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Abstract – With the development of 5G communication technology, a cloud computing system has become 
a trend. However, with the expansion of the scale of deployment and the increase in framework complexity, 
ensuring the security and stability of cloud-based systems has become a serious challenge. In a real business 
environment, existing algorithms are powerless in the face of current problems, such as complex types of 
abnormal logs, inaccurate time information, and the lack of key information. This paper proposes network 
cloud equipment anomaly detection and a root cause analysis scheme based on large-scale logs in 
distributed cluster systems. The scheme uses unsupervised integrated learning, keyword search, and root 
cause generalization to analyze logs, accurately find anomalies and locate root causes. The F1 score in log 
anomaly detection is 0.962, and the accuracy in root cause location of anomalies is 0.849. In the ITU AI/ML 
in 5G Challenge 2021, the solution got the highest final score 93.904 in the China Mobile problem statement 
of network cloud equipment anomaly and root cause analysis. Furthermore, the scheme has been deployed 
on China Mobile's 5G network management system and achieves the detection and location of anomalies 
under intelligent operation. 

Keywords – Artificial intelligence for IT operations, ensemble learning, keyword search, log anomaly 
detection, network cloud equipment, root cause analysis  

1. INTRODUCTION

With the development of network function 
virtualization (NFV), network operators have 
accelerated the transformation of communication 
networks into the cloud. The network cloud 
equipment not only promotes cost reduction and 
efficiency with the scale effect of existing equipment 
but also accelerates business development and 
realizes resource sharing. The clouding of the 
network has led to a dramatic increase in the 
number of devices managed by operations and 
maintenance staff. In the Artificial Intelligence for IT 
Operations (AIOps) of modern large-scale 
distributed systems, timely and efficient detection 
of anomalous behavior in the system is crucial, so a 
robust system anomaly detection strategy is needed. 
Millions of logs that store information such as 
system operation event flow, hardware information, 
and key performance indicators are generated 
every day during system operation. The reasonable 
usage of artificial intelligence algorithms for log 
anomaly detection can identify anomalies and 
greatly reduce the operation and maintenance 
pressure on complex system anomaly detection. 

In recent years, log anomaly detection has been a 
hot topic in AIOps [1]. Some researchers extracted 
log sequence information, manually defined the 

correct sequences, and created rule sets [2]. The 
above methods are based on manual statistics and 
analysis, which are powerless for handling huge 
amounts of data. Then, some machine learning 
algorithms are applied to log anomaly detection, 
such as isolation forest [3], Principal Component 
Analysis (PCA) [4], invariants mining [5], log cluster 
[6], etc. The effectiveness of the supervised-based 
approach depends on the quality and quantity of the 
labeled data. Earlier, logistic regression and support 
vector machine are used to classify anomalies [7, 8]. 
From a temporal perspective, the DeepLog 
framework combined with Long Short-Term 
Memory (LSTM) is proposed [9]. Furthermore, the 
Template2Vec approach can extract semantic 
information hidden in log templates [10]. However, 
the acquisition of manually labeled tags is difficult. 
There is a preference for using unsupervised 
algorithms in scenarios with huge amounts of data. 

The logs provided by China Mobile included system 
operation information and performance indicators. 
Typically, there are two requirements for log 
anomaly detection: First, log anomaly detection, 
which can detect whether there is an anomaly in the 
daily system logs. Second, log root cause analysis, 
which can pinpoint the specific location in the log 
where the anomaly was generated. Most of the 
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methods in the existing papers are limited by the 
following problems that make them difficult to put 
into production: 

 The types of anomalies in practical application
scenarios are complex. The anomalies in the
public data sets (HDFS, BGL, etc.) usually have
only dozens of types. In real logs, the types of
anomalies from different components and
processes may reach hundreds or thousands
which leads to high difficulty in log anomaly
detection.

 The time information is not accurate. There are
time errors, delays, and other inaccurate time
information in the logs of different machines.
Therefore, the time in the log is not reliable.

 Information is missing or invalid. When
component information is missing, the logs
cannot extract the complete sequence of events.
In addition, INFO messages may be the root
cause of errors in the eyes of business people,
while DEBUG messages are normal instead.

In this paper, we propose a log anomaly and root 
cause analysis framework based on an OpenStack-
based network cloud system. The framework uses 
unsupervised ensemble learning algorithms to 
discriminate anomalies and achieve log anomaly 
detection. Construct a root cause database based on 
keywords to find root causes and realize root cause 
analysis. In addition, the scheme uses root cause 
generalization to optimize the discrimination and 
search of root causes. This solution can detect 
anomalies in time, ensure the stability of the system, 
and avoid production failures in actual business 
scenarios. 

2. FRAMEWORK

Cloud computing systems under distributed 
clusters have an urgent need for efficient 
maintenance. The security information, hardware 
and load conditions of the system need to be 
dynamically monitored and maintained in real time. 
Our solution is divided into three main processes as 
follows: 

 Data preprocessing: Distributed clusters
collect and distribute the log from network
cloud equipment. Logs from various
component services are mixed. Separate
processing by time and content is required.
Hardware information for monitoring also
needs to be parsed. Many similar logs

expressing the same meaning require data 
fusion. Data needs to be processed to facilitate 
subsequent stages. 

 Log anomaly detection: The preprocessed log
text can usually be split into different log blocks
based on specific chunking methods, such as
relying on timestamps, process ID, and
component types. After extracting the log
templates, a library of templates with
corresponding numbers is generated. Each log
can be matched to the corresponding template
and ID. Unsupervised classification models
with different focuses are used to learn the data
and integrate the results for learning.
Abnormal log sequences can be identified more
accurately, and anomaly detection can be
achieved.

 Log root cause analysis: The distinguished
sequence of abnormal logs can be used by the
operation and maintenance staff to find the
root cause of the logs. The workload is heavy
under a large-scale cluster with high
throughput and low latency. Root cause
analysis algorithms can be added to
automatically locate anomalies and detect the
time and log nodes of anomalies. Root cause
keywords form a root cause library that can be
used to retrieve root causes. Root cause
generalization optimizes the root cause
database. Further manual safeguarding and
optimization of the root cause base are
required for higher-quality targeting.

It is a general trend to introduce artificial 
intelligence technology into the field of log analysis 
and processing. Based on the above process, Fig. 1 
shows the flow chart of network cloud equipment 
anomaly and root cause analysis. The following 
sections describe log anomaly detection and log 
root cause analysis in detail. 

Fig. 1 – The flow chart of network cloud equipment anomaly 
and root cause analysis 
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3. LOG ANOMALY DETECTION

The main function of the log anomaly detection 
module is to classify log data, determine whether it 
is an abnormal log, and provide the corresponding 
abnormal discrimination results for the subsequent 
steps. Here we divide it into two parts: log parsing 
and unsupervised ensemble learning. Fig. 2 shows 
the flow chart of log anomaly detection. 

Fig. 2 – The flow chart of log anomaly detection 

3.1 Log parsing 

Log parsing extracts the log template and obtains 
the log template ID. The mainstream log parsing 
algorithms are Drain [11], Spell [12], IPLoM [13], 
etc. Drain uses a tree structure to store log messages 
and efficiently extract generic templates. In this 
paper, the extraction of logs is implemented using 
the Drain algorithm. The processing object is log 
data based on the OpenStack framework [14]. 

Table 1 – Example of train set and test set 

Data set Quantity Example 

Train 264392 
1 2021-05-21 14:37:51.029 

28838 INFO glance.comon.wsgi 
[-] Starting 160 workers 

Test 224800 

1 Start building networks async 

hronously for instance. build_ 

resources /usr/lib/python2.7/s 

itepackages/nova/compute/ma
nager.py:2159 

The data used in this solution is based on the 
competition held by China Mobile: network cloud 
equipment anomaly and root cause analysis [15]. 
The data set contains the train set and the test set. It 
was confirmed by the operational experts that the 
train set was operating normally with no abnormal 

logs. It contains a total of more than 220,000 normal 
logs in a complete 3-day period. The test set is 
1124 slices of log streams, each log stream contains 
200 logs, where the log labels are unknown. That is, 
there may be anomalies or normal. Table 1 shows 
the example of the train set and test set. 

The train set contains the log ID, time, process ID, 
log level, log components, content, etc. The test set 
contains only the log content. Therefore, it is not 
possible to use log information that is present in the 
training set but missing in the test set. By comparing 
the content data in the training set and the test set, 
we found that there is a large difference in content 
between the two. So, it limits the use of the train set. 
To reduce the number of correct logs in the test set, 
we eliminated the logs in test data which is the same 
as the logs in the training set. The test set lacks 
information and differs greatly from the training set. 
Here, the algorithm mainly processes and analyzes 
the test set. The template extraction of the body 
content part of the log using the Drain algorithm, 
the extraction result contains the template ID, the 
template content, and the list of extracted relevant 
parameters, the specific results are shown in 
Table 2. 

Table 2 – Examples of templates drawn by the Drain 

Content 
Templa

te ID 
Template 

Parameter 
List 

Starting 160 
workers 

1 
Starting <*> 

workers 
[‘160’] 

(28848) wsgi 
starting up on 

http://0.0.0.0:9
191/ 

2 

(<*>) wsgi 
starting up 
on http:// 

<*>/ 

[‘28848’, 
’0.0.0.0:9191’] 

…… …… …… …… 

The input of an unsupervised model usually needs 
numerical representation, so the log data in text 
format needs to be transformed into a sequence. 
Template ID can be obtained after template 
extraction. The corresponding 1124 test sets can be 
represented by the template ID sequence. Some 
researchers treat it as time series. However, the 
time information cannot be directly processed as 
time-series data in this paper. 

Through the above method, the log sequence matrix 
composed of template ID sequence can be obtained. 
The word frequency-inverse file frequency (TF-IDF) 
algorithm can be used to convert the log sequence 
matrix into a new conversion matrix to further 
evaluate the importance of a log statement to the 
whole log. Then, the standardized adjustment 
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matrix distribution is used. The obtained matrix can 
be input into the unsupervised model to classify the 
anomaly of the log sequence in the test set. 

3.2 Unsupervised ensemble learning 

The goal of this part is to divide the test data into 
blocks and classify whether each log block is 
abnormal. Providing sufficient annotation data 
requires high capital and a large amount of time cost. 
Unsupervised log anomaly detection algorithms 
does not need much manual annotation data. 
Therefore, they are more economical and practical. 

In this paper, four machine learning classification 
algorithms with different emphases in principle are 
used for modeling and classification tasks, including 
log clustering [6], Principal Component Analysis 
(PCA) [4], invariants mining [5], and isolation forest 
[3]. Four classifiers are used as meta-classifiers for 
ensemble learning. After adjusting the model super 
parameters, ensemble learning combines the 
prediction results output by the four models with 
the same weight to obtain whether the final 
prediction results are abnormal. The basic 
principles of the four classifiers are briefly 
introduced below: 

 Log clustering is divided into two stages:
knowledge base initialization stage and online
training stage. Firstly, the knowledge base
initialization stage usually includes three parts:
log vectorization, log clustering, and log
representative vector extraction. Log
sequences are vectorized using algorithms
such as TF-IDF and standardization. The
vectorized log sequence is agglomerated and
hierarchically clustered to generate multiple
normal and abnormal classes. In the online
training stage, the log sequence vectors are
added to the knowledge base. If the Euclidean
distance between it and the existing
representative vector is less than the threshold,
add the set and give the same label. Otherwise,
create a new set and set a new label.

 PCA is a statistical method with dimensionality
reduction. In log anomaly detection, the basic
idea is to project high-dimensional data into a
new coordinate system composed of k
principal components, where k is less than the
original dimension. Manually set the threshold
of the principal component after
dimensionality reduction. If it is greater than
the threshold, it is judged as an anomaly,
otherwise, it is judged as a normal log.

 The main idea of invariant mining is to mine
and reasonably use the linear relationship
between the processes of the program. When
events do not occur in pairs, the linear
relationship is violated. Firstly, the invariant
space can be estimated by singular value
decomposition. Secondly, the violence search
algorithm is used to find the invariants. Finally,
a threshold is defined to verify each candidate
object. If the threshold is exceeded, it is
determined as an anomaly.

 The idea of isolation forest is to find and delimit
the isolated outliers with sparse distribution
and far away from the group as anomalies. The
algorithm believes that the smaller the distance
from the root node to the leaf node, the easier
it is to separate, and the higher the probability
is the outlier of the anomaly. Anomaly
detection includes training and testing stages.
In the training stage, isolated trees are
established, and isolation forests are formed.
Different trees act as experts in different
anomaly recognition. In the test phase, the
anomaly score of the test set is calculated to
detect the anomaly.

Finally, we vote on the prediction results of the four 
unsupervised models: 

𝑝𝑟𝑒 =
1

4
∑ 𝑘𝑖 ∗ 𝑠𝑖
4
𝑖=1  (1) 

Where ki is the weight of each model, si is the 
prediction result of each model, and i is the number 
of the model. 

Log anomaly detection is a binary classification task. 
To measure the accuracy and coverage of the binary 
classification model, we select Precision, Recall, and 
F1 as the evaluating indicator. F1 score is the 
harmonic average of Precision and Recall. 

Fig. 3 – Precision, Recall, and F1 scores of different models 
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Fig. 3 shows the Precision, Recall, and F1 scores of 
different models in the same test set. Among the 
four unsupervised algorithms, the invariant mining 
algorithm has the best effect, and the F1 score can 
reach 0.75. After ensemble learning of the four 
results with the same weight of each result, the 
scores of ensemble learning are better than scores 
of a single algorithm, and the F1 score can reach the 
best score of 0.81. This is because the algorithm 
strategies of the four meta-classifiers are different. 
There are essential differences in principle. The 
meta-learner has diversity and accuracy. "Good but 
different" finally ensures that the ensemble result is 
better than a single classifier. 

The log classification results can show whether 
there are anomalies in the log flow, but it is still 
impossible to know which line has an error. Viewing 
the complete log flow and determining the root 
cause is still time-consuming operation and 
maintenance work. Further automated root cause 
analysis and secondary optimization of 
classification results are needed. 

4. LOG ROOT CAUSE ANALYSIS

Fig. 4 shows the flow chart of log root cause analysis. 
Start the log root cause analysis module if the 
prediction result is abnormal. Firstly, we need to 
manually define the common error keywords, and 
search the key root cause statements containing 
these error keywords through algorithms such as 
regular matching to form a key root cause database. 
Then, to generalize the root cause and expand the 
root cause database, similarity calculations based 
on edit distance are used to search similar root 
cause statements and improve the key root cause 
database. Finally, the module is scalable. The root 
cause database can be verified through expert 
experience injection, and more appropriate root 
cause analysis logic can be customized to ensure the 
final effect. 

Fig. 4 – The flow chart of log root cause analysis 

4.1 Keyword search 

Although the strategy of searching root causes 
based on keywords is relatively simple, it is still an 
important way of judgment and cannot be replaced. 
Because it is the most direct method to identify 
faults and has been widely used and accumulated in 
the past few decades. The steps of the keyword 
search are as follows: All the templates extracted 
from the logs form a complete template library. 
Finding the templates that contain keywords and 
composing the root cause library. Combining the 
experience in the past, setting specific and 
important keywords can have a higher root cause 
positioning accuracy, such as "Errno", "Fail", "Exp", 
etc. Last, if the template extracted from the online 
log is in the root cause library, it can be directly 
judged as an anomaly. Table 3 lists several common 
errors that include keywords. 

Table 3 – Examples of log templates containing keywords 

Keywords Log Template 

Errno 

AMQP server on controller:<*> is 
unreachable: [Errno 104] Connection reset 

by peer. Trying again in <*> seconds. 

AMQP server on controller: <*> is 
unreachable: [Errno 111] ECONNREFUSED. 

Trying again in <*> seconds. 

Failed 

Failed to compute_task_migrate_server:  
No valid host was found. There are not 

enough hosts available. 

Failed to bind port <*> on host <*> for 
vnic_type normal using segments 

Exp 

HTTP exp thrown: Instance <*> 
could not be found. 

DBAPIevent exp wrapped from 
(pymysql.err.Internalevent) (1927, 

u'Connection was killed') [SQL: u'SELECT 1'] 
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4.2 Root cause generalization 

Keywords are usually defined by business experts, 
but it is unrealistic to exhaust all keywords. In the 
scenario where keywords are not fully defined, how 
to automatically expand the root cause library is an 
important issue. We use root cause generalization 
to search for templates that are similar to templates 
which already exist in the root cause library and add 
them to the root cause library. Setting appropriate 
thresholds can ensure the accuracy of similar root 
causes. 

Here we use the Levenshtein Distance: For two 
strings, the minimum number of edits required to 
convert from the first to the second is called the edit 
distance. The conversion method includes 
character replacement, insertion, and deletion. The 
smaller the edit distance, the greater the similarity 
between the two strings.  

To be more intuitive, Table 4 gives an example of 
root cause generalization. It shows one of the reset 
connection errors of the AMQP service. The output 
text contains the keyword "[Errno 104]". Through 
root cause generalization, two new error templates 
that belong to AMQP services can be obtained called 
timeout error and heartbeat missing error. The 
keyword "Errno" does not appear in these two 
errors, so it is difficult to filter directly into the root 
cause library if root cause generalization is not used. 

Table 4 – Examples of root cause generalization  
in AMQP service 

Root Cause Template 

AMQP server on controller:<*> is unreachable: [Errno 104] 
Connection reset by peer. Trying again in <*> seconds. 

Similar templates Similarity 

AMQP server on controller:<*> is 
unreachable: timed out. Trying again in <*> 

seconds. 

0.81 

AMQP server on controller:<*> is 
unreachable: Too many heartbeats missed. 

Trying again in <*> seconds. 

0.79 

In this example, we can sort out all the error 
categories of AMQP services manually, but this 
method is inefficient and costly. Extending to other 
service categories, there are the same root causes 
that cannot be exhausted and are difficult to directly 
match. The root cause generalization algorithm can 
be used to efficiently search for similar root cause 
templates, enrich the root cause library, and 
improve the efficiency and accuracy of positioning. 
In addition, the second root cause generalization 
can be used to further expand the root cause library. 

Of course, this method will introduce non-root 
cause templates as the number of times increases, 
and unreasonable thresholds. Therefore, business 
experts are required to review the templates newly 
added to the root cause library to ensure the 
rationality and accuracy of the root cause library. 

4.3 Evaluation of results 

In addition to the accuracy of log anomaly detection, 
the accuracy of root cause analysis and the time-
consuming algorithm need to be considered. The 
root cause analysis timeliness score is used to 
evaluate the accuracy and timeliness of root cause 
analysis: 

𝐼𝑛𝑇𝑖𝑚𝑒𝑆𝑐𝑜𝑟𝑒 = 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗
𝐼𝑛𝑇𝑖𝑚𝑒𝐶𝑛𝑡

𝑇𝑃
 (2) 

Where InTimeCnt is the number of logs that identify 
the location of the anomaly in time, and TP is the 
number of anomaly sequences accurately identified. 
FinalScore can be divided into the following two 
parts: 

𝐹𝑖𝑛𝑎𝑙𝑆𝑐𝑜𝑟𝑒 = 𝐹1 ∗ 0.8 + 𝐼𝑛𝑇𝑖𝑚𝑒𝑆𝑐𝑜𝑟𝑒 ∗ 0.2  (3) 

In terms of time performance, the inference time 
score is used to evaluate the efficiency of the 
algorithm: 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒 =
∑ 𝑆𝑖𝑛𝑔𝑙𝑒𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒𝑁
𝑁
1

𝑁
(4) 

Where SinglePerformanceScore is the time score of 
single inference. PerformanceScore is the average 
score. The total number of inferences is N.  

Fig. 5 – The SinglePerformanceScores in different  
time intervals 

The model training time is required to be less than 
20 minutes, and the single inference time is less 
than 100 ms. The SinglePerformanceScores in 
different time intervals are shown in Fig. 5. 
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Table 5 – Comparison of scores in different methods 

Algorithm 
Log 

Anomaly 
Detection 

Log Root 
Cause 

Analysis 

Deep
Log 

Precision 0.694 0.943 0.047 

Recall 0.980 0.980 1 

F1 0.813 0.962 0.090 

InTimeScore – 0.849 0.043 

FinalScore – 0.939 0.081 

PerformanceScore – 1 1 

Table 5 shows the scores in different methods. The 
following conclusions can be drawn from the table: 

 Log root cause analysis can optimize anomaly
detection results. The abnormal result
obtained by log anomaly detection is not
necessarily accurate. If the location of the root
cause is obtained from the log root cause
analysis, the root cause line will be directly
output. Otherwise, it can be re-determined as
normal. Log root cause analysis has greatly
improved the accuracy and F1 score.

 The conventional anomaly detection algorithm
is not universal. The DeepLog scheme using
LSTM has very poor results on this data set.
This is because the types of abnormal logs in
actual application scenarios are complex.
DeepLog judges the sequence that has not
occurred before as the anomaly and over-
judgments the abnormal log. The public data
sets (e.g., HDFS) usually have only dozens of
types after data cleaning. There are no more
than ten types of abnormal logs. Hundreds of
logs are difficult to distinguish, and the existing
traditional algorithms are powerless.

 The scheme is accurate and feasible. The first
national AI innovation and application
competition [15] provides the data set used in
this paper. The F1 score in log anomaly
detection is 0.962, and the accuracy in root
cause location of anomaly is 0.849. In the ITU
AI/ML in 5G Challenge 2021, the solution got
the highest final score 93.904 in the China
Mobile problem statement of network cloud
equipment anomaly and root cause analysis.

 The main differences between the second-
ranked scheme and our scheme in the
competition are as follows: It uses a pre-trained
sentiment classification model to classify the
sentiment of the logs one by one, and the logs
classified as negative sentiment are considered
abnormal. Due to the lack of labels, the

sentiment classification model was not 
optimized using log data. We consider the effect 
of the model to be instability. In comparison, 
our strategy is more cautious. Considering 
many unknown new logs in the test set (never 
in the train set), we only rely on keywords to 
judge logs that explicitly contain errors and 
their similar logs as anomalies. 

5. CONCLUSION

Network cloud equipment anomaly and root cause 
analysis are the basic AI functions for network 
digital transformation and the construction of 
autonomous driving networks. ITU has specified 
some network intelligence use cases of log anomaly 
detection. This paper proposes a solution for 
network cloud equipment anomaly detection and 
root cause analysis, which solves the problems of 
complex abnormal log types, inaccurate time 
information, and missing or invalid information in 
actual business scenarios. This solution does not 
require large amounts of manual log annotation and 
can construct an efficient anomaly detection 
strategy to process millions of logs in a distributed 
system with complex components. Unsupervised 
model ensemble learning is used to achieve 
anomaly detection and classification tasks. A root 
cause library matching search is used to achieve 
root cause analysis. The scheme uses log data 
generated by network cloud equipment under a 
distributed network system, ensuring that the 
anomaly detection and root cause analysis models 
generated by this training have good practicability. 
This solution greatly reduces operation and 
maintenance costs, improves efficiency and system 
stability. 

In addition to the scenarios of network cloud 
equipment, this solution can also be applied to more 
scenarios, such as single-source and multi-source 
log root cause positioning of the call chain, anomaly 
detection of system-level logs and application logs, 
and multi-dimensional data fusion root cause 
location-based on alarms, indicators, and logs. The 
scheme has also been deployed on China Mobile's 
5G network management system. This article gives 
an overall solution of how to perform anomaly 
detection based on log data. We still need to think 
about how to further improve the accuracy rate and 
meet the management and distribution of higher 
throughput and higher security in the future. 
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