. As each time‑frequency resource
carries a complex symbol, and since each complex symbol
is produced by combining two consecutive real symbols,
we have

𝑆𝐸 ≜ 𝑄
1 + 𝑃 [bits/s/Hz]. (32)

Training parameter Value

Number of epochs 2000
Number of batches per epoch 10

Number of codewords per batch 2000
Training message length [bits] 50

Starting epoch for codeword‑level weights training 100
Starting epoch for symbol‑level weights training 200

2
𝑛

2
𝐹

The forward‑channel and feedback‑channel impairments 
are modeled as AWGN with variance 𝜎 = 1/𝑆𝑁𝑅 and 
𝜎 𝐵 = 1/𝑆𝑁𝑅𝐹𝐵, respectively. The training forward 
SNR and LLS forward SNR are the same; the feedback 
channel is noiseless.
The set of parameters used in the performance evaluations 
is shown in Table 4. For DEF code performance evaluations, 
we show that even the shortest feedback extensions – 
corresponding to the 𝛿 and 𝛾 parameters of Table 4

Table 3 – Training parameters.
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Fig. 4 – Performance comparison of Deepcode, DEF codes, LSTM‑based 
Deepcode, and DEF‑LSTM codes. Spectral efϐiciency is 0.67 bits/s/Hz 
(𝑄 = 2,  𝑃 = 2) .

– produces signiϐicant gains. The investigation of perfor‑
mance with larger feedback extensions is left for future
work. Details of the evaluated architectures are reported
in Table 5.
Fig. 4 shows the Block Error Rate (BLER) vs. forward SNR
of several codes with 𝑆𝐸 = 0.67 bits/s/Hz. The plot
shows Deepcode [1] (pink curve), Deepcode obtained by
the training method of Section 3 (solid black curve), DEF
code with extended encoder input (orange curve), Deep‑
code with LSTM‑based encoder and decoder NNs (pur‑
ple curve), DEF code with extended encoder input (green
curve) and DEF code with extended encoder and decoder
input (blue curve). All DNN‑based codes use second‑
order modulation (i.e., 𝑄 = 2) and 𝑃 = 2 parity sym‑
bols per systematic symbol. Thus, the corresponding SE
is 0.67 bits/s/Hz. The performance of the NR LDPC code
as reported in [12] with the same SE (QPSK modulation,
code rate 1/3) is shown by a dashed black curve.
Based on the data shown in Fig. 4, the following observa‑
tions are made:

• The DEF code with extended encoder input (orange
curve) has better performance than Deepcode (solid
black curve).

• The DEF‑LSTM codes (green and blue curves) have

Table 4 – Evaluation parameters.

DEF code parameter Selected values

𝐾 [symbols] 50
𝑃 2
𝐻0 50

# zero‑padding bits 1
Encoder input extensions (𝛿0, 𝛿1, 𝛿2) = (1, 2, 2)
Decoder input extensions (𝛾0, 𝛾1, 𝛾2) = (1, 1, 1)
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Fig. 5 – Performance comparison of Deepcode, pseudo‑Deepcode, and
DEF‑LSTM codewith extended encoder input. Spectral efϐiciency is 1.33
bits/s/Hz (𝑄 = 4, 𝑃 = 2).

the best performance among all the evaluated codes.

• The DEF‑LSTM code with extended encoder input
andDEF‑LSTMcodewith extendedencoder/decoder
input have similar performance except for high SNRs,
where the former performs slightly better.

• DEF‑LSTM codes (green and blue curve) outperform
NR LDPC (dashed black curve) by at least three or‑
ders of magnitude BLER for all SNRs.

• The training method of Section 3 (black curve) pro‑
duces codes with better performance than the train‑
ing method of [1] (pink curve).

Based on the ϐirst observation above, it can be concluded 
that encoder input extension produces performance im‑ 
provements. Subsequent observations highlight that the 
encoder input extension provides performance improve‑ 
ments when combined with LSTM. However, based on the 
observation in the third bullet, we can conclude that de‑ 
coder input extension brings no beneϐits compared to en‑ 
coder input extension. Moreover, the above performance 
evaluations show that usage of LSTM in the encoder and 
decoder provides signiϐicant performance improvements 
compared to RNN/GRU based codes.
Figure 5 shows the BLER performance of DNN‑based 
codes with modulation order 𝑄 = 4, the correspond‑ 
ing SE is 1.33 bits/s/Hz. As Deepcode [1] is not deϐined 
for SEs higher than 0.67 bits/s/Hz, 

Table 5 – Evaluated architectures.

Code Encoder NN Decoder NN
(type, #layers) (type, #layers)

Deepcode RNN, 1 bidir. GRU, 2
DEF code RNN, 1 bidir. GRU, 2

Deep‑LSTM code LSTM, 1 bidir. LSTM, 2
DEF‑LSTM code LSTM, 1 bidir. LSTM, 2
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we implemented a pseudo‑Deepcode by replacing the 
Deepcode modulator with a modulator of order 𝑄 = 4.
Results show that the DEF‑LSTM code has better 
performance compared to the pseudo‑Deepcode as its 
BLER is signiϐicantly lower in the whole range of SNR that 
we evaluated. The DEF‑LSTM code BLER gain over 
pseudo‑Deepcode is larger than one order of magnitude 
for SNR=5 dB and 6 dB. Moreover, the DEF‑LSTM code 
outperforms NR LDPC (dashed black curve) by at least 
three orders of magnitude BLER for SNR ≥ 4 dB.

5. CONCLUSION AND FURTHER WORK

A new deep neural network‑based error correction en‑ 
coder architecture for channels with feedback has been 
presented. The new architecture generates parity sym‑ 
bols based on feedbacks in longer time windows com‑ 
pared to prior architectures, thereby introducing long‑ 
range dependencies between parity symbols within each 
codeword.
It has been shown that the codes designed according to 
the DEF architecture achieve lower error rates than any 
other code designed for channels with feedback. As long‑ 
range dependencies between parity symbols are a nec‑ 
essary ingredient of all good error correction codes, it is 
expected that further performance improvements can be 
obtained by increasing the length of the feedback time 
windows.
Moreover, by a suitable selection of the modulation or‑ 
der, we showed that these codes can adapt to the 
forward channel quality, thereby providing the 
maximum spectral efϐiciency that is attainable for the 
given forward channel quality.
In this work, DEF codes have been designed and evaluated 
for forward channels impaired by additive white Gaus‑ 
sian noise and noiseless feedback, where the forward SNR 
has been assumed to be perfectly known at design time 
(NN training) and during LLS. Code design with imperfect 
SNR knowledge and evaluations in more realistic scenar‑ 
ios, such as channels with fading and noisy feedback, are 
interesting subjects that will need to be addressed in or‑ 
der to make these codes applicable in real transmission 
systems. However, these topics require further thorough 
investigation and therefore are left for future works.
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