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Abstract – With the development of 4G/5G, the rapid growth of traffic has caused a large number of cell 
indicators to exceed the warning threshold, and network quality has deteriorated. It is necessary for 
operators to solve the congestion in advance and effectively to guarantee the quality of user experience. Cell-
level multi-indicator forecasting is the foundation task for proactive complex network optimization. In this 
paper, we propose the 4G/5G Cell-level multi-indicator forecasting method based on the dense-Multi-Layer 
Perceptron (MLP) neural network, which adds additional fully-connected layers between non-adjacent 
layers in an MLP network. The model forecasted the following week’s traffic indicators of 13000 cells 
according to the six-month historical indicators of 65000 cells in the 4G&5G network, which got the highest 
weighted MAPE score (0.2484) in the China Mobile problem statement in the ITU-T AI/ML in 5G Challenge 
2021. Furthermore, the proposed model has been integrated into the AsiaInfo 4G/5G energy-saving system 
and deployed in Jiangsu Province of China. 
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1. INTRODUCTION
With the development of 4G/5G, the rapid growth of 
traffic has caused a large number of cell indicators to 
exceed the warning threshold, and the network 
quality has deteriorated. The daily operations for 
network optimization mainly consider the following 
key points: (1) forecast network usage to avoid or 
reduce the probability of network congestion, 
improve network resource allocation efficiency, and 
ensure high-quality user experience; (2) evaluate the 
quality of 4G/5G networks; (3) reduce the load of 
high-capacity cells (mainly 4G at this stage) to achieve 
active optimization. Among them, cell-level multi-
indicator forecasting is the foundational task for 
proactive complex network optimization. 

In view of the high investment cost of network 
infrastructure, the network capacity cannot be 
infinitely enlarged. In order to avoid network 
overload, the network capacity should be partially 
controlled. It has become the most economical and 
effective method to forecast and evaluate network 
quality and capacity by using a big data forecasting 
method for a large number of network performance 
indicator data collected in different cities and different 
systems to identify areas with insufficient network 
performance and carry out targeted optimization or 
concentrated investment and construction. 

ITU has specified some network intelligence use 
cases of cell traffic forecasting. ITU-T M.3080 [4] 
provides a framework for artificial intelligence 
enhanced telecommunication operation and 
management (AITOM). ITU-T Y.3172 [5] specifies 
an architectural framework for Machine Learning 
(ML) in future networks including IMT-2020. ITU-T
Y.3173 [6] specifies a framework for evaluating the
intelligence of future networks including IMT-2020.
ITU-T Y.3175 [7] specifies a functional architecture
of Quality of Service (QoS) assurance based on
Machine Learning (ML) for the International Mobile
Telecommunications-2020 (IMT-2020) network.

At present, for 4G and 5G cells, six traffic KPIs [9] 
are mainly used for cell capacity identification: 
Physical Uplink Shared Channel (PUSCH), Physical 
Downlink Shared Channel (PDSCH), Physical 
Downlink Control Channel (PDCCH), average of 
valid Radio Resource Control (RRC) connections , 
Packet Data Convergence Protocol Uplink Flow 
(PDCPUL) and Packet Data Convergence Protocol 
Downlink Flow (PDCPDL). 

By mining the correlation between the historical 
data of 4G/5G cell-level indicators in different 
regions and cities, we aim to construct a cell-level 
multi-indicator forecasting model to forecast the 
trend of the indicators with respect to each cell. 
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Fig. 1 – Solution overview 

After prediction, if any cell reaches the indicator 
early warning threshold, the cell needs to be 
shunted to reduce cell load and improve network 
quality.  

2. RELATED WORK

2.1 Time series forecasting methods 

Researchers have proposed many classical time 
series forecasting algorithms for such cases 

Prophet [1] is a procedure for forecasting time 
series data based on an additive model where 
nonlinear trends are fit with yearly, weekly, and 
daily seasonality, plus holiday effects.  

LSTNet [3] uses a Convolution Neural Network 
(CNN) and Recurrent Neural Network (RNN) to 
extract short-term local dependency patterns 
among variables and discover long-term patterns 
for time series trends. 

Informer [2] is an efficient transformer-based 
model for Long Sequence Time-series Forecasting 
(LSTF), with three distinctive characteristics: (1) a 
ProbSparse self-attention mechanism; (2) the self-
attention distilling highlights; (3) the conceptually 
simple generative style decoder. Informer forecasts 
long time-series sequences at one forward 
operation rather than in a step-by-step way, which 
drastically improves the inference speed of long-
sequence forecastings. 

DeepAR [12] is a methodology for producing 
accurate probabilistic forecasts, based on training 
an auto-regressive recurrent network model on a 
large number of related time series. It effectively 
learns a global model from a related time series, 
handles widely-varying scales through rescaling 
and velocity-based sampling, generates calibrated 
probabilistic forecasts with high accuracy, and can 
learn complex patterns such as seasonality and 
uncertainty growth over time from the data. 

2.2 Researches that apply “dense” skip-
connections on neural networks 

The exploration of network architectures has been 
a part of neural network research since their initial 
discovery. As neural networks become increasingly 
deep, a new problem emerges: as information about 
the input or gradient passes through many layers, it 
can vanish and “wash out” by the time it reaches the 
end (or beginning) of the network. DenseNet[8] 
connects all layers directly with each other. To 
preserve the feedforward nature, each layer obtains 
additional inputs from all preceding layers. This 
architecture distills the insight into a simple 
connectivity pattern: to ensure maximum 
information flow between layers in the networks. 

DenseNet is a CNN-based network design used for 
image classification problems, and some recent 
researches have attempted to apply DenseNet-style 
skip connections on non-convolutional neural 
networks and use them in real-world applications. 
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AdnFM [13] combines DenseNet-style residual 
learning and an attention mechanism to predict 
Click-Through-Rate (CTR). Steinholtz [14] applied 
skip connections on MLP models for classifications 
of Parkinson’s disease. 

The idea of adding such skip connections to neural 
networks has also been experimented in an earlier 
work in which Raiko, Valpola, and LeCun added 
linear normalization terms to a tanh activation 
function together with the skip connections in 
neural network models for multiple tasks [15]. 

3. SOLUTIONS
Our solution is based on a custom neural network 
called “Dense-MLP” consisting of data 
preprocessing, feature engineering, model training, 
and forecasting as shown in Fig. 1. 

In the data preprocessing part, we convert original 
data into time series data and fill the missing values 
according to the time series’ periodicities. In the 
feature engineering part, we convert the time series 
into tabular data that can be used to train a 
regression model. During the model training, we 
train our dense-MLP model with the tabular data, 
and during forecasting, we use the trained models 
to forecast the final results. 

3.1 Data preprocessing 

3.1.1 Data set 
Our methods are tested on a machine learning 
competition [9], whose training data set includes 
hourly 4G/5G cell indicators data of four cities in a 
province of China from Jan 1 2021, to Jun 31 2021. 
The detailed information is shown in Table 1. 

Table 1 – Detailed information for the data set 

pattern 
#cell #indicat

ors 
data 

size/GB city1 city2 city3 city4 

4G 24374 22932 10796 5223 6 191+ 

5G 1714 1787 652 207 6 25+ 

3.1.2 Missing values 
Based on the experience of domain experts and 
observation of the data, we found that all the six 
indicators that we were trying to forecast (PUSCH, 
PDSCH, PDCCH, RRC, PDCPUL, and PDCPDL) 
contain obvious daily and weekly periodicities, as 
shown in Fig. 2. 

(a) Daily periodicity 

(b) Weekly periodicity

Fig. 2 – Example of periodicity implied in the indicator 

According to these periodicities, we used a 
weighted average of the values at the same time 
point of each week before and after the missing 
value as the filling value, with the weights inversely 
proportional to the number of weeks that differ 
from the time point of the missing value. For 
example, for hourly data from March 1 to March 31, 
2021, if the data at 05:00 on March 10 is missing, 
the weighted average of the data at 05:00 on March 
3, 05:00 on March 17, 05:00 on March 24, and 05:00 
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on March 31 is taken as the filling value, with their 
un-normalized weights being 1, 1, 1/2, 1/3, as 
shown in Fig. 3. 

Fig. 3 – Method for filling missing values 

3.1.3 Feature engineering 

The dense-MLP model that we chose is a neural- 
network-based regression model, whose input and 
output features need to be extracted from the time 
series before training. 

The model tries to forecast values for the following 
week from three weeks’ historical data of a single 
traffic KPI. The input of the model is the holiday 
features of all the four weeks (1 means the day is a 
holiday and 0 means it’s not) and the traffic KPI 
values of the first three weeks, including 28 + 24*21 
= 532 input features in total, as shown in Table 2. 
The model’s output is the KPI values of the next 
week, including 24*7=168 output features, as 
shown in Table 3. 

Table 2 – One row of input features 

Holiday 
feature 1 

… Holiday 
feature 28 

Historical value 
1 

… Historical value 
504 

1 … 0 30.503 … 25.210 

Table 3 – One row of output features 

Forecast 1 … Forecast  168 

10.133 … 65.989 

From each traffic KPI’s time series, we could extract 
multiple rows of training data in a sliding-window 
manner, with each row containing all 532+168=700 
features. For example, if we need to train models on 
data extracted from 10,000 bases from March 1 to 
March 31 2021, then four sample rows can be 
extracted from March 1 2021, to March 28 2021, 
March 2 2021 to March 29 2021, March 3 2021, to 
March 30 2021, and March 4 2021 to March 31 2021, 
accordingly. Thus, a total of 10000*4=40000 rows 
of training data can be obtained. 

During training, input and output features of the 
model need to be scaled: for each row of input 
features, the 504 historical values in the input 
features are divided by the average of the 
504 features as the scaled input features, and the 
model outputs are multiplied by the average value 
as the final forecastings. 

3.2 Dense-MLP neural network model 

The dense-MLP model described in this section was 
intuitively inspired by DenseNet [8], which includes 
“dense” skip connections between network 
modules. Based on the MLP feedforward neural 
network, our model includes additional fully 
connected layers added between non-adjacent 
layers: 

𝒉𝟏 = 𝑅𝑒𝐿𝑈(𝑰 ∙ 𝑾𝟏)  (1) 

𝒉𝟐 = 𝑅𝑒𝐿𝑈 (𝑰 ∙ 𝑾𝟐 + 𝒉𝟏 ∙ 𝑾𝟑) 2⁄  (2) 

𝑶 = (𝑰 ∙ 𝑾𝟒 + 𝒉𝟏 ∙ 𝑾𝟓 + 𝒉𝟐 ∙ 𝑾𝟔) 3⁄  (3)

Where 𝑰 is the scaled model input vector, 𝒉𝟏 and 𝒉𝟐 
are the outputs of each hidden layer, 𝑶 is the scaled 
model output vector, and 𝑾𝟏- 𝑾𝟔 are the parameter 
matrices of each fully connected layer. The neural 
network archietecture is shown in Fig. 4. 

The hidden layers use a ReLU activation function, 
with the number of neurons in each hidden layer 
being 4096. 

During reasoning, taking into consideration that the 
values of the six indicators that we were trying to 
forecast should all be non-negative, we also applied 
a ReLU function on the output layer. 

Intuitively, the dense-MLP network preserves the 
linear relationship between inputs and outputs 
better than the MLP model, thus reducing the 
information loss caused by the feeding forward 
process through multiple FC layers. Compared with 
other neural network architectures proposed for 
time series forecasting of single or a few time series, 
the dense-MLP model contains a larger number of 
trainable parameters and is not limited by the 
locality assumption of convolutional neural 
networks and the long-term memory capabilities of 
recursive neural network structures (RNN [10], 
LSTM [11], etc.), allowing it to better fit the 
nonlinear long-term dependencies within the 
massive KPI data from the telecommunications 
industry. 
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Fig. 4 – The dense-MLP model structure 

3.3 Training loss 

Since the telecommunication operators are more 
concerned with cases when the forecasting results 
exceed the warning thresholds, a weighted MAPE 
score was chosen as the evaluation matrix of the 
competition (See Subsection 4.1). However, 
considering that MAPE is rather sensitive to the 
errors when the true value is small, our solution 
uses a customized loss function during training, in 
which MAPE is replaced by a “unified absolute error” 
when the Absolute Percentage Error (APE) exceeds 
100%, which produces a relatively limited gradient 
where the true value is small so that the model 
converges on all traffic KPIs. The “unified absolute 
error” is calculated by dividing the absolute error by 
the mean of true values in a row instead of 
individual true values. 

𝑨𝑬 = |𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑| (4) 

𝑨𝑷𝑬 =
𝑨𝑬

|𝑦𝑎𝑐𝑡𝑢𝑎𝑙|
× 100 (5) 

𝑼𝑨𝑬 =
𝑨𝑬

𝑚𝑒𝑎𝑛(𝑦𝑎𝑐𝑡𝑢𝑎𝑙)
× 100 (6) 

𝑪𝑬 = {
𝑨𝑷𝑬,   𝑨𝑷𝑬 ≤ 100
𝑼𝑨𝑬,   𝑨𝑷𝑬 > 100

(7) 

𝑳𝒐𝒔𝒔 𝑭𝒖𝒏𝒄 = (𝑚𝑒𝑎𝑛(𝑪𝑬))
2 (8) 

In the fomulas above, yactual means the true values, 
ypred means the forecasted values, AE means 
absolute error, APE means absolute percentage 
error, UAE means the “unified absolute error”, CE 
means a combined error function, Loss Func means 
the final loss function used to train the models. 

3.4 Training hyper-parameters 

We used the Adam optimizer with an initial learning 
rate of 0.005, and the learning rate decreases 
linearly to close to 0 in 128 epochs of training; that 
is, the learning rate of the first epoch was 0.0005, 
and the learning rate of each subsequent epoch was 

0.0005/128 = 0.00000390625 smaller than that of 
the previous epoch. 

We set batch size to 8192 or 16384 for different 
indicators, choosing the one that produces a smaller 
train set loss after the 128 epochs. 

4. RESULTS
The method described in Section 3 has been chosen 
for and evaluated by a machine learning 
competition [9] which provides time-series data for 
training (details of the training set described in 
Subsection 3.1.1) and a private validation data set 
for evaluation. Our method ranked 1st in the 
competition, which is our main motivation for 
publishing the method. 

Subsection 4.2 describes the metric used by the 
competition for evaluating the results, 
Subsection 4.3 describes our earlier models 
submitted to the competition, Subsection 4.4 shows 
the results produced by methods in Subsection 4.3, 
and Subsection 4.5 describes visualizations of the 
method. 

4.1 Metric 

The forecasting task involves the forecasting of 
63,329 cells for each 4G indicator and 4,364 cells for 
each 5G cell indicator. Taking business needs into 
consideration, the weight of 4G cell indicators was 
A4G=0.7 and that for 5G indicators is A5G=0.3. The 
weight on the first day of the 7 days to be forecasted 
was 1.2 and the weight of the last 6 days was 1.0. 

The weighted MAPE error is the weighted average 
of 4G cell MAPE errors and 5G cell MAPE errors. 

𝒘𝒆𝒊𝒈𝒉𝒕𝒆𝒅_𝑴𝑨𝑷𝑬 = 𝐴4𝐺 ∙ 𝑀𝐴𝑃𝐸4𝐺 + 𝐴5𝐺 ∙ 𝑀𝐴𝑃𝐸5𝐺  (9) 

4.2 Training 

In the data preprocessing stage, we used the 
preprocessing method described in Subsection 3.1 
to extract 30 rows of data with a length of 28 days 
from the data of each cell from March 1 to June 31 
for training. About 1.9 million rows of training data 
can be obtained for each 4G indicator, and about 
130,000 rows of training data can be obtained for 
each 5G indicator. Since the preprocessed data 
extracted from 5G indicators are smaller in amount, 
their models are incrementally trained based on the 
corresponding model for the same 4G cell indicator. 

We applied the training hyper-parameters 
described in Subsection 3.4, and the batch size that 
minimizes the training loss was used for each 
indicator. 
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4.3 Models for comparison 

Naive model: Simply use the historical data of the 
past week as the forecasted value for the next week; 
that is, use the data of June 24 to June 30 as the 
forecasted value for July 1 to July 7. 

Rule-based forecasting model: Based on the 
periodicities that we observed (daily and weekly), 
use historical data and apply different statistical 
operators to carry out a weighted average as the 
final forecast value. See Appendix I for more details. 

DenseMLP-final: Our final solution described in this 
article. 

DenseMLP-history1: Compared to DenseMLP-Final, 
DenseMLP-history1 has the number of hidden layer 
neurons reduced to 2048 and other hyper-
parameters unchanged. 

DenseMLP-history2: Compared to DenseMLP- Final, 
DenseMLP-history2 has the number of hidden layer 
neurons reduced to 1024, batch size fixed to 8192, 
and the initial learning rate increased to 0.001 and 
other hyper-parameters unchanged. 

DenseMLP-history3: Compared to DenseMLP- 
history2, DenseMLP-history3 has the learning rate 
fixed to 0.001 instead of linearly decreasing during 
training and other hyper-parameters unchanged. 

4.4 Results 

Table 4 – Comparing results of our final and earlier methods 

Model Weighted MAPE 

Naive 0.5516 

Rule-based 0.2795 

DenseMLP-history3 0.2631 

DenseMLP-history2 0.2521 

DenseMLP-history1 0.2491 

DenseMLP-final 0.2484 

By comparing DenseMLP -history1 and DenseMLP –
final in Table 4, it can be seen that the DenseMLP 
models’ performance does not strongly depend on 
the number of hidden layer neurons. In practice, the 
number of model parameters can be greatly 
reduced by reducing the hidden layer sizes. 

By comparing DenseMLP-history3 and DenseMLP-
history2, it can be seen that the addition of a 
dynamic learning rate significantly improves the 
result. 

The rule-based method achieves a relatively good 
result, which indicates that our assumption of data 
periodicity (data includes obvious daily periodicity 
and certain weekly periodicity) is correct. 

Training all 12 DenseMLP-final models on 
preprocessed data described in Subsection 4.2 
takes about 4 hours, and reasoning on preprocessed 
data which produces the 7-day forecasting 
described in Subsection 4.1 takes about 2 minutes. 

Table 5 – Leaderboard of the Competition [16] 

Method Weighted MAPE 

Our method (DenseMLP-final) 0.2484 

2nd team’s method 0.2560 

3rd team’s method 0.2579 

4th team’s method 0.2597 

5th team’s method 0.2634 

The leaderboard (Table 5) shows that all leading 
methods’ weighted MAPE scores are near 0.25, 
which indicates that such errors might be inevitable 
in this particular data set. Our method outperforms 
the second team by 0.0076, which looks relatively 
significant compared to the difference between the 
following teams (0.0019 between 2nd and 3rd team, 
0.0018 between 3rd and 4th team, etc.). All leading 
teams’ methods perform better than our simpler 
methods ("Naive” or “Rule-based”). 
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(a) Strong periodicities 

(b) Obviously abnormal values 

Fig. 5 – A visualization of the forecasting result of trained dense-MLP models on the training set, 
in which blue lines are actual values and orange lines are forecasted values. 

4.5 Visualization 

Visualizations in Fig. 5 are examples that show that 
the models produce reasonable and precise 
forecasting on “normal” data with strong 
periodicities, while it doesn’t fit obviously abnormal 
values in the training set. 

5. APPLICATION AND CONCLUSION
The 4G/5G cell traffic KPIs forecasting model has 
been integrated into the AsiaInfo energy-saving 
system and deployed in Jiangsu Province. As shown 
in Fig. 6, the model can forecast the service quality 
indicators, traffic indicators, and coverage effect in 
the energy-saving analysis stage. The accurately 
and timely forecasting could improve energy-saving 
benefits and avoid adverse effects on the network. 

Fig. 6 – Application scenarios 
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In future studies and applications, we will 
experiment with other options on the solution’s 
overall design, model structures, and hyper-
parameters. parameters, such as spatial-temporal 
forecasting which takes the bases’ spatial location 
into consideration, and other deep learning model 
architectures such as CNN, transformer, and causal 
convolution. In order to build autonomous 
networks and improve network intelligence levels, 
the 4G/5G cell traffic KPIs forecasting model will be 
widely applied to intelligent 5G network operation 
and maintenance products. 

Appendix I. Details of our rule-based method 

Define an exponential smoothing function: 

𝑒𝑥𝑝_𝑠𝑚𝑜𝑜𝑡ℎ(𝒙, 𝛼) = ∑ (1 − 𝛼)𝑛−𝑖𝑥𝑖
𝑛−1
𝑖=1 + 𝛼𝑥𝑛  (A.1)

In the above formula, 𝒙 is a time series consisting of 
(𝑡1, 𝑥1), . . . , (𝑡𝑛, 𝑥𝑛) in which 𝑡𝑖  is the timestamp at 
index i and 𝑥𝑖  is the value at index i, and 𝛼  is the 
smoothing parameter. 

Also, we denote the standard mean and median 
function applied on 𝒙 ’s values as 𝑚𝑒𝑎𝑛(𝒙)  and 
𝑚𝑒𝑑𝑖𝑎𝑛(𝒙). 

Given a training time series 𝑺 = {(𝑡𝑖, 𝑠𝑖)}, our rule-
based method predicts the value 𝑠𝑗 at timestamp 𝑡𝑗 

in the following way: 

𝑺𝟏 = {𝑠𝑖|𝑡𝑖𝑚𝑒_𝑖𝑛_𝑑𝑎𝑦(𝑡𝑖) = 𝑡𝑖𝑚𝑒_𝑖𝑛_𝑑𝑎𝑦(𝑡𝑗)}   (A.2) 

𝑺𝟐 = {𝑠𝑖|𝑡𝑖𝑚𝑒_𝑖𝑛_𝑤𝑒𝑒𝑘(𝑡𝑖) = 𝑡𝑖𝑚𝑒_𝑖𝑛_𝑤𝑒𝑒𝑘(𝑡𝑗)} 

(A.3) 

𝑠𝑗 = 𝑤1 ∙ 𝑒𝑥𝑝_𝑠𝑚𝑜𝑜𝑡ℎ(𝑺𝟏, 𝛼1) + 𝑤2 ∙

𝑒𝑥𝑝_𝑠𝑚𝑜𝑜𝑡ℎ(𝑺𝟐, 𝛼2) + 𝑤3 ∙ 𝑚𝑒𝑎𝑛(𝑺𝟏) + 𝑤4 ∙
𝑚𝑒𝑎𝑛(𝑺𝟐) + 𝑤5 ∙ 𝑚𝑒𝑑𝑖𝑎𝑛(𝑺𝟏) + 𝑤6 ∙ 𝑚𝑒𝑑𝑖𝑎𝑛(𝑺𝟐) 

(A.4) 

𝑺𝟏 is the sub-series of 𝑺 consisting of the values at 
the same time in each day as 𝑡𝑗.  𝑺𝟐 is the sub-series 

of 𝑺 consisting of the values at the same time in each 
week as 𝑡𝑗 . 𝑤1 , 𝑤2 , …, 𝑤6  and 𝛼1  and 𝛼2  are the 

adjustable parameters of the method. 

In the experiments described in Section 4, we set 
𝛼1 = 𝛼2 = 0.82 , 𝑤1 = 0.07 , 𝑤2 = 0.13 , 𝑤3 = 0.14 , 
𝑤4 = 0.26 , 𝑤5 = 0.14 , 𝑤6 = 0.26  to produce a 
“relatively good” result, as described in 
Subsection 4.4. 
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