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Abstract – In order to promote the use of machine learning in 5G, the International Telecommunication Union (ITU) pro‑
posed in 2021 the second edition of the ITU AI/ML in 5G challenge, with over 1600 participants from 82 countries. This work
details the second place solution overall, which is also the winning solution of the Graph Neural Networking Challenge 2021.
We tackle the problem of generalization when applying a model to a 5G network that may have longer paths and larger link
capacities than the ones observed in training. To achieve this, we propose to irst extract robust features related to Queueing
Theory (QT), and then ine‑tune the analytical baseline prediction using amodi ication of the Routenet GraphNeural Network
(GNN) model. The proposed solution generalizes much better than simply using Routenet, and manages to reduce the analyt‑
ical baseline’s 10.42 mean absolute percent error to 1.45 (1.27 with an ensemble). This suggests that making small changes
to an approximate model that is known to be robust can be an effective way to improve accuracy without compromising
generalization.
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1. INTRODUCTION
During the year of 2021, the International Telecommuni‑
cationUnion (ITU) once again brought to the forefront the
use of machine learning as a means to maximize the ef‑
iciency of 5G. The second edition of the “ITU AI/ML in
5G challenge” introduced a diverse set of challenges re‑
lated to the development and training of machine learn‑
ing models to solve particular problems within the realm
of 5Gnetworks. Over1600 competitors from82countries
were asked to solve problems thatwere put forth by hosts
fromdifferent regions [1]. Thisworkdetails the irst place
solution of the challenge proposed by the Barcelona Neu‑
ral Networking Center, named Graph Neural Networking
Challenge 2021 ‑ Creating a Scalable Digital Network Twin,
a.k.a. GNNet Challenge 2021. This solution would later
on compete againstwinning solutions fromother regional
hosts in the Grand Challenge Finale, ending up with sec‑
ond place overall.

Much like in the previous year, the GNNet challenge was
centered around creating a predictive model for 5G net‑
works: given a topology and routing con iguration, one
must predict the per‑path‑delay. In addition, the GNNet
Challenge 2021 had a speci ic goal in mind: to address
the current limitations of Graph Neural Network (GNN)
architectures, whose generalization suffers greatly when
predicting on larger graphs. Thiswas veri ied by the orga‑
nizers to be the case for RouteNet [2], a message‑passing
GNNmodel that in luenced most solutions from the 2020
edition of the challenge [3]. When creating a dataset, it
is usually not feasible to gather data from a currently de‑
ployed network, as that would require us to explore edge
cases that directly lead to service disruption, such as link
failures. The alternative is to generate everything from a

small network testbed created in the vendor’s lab. The
distribution of the graphs observed in validation/test set
are therefore different from the ones observed in training.

Table 1 – Types of approaches

Fast
Enough?

Top tier
results on
small graph?

Generalizes
to larger
graphs?

Analytical 3 7 3
Packet simulators 7 3 3
RouteNet 3 3 7
Proposed solution 3 3 3

To understand the solution detailed in this report, it is
helpful to look at previous approaches (Table 1). They
are divided into 3 categories: analytical approxima‑
tions, packet simulators and RouteNet, a model based on
message‑passing GNNs. Packet simulators were not al‑
lowed in the competition in principle due to excessive
running times; analytical approaches generalize well and
run fast, but they do not offer competitive performance;
RouteNet is still fast and more accurate than analytical
approaches, but fails to generalize to larger graphs. For
our proposed solution, we extract invariant features
from the analytical approach, and feed them to a GNN.
This way, we can maintain generalization while out‑
performing the purely analytical approach.

2. RELATEDWORK

The problem of predicting traf ic in networks has been
long studiedwithinQueueingTheory (QT) [4], a branch of
mathematics that deals with the analysis of waiting lines.
In a queueing system, customers randomly arrive at a cer‑
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tain place to receive a service, and then leave upon its
completion. By modeling the arrival process and service
of customers with probability distributions, we can use
QT to estimate Key Performance Indicators (KPIs) such
as delay and jitter.

Within the context of 5G networks, we are interested in
modeling the arrival and service of network packets. We
must model each link of the network as a separate queue.
The simplest case is the M/M/1 queue, where the arrival
process is Poisson, the service process is exponential, and
there is one server. More intricate models include the
M/M/1/B queue, which has a buffer that can hold up to
B items.

Traf ic lowwill be heavily dependent on the routing algo‑
rithm and network topology. Given a model of each link
as a queue, one can derive a system of equations related
to traf ic balance on the network. By solving those equa‑
tions, one arrives at the analytical solution for the relevant
performance metrics. This provides us a way to analyze
these systems with a solid theoretical foundation. How‑
ever, analytic models used to predict KPIs in large‑scale
networks often make unrealistic assumptions about the
network, and as a result are not accurate enough.

If the time required to compute the KPI estimate is not
a concern, it is interesting to consider packet simulators
such as OMNeT++[5]. A model in OMNeT++ consists of
nested modules that communicate by message passing.
The topology of the model is speci ied by a topology de‑
scription language. In this setting, analytical intractability
is not a concern, and one can get more accurate results
by simulating individual packets. However, this comes
at a high cost when you consider the running time. Ac‑
cording to the organizers of the GNNet Challenge 2021,
packet simulators were used to help create the compe‑
tition’s dataset. Combined with their excessive running
times, it is no surprise that they were prohibited.

Machine learning is a powerful tool that can help us
achieve better results than we would get through analyt‑
ical methods alone. By using deep neural networks, we
can learn the intricacies of real‑world networks by lever‑
aging huge amounts of data. As the input of our model is
a network, the problem is very suitable to graph neural
networks [6].

Routenet [2] is the machine learning approach most in‑
luential to our work. It is a GNN‑based model that
uses update functions to maintain and update represen‑
tations during message‑passing iterations between links
and paths. In addition to working with a natural network
representation, Routenet is able to relate topology, rout‑
ing, and input traf ic in order to accurately estimate KPIs.
Routenet outperforms the analytical baseline even when
the latter was particularly suited to the dataset. In addi‑
tion, it can handle different network topologies than the
ones observed in training.

After the initial promising results, more experimentation
was conducted in [7] to evaluate the generalization ca‑
pabilities of Routenet. The authors found that, when the
evaluation data is drastically different from the training
data, Routenet’s predictions get signi icantly worse. This
includes, but is not limited to, larger link capacities and
longer paths.

During the Graph Neural Networking Challenge 2021,
many approaches were devised to solve this generaliza‑
tion problem. At the time of writing, one available exam‑
ple is the data augmentation of [8], where link capacities
are de ined as a product of a virtual reference link capac‑
ity and a scaling factor.

3. FRAMEWORK
Our model was built from scratch in the Python language
using Pytorch 1.8.1 [9] and Pytorch Geometric 1.7.0 [10].
The code requires a GPU;we used anRTX3080with 10GB
VRAM. Moreover, 16GB of RAM is enough to not run out
of memory. Our code was divided into 3 different Jupyter
notebooks: one for creating the dataset, two for2 similar
models whose average constituted the inal prediction
used for this challenge. The source code and frozenmodel
weights are available on Github 1.

3.1 Input format
Table 2 – Converted dataset information

Samples Network size
Training 120000 25‑50 nodes
Validation 3120 51‑300 nodes
Test 1560 51‑300 nodes

Because we are interested in generalization to larger net‑
works, the samples in the validation dataset are consid‑
erably larger. As shown in Table 2, the networks seen in
training have at most 50 nodes, whereas those in the val‑
idation set may have up to 300.

The validation set is divided into 3 subsets. All subsets
were provided to participants by the competition orga‑
nizers, and each one captures a type of network that dif‑
fers from the training set. In Subset 1, longer paths are
arti icially generated, and only those paths transmit traf‑
ic. Subset 2 uses variants of a shortest path routing pol‑
icy, with all source‑destination paths producing traf ic.
To make up for the increased traf ic, the routing includes
links with larger capacity than the ones encountered in
the training data. Lastly, Subset 3 can be considered a
combination of the previous two: it uses routing schemes
with larger paths, and also larger link capacities. The test
set is assumed to have the same distribution as the vali‑
dation set.

1https://github.com/ITU-AI-ML-in-5G-Challenge/
ITU-ML5G-PS-001-PARANA
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In order to improve speed when training our model, we
modify the script provided to challenge participants2.
Our script allowsone to runmultiple processes inparallel,
to speed up the creation of this “converted” dataset. Due
to the large amount of iles, we recommend an SSDwith at
least 60GB of memory available. Each low between two
nodes is considered as a separate entity, with the follow‑
ing attributes:

1. p_AvgPktsLambda: Average number of packets of
average size generated per time unit.

2. p_EqLambda Average bit rate per time unit.

3. p_AvgBw: Average bandwidth between nodes
(bits/time unit).

4. p_PktsGen: Packets generated between nodes
(packets/time unit).

5. p_TotalPktsGen: Total number of packets gener‑
ated during the simulation.

We zero out p_TotalPktsGen, as we did not ind the in‑
clusion of simulation time helpful. In order to subject the
network tomore varied input values, we divide link ca‑
pacity l_LinkCapacity (the sole link attribute) and all
path attributes by p_AvgPktsLambda before normaliza‑
tion.

Fig. 1 – Basic steps taken in our model. Instead of directly using the
original “raw” path and link features, we feed them to the QT baseline
and extract higher‑level features, including a reliable approximate pre‑
diction. A modi ied Routenet ine‑tunes this prediction to improve the
QT baseline while still maintaining generalization.

2https://github.com/BNN-UPC/GNNetworkingChallenge/tree/
2021_Routenet_TF

3.2 QT‑Routenet: Model overview

The idea behind the proposed QT‑Routenet model is very
simple in principle, combining Routenet and smart fea‑
ture extraction. In Fig. 1, we can see that the original
features are fed to the baseline, resulting in higher‑level
QT features, e.g. the baseline prediction. The higher‑level
features (and, optionally, the original features) are then
fed to a modi ied Routenet to obtain ine‑tuned output.

By experimentation, it was veri ied by the organizers that
simply feeding the raw path and link features to the exist‑
ing Routenet architecture leads to over 300% Mean Ab‑
solute Percent Error (MAPE) in the competition dataset
[11]. This is likely because the distribution of those fea‑
tures in the validation and test sets is much different than
the one observed in training. On the other hand, the base‑
line prediction remains reasonably consistent between
the training set and all validation sets. This motivated us
to tackle the problemat the input level: using the baseline
prediction (and other QT features), we wanted to stay as
conservative and close to the baseline as possible, but still
use a graph neural network to obtain improved results.

One could potentially describe our approach as using
queueing theory to assign an initial (imperfect) label, and
then learning to smooth it adequately over the network.
However, we should always refer to the baseline predic‑
tion as a feature, not a label. The reason is twofold: irst,
the actual label in this problem is the path delay obtained
in the simulation conducted by the organizers; secondly,
the prediction will be available for all future data, which
avoids some over itting issues when using known labels
to optimize graph models with gradient descent [12].

3.3 De ining the heterogeneous graph
Our GNNmodel works with a matrixX , which is the con‑
catenation of all attributes. The number of rows is equal
to the sum of the number of paths, links and nodes. These
columns all remain ixed, so we also need to add “hidden
state” columns to each of these entities. These columns
are used to perform message‑passing, taking in informa‑
tion about other “hidden state” columns and also ixed
columns. We denote by XP ,XL,XN the ixed columns
of paths, links, and nodes. The hidden state columns are
zero‑initialized and denoted by XPh,XLh,XNh. We in‑
tended to put some provided global attributes into XN

but eventually opted for setting them to zero. We stan‑
dardize all features before feeding them to the model.

Next, we must go over network topology. We denote the
topology by E. The conditions for the existence of edges
are:

• EPL: Whenever a link is part of a path
• EPN : Whenever a node is part of a path
• ELN : Whenever a node is part of a link
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In practice, edges are directed. We may use the termi‑
nology EPL to indicate that the direction is path‑to‑link,
whereas ELP is link‑to‑path. In addition, our code con‑
tains a special function, SeparateEdgeTimeSteps, which
is able to output a list separating ELP . The k‑th element
of this list has all of theELP edges satisfying a condition:
that the link is the k‑th one found while traversing the
path. This separation allows us to preserve order infor‑
mation and use recurrent layers.

3.4 Message passing model
There are two message passing models, which are listed
as Algorithm 1 and Algorithm 2 (see Appendix). The
main difference is that the irst model includes nodes in
the message mechanism, which are ignored by the sec‑
ondmodel. For bothmodels, we feed the initial input ma‑
trixX to aMultilayer Perceptron (MLP). Then, we per‑
form a number of message‑passing iterations using con‑
volutions. First the path entities receive messages, then
nodes, and lastly links.

Messages are exchanged from links to paths using a single
ChebyshevGraphConvolutional GatedRecurrentUnit
Cell [13] layer imported from Pytorch Geometric Tem‑
poral [14]. All other convolutions were set to be Graph
Attention (GAT) [15] layers, and different GAT layers
are used for each iteration. We set the irst few hidden
columns to be equal to the baseline features, so that this
information is preserved similarly to the other ixed fea‑
tures. After themessage‑passing rounds, we feedXL and
XLh to another MLP to obtain the prediction for average
queue utilization. Finally, the average path delay is ob‑
tained using the formula

pathDelay ≈
n_links∑
i=0

delayLink(i) (1)

The delay on each link includes both the time waiting in
the queue, aswell as the time actually passing through the
link. The former is given as

queue_delayi =
avg_utilizationi × queue_sizei

link_capacityi
(2)

whereas the latter can be approximated as:

transmission_delayi =
mean_packet_size

link_capacityi

(3)

From there, we calculate the average utilization of the
link:

avg_utilizationi =

bi∑
j=0

j(π0ρ
j
i ) (4)

3.5 Extracting queueing theory features
Perhaps themost important aspect of ourmodel is its use
of an analytical baseline that serves as a feature extraction

step. This algorithm (Algorithm 3) is based on Queueing
Theory (QT), and iteratively calculates the traf ic on links
and blocking probabilities. After these iterations, we cal‑
culate the traf ic intensity ρ, probability of being in state
zeroπ0, and predicted average occupancyL. The irst two
are used as features only in the secondmodel. In addition,
we also extract the baseline’s per‑path‑delay prediction,
using Equation (1).

Our work closely follows the M/M/1/B model used in
[16]. For convenience, we list the same formulas used to
model the network. Let λk,i be the amount of traf ic from
some path pk passing through some link li. Each path is a
sequence of links, and so we can use the notation λk,k(j)

to indicate the traf ic of path pk going through the j‑th link
encounteredwhile traversing it. The equations governing
the network are:

λk,i = 0, if li ̸∈ pk (5)
λk,k(1) = Ak (6)

λk,k(j) = Ak

j−1∏
i=1

(1− Pbk(i)) if j > 1 (7)

Pbi =
(1− ρi)ρ

bi
i

1− ρbi+1
i

(8)

ρi =

∑
k λk,i

ci
(9)

where: Ak is the demand on the path pk; bi is the buffer
size on link li; Pbi is the blocking probability on link li;
ρi is the utilization of the link, i.e. the ratio between the
total traf ic on link li and its capacity ci. Thedataset of this
competition provides us with bi, ci, and Ak . Speci ically,
we have ∀i : bi = B = 32, i.e. all queues can hold up to
32 packets. On the other hand, we must use a ixed point
algorithm to iteratively update our estimates of the traf ic
λk,i and blocking probabilities PBi.

Once all the previous QT quantities have been estimated,
we can compute the probability that there isn’t a packet
in the link’s queue:

(π0)i =
(1− ρi)

1− ρbi+1
i

(10)

From there, we calculate the average utilization of the
link:

avg_utilizationi =
1

B

B∑
j=0

j(π0ρ
j
i ) (11)

where B is the maximum number of packets per queue.
Next, the mean packet size is obtained as

queue_size
B

(12)

wherequeue_size is given as 32000 for this dataset. This
means that the total delay (waiting and passing through
the link) is:

(x+
∑B

j=0 j(π0ρ
j
i ))

B
× queue_size

ci
(13)
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(a) Training set (b) Validation set #1 (c) Validation set #2 (d) Validation set #3

Fig. 2 – Model 2 tensorboard run for the training set and validation subsets. The horizontal axis represents the number of epochs, with the vertical axis
corresponding to the mean absolute percent error averaged on that epoch. The submission used for the inal prediction was the one for epoch #8. Note
that the validation data is the same for each step, while a random 10% of the training set is evaluated during an epoch.

with x = 1. After some experimentation, we found that
substituting x = π0 gave slightly better results for this
dataset.

3.6 Hyper‑parameters
The other signi icant difference between the two models
lies in themodel size. Whendeveloping the secondmodel,
we opted to scale down as much as possible. This can be
observed by looking at the size (i.e. number of columns)
of XLh,XPh,XNh, as well as the hidden layer size for
the second multilayer perceptron. The entities that rep‑
resented individual nodes were entirely discarded, justi‑
ied partly due to the absence ofmeaningful attributes for
nodes.
Table 3 – Differences between the two models used. Model 2 uses less
hidden input columns, and opts for a simple Linear layer instead of an
MLP before message passing.

Model # of
hidden
input columns

MLP_1 MLP_2

1 XPh:64
XLh:64
XNh:64

Linear(128)
LeakyRELU()
Linear(3 × 64)
LeakyRELU()

Linear(512)
LeakyRELU()
Linear(512)
LeakyRELU()
Linear(1)

2 XPh:8
XLh:8

Linear(2 × 8) Linear(128)
LeakyRELU()
Linear(32)
LeakyRELU()
Linear(1)

Thenumber ofmessagepassing rounds for bothmodels is
three. Model 1 uses ive baseline iterations, whilst Model
2 reduces that to three iterations. Both models perform
message passing iterations for three rounds.

Lastly, we set the initial guess of blocking probabilities to
0.3when training ourmodels, even though it ismost com‑
mon to set it to zero. This did not seem to affect the con‑
vergence of the method.

4. TRAINING AND RESULTS
We use the Adam optimizer with learning rate equal to
1e-03. The batch size is set to 16 . To perform early stop‑
ping, we evaluate, after each epoch, on a small subset of
each of the three validation sets. Each epoch corresponds
to going through some random 10% of the training set; in
addition to this, we select a constant subset of each vali‑
dation set, sacri icing some accuracy in order to speed up
the process.

After each epoch, validation stats are printed and a new
model ile is saved to the ./model folder. We submitted a
fewmodels fromdifferent epochs. In particular, it seemed
that Validation set 1 overestimated the MAPE metric on
the test set, whereas validation sets 2 and 3 followed the
test set’s MAPE more closely. Submissions that priori‑
tized losses on validation sets 2 and 3 were usually more
successful (unless the MAPE on validation 1 was signi i‑
cantly large).

Training on Model 1 took just over 8 hours. Training on
Model 2 takes just over an hour. The respective model
weights were saved. While compiling the initial report,
we loaded the model weights and con irmed that they in‑
deed produce the same submissions sent to the challenge.

Tensorboard support was added to the code a few days
after training Model 1. It provides another way to look at
the performance metrics on‑the‑ ly. The training curves
for Model 2 are shown in Fig. 2.

The obtained results are listed in Table 4, listing the
mean absolute percentage error for the validation subsets
1/2/3, as well as for the inal test set.
Table 4 – MAPE error for the validation and test sets. We report results
for our 2 model architectures, and their average. In addition, we inves‑
tigated a few variations of Model 1: using the baseline prediction, not
using the higher‑level QT features, and not using those features or di‑
viding the original features by p_AvgPktsLambda

.

Val. 1 Val. 2 Val. 3 Test
Model 1 2.71 1.33 1.65 1.45
Model 2 3.61 1.17 1.55 1.45
Average of predictions — — — 1.27
Baseline 12.10 9.18 9.51 10.42
M1w/o QT 6.02 9.78 9.30 7.18
M1w/o QT or div. 8.20 45.64 250.34 85.56

The inal versions of bothmodels performed almost iden‑
tically on the test set. On the validation sets, Model 1 was
better thanModel 2 on Validation set 1, andworse on val‑
idation sets 2 and 3. Their average was able to attain the
lowest MAPE of 1.27.

A few other models were evaluated for comparison. The
analytical baseline on its own was able to achieve a re‑
spectable MAPE of 10.42 on the test set. This is slightly
worse than the 7.18MAPE of Model 1 without the QT fea‑
tures (M1 w/o QT). If we also forget to divide features by
p_AvgPktsLambda as mentioned previously (M1 w/o QT
or div.), the model completely fails to generalize to the
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test set and validation sets 2 and 3. One thing of note is
that the training curves can sometimes be unstable: for
example, the curve for M1 w/o QT eventually rose to 100
MAPE on Validation set 3. Therefore, having a validation
set (even if it consists of just a fewexamples) is immensely
useful to check for generalization and perform early stop‑
ping.

Whenwe don’t put anymeasures in place to generalize to
larger graphs, Validation set 1 seems least affected. The
bad result of 85.56 MAPE is still better than the 300 re‑
ported by the organizer’s result for the original Routenet
[11]. One possibility is that summing the predictions at
each link as a inal step leads to better generalization than
directly predicting delay on each path.

The rules of the GNNet Challenge allowed up to 20 sub‑
missions. For each submission, the error on the test set
wasmade immediately available to the competitors. Even
though we used less than 20 submissions, it is possible
that this measure is (slightly) optimistic. Nonetheless,
it is apparent that the introduction of higher‑level fea‑
turesmakes a huge differencewhen generalizing to larger
graphs, and that QT‑Routenet outperforms both Routenet
and analytical approaches in this scenario.

5. CONCLUSION
This paper presented a novel approach to generalize per‑
path‑delay predictions to larger 5G networks. We man‑
aged to avoid some of the limitations of graph neural net‑
works by working directly at the input level. Namely, we
used a robust baseline based on queueing theory to ex‑
tract higher‑level features, and then ine‑tuned them to
improve the baseline without sacri icing generalization.
We achieved good results in the test set and all 3 valida‑
tion subsets that exploited different path lengths and link
capacities. The proposed solution achieved irst place in
the GNNet Challenge 2021 and second place overall in the
ITU AI/ML in the 5G challenge. We hope that this work
will help develop more approaches that ine‑tune a ro‑
bust approximatemodel that generalizes well to different
distributions. For future work, we expect better results
when combining our approach with other solutions de‑
veloped during this challenge.
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APPENDIX A ‑ MODEL 1 CODE

Algorithm 1Model 1 (submitted on September 22nd)
Require:

X = Concatenate([XP ,XPh,XL,XLh,XN ,XNh], axis=1)

Require: B_path, B_link: baseline predictions
Require: E: network topology
Require: NUM_iterations: # of message‑passing iterations

E_lp_list← SeparateEdgeTimeSteps(ELP )
X ← MLP_1(X,ELN )
for 0 ≤ i < NUM_ITERATIONS do

▷ Paths receive messages
XPh ← LeakyRELU(Convi,node_to_path(X,ENP ))
H ← None
for 0 ≤ k < E_lp_list.length do

H ← (GConvGRU0,link_to_path(X, H, E_lp_list[k]))
end for
XPh ← LeakyRELU(H/(E_lp_list.length))
(XPh)[:, 0:B_path.shape[1]]← B_path

▷ Nodes receive messages
XNh ← LeakyRELU(Convi,path_to_node(X,EPN ))
XNh ←XNh + LeakyRELU(Convi,link_to_node(X,ELN ))

▷ Links receive messages
XLh ← LeakyRELU(Convi,node_to_link(X,ENL))
XLh ← LeakyRELU(Convi,path_to_link(X,EPL))
(XLh)[:,0:B_link.shape[1]]← B_link

end for
L← Concatenate(XL, XLh)
L← Sigmoid(MLP_2(L)) ▷ Predicts average queue
utilization
return GetPathDelay(L,ELP ) ▷ Obtains per‑path‑delay

APPENDIX B ‑ MODEL 2 CODE

Algorithm 2Model 2 (submitted on September 29th)
Require: X = Concatenate([XP ,XPh,XL,XLh],axis=1)
Require: B_path, B_link: baseline predictions
Require: E: network topology
Require: NUM_iterations: # of message‑passing iterations

E_lp_list← SeparateEdgeTimeSteps(ELP )
X ← MLP_1(X,ELN )
for 0 ≤ i < NUM_ITERATIONS do

▷ Paths receive messages
H ← None
for 0 ≤ k < E_lp_list.length do

H ← (GConvGRU0,link_to_path(X, H, E_lp_list[k]))
end for
XPh ← LeakyRELU(H/(E_lp_list.length))
(XPh)[:, 0:B_path.shape[1]]← B_path

▷ Links receive messages
XLh ← LeakyRELU(Convi,path_to_link(X,EPL))
(XLh)[:, 0:B_link.shape[1]]← B_link

end for
L← Concatenate(XL, XLh)
L← Sigmoid(MLP_2(L)) ▷ Predicts average queue
utilization
return GetPathDelay(L,ELP ) ▷ Obtains per‑path‑delay

APPENDIX C ‑ BASELINE CODE

Algorithm 3 Baseline
Require: E: network topology
Require: p_PktsGen: Packets generated per time unit for each
path

Require: l_LinkCapacity: Vector w/ capacity of each link
Require: NUM_iterations: number of iterations
Initialize PB as a vector with constant values for each link.
B ← 32
queue_size← 32000
Let λk,i be the amount of traf ic from path k passing through
link i.
λk,k(i) is the traf ic from path k passing through its i‑th edge.
for 0 ≤ it < NUM_iterations do

A← p_PktsGen ▷ A is the demand on each path
for each path k do

Letmk be the max number of edges in path k.
λk,k(1) ← Ak

∀j ∈ {1.. ≤ mk} : λk,k(j) ← Ak

∏j−1
i=1 PBi

end for
for each link l do ▷ Get total traf ic on links

Tl ←
∑

∃i:l=k(i) λk,l

ρl ← Tl/l_LinkCapacityl

PBl ← (1−ρl)ρ
B
l

(1−ρl)
B+1 ▷ Update blocking probabilities

end for
end for
π0 ← (1− ρ)/(1− pow(ρ,B + 1)) ▷ Prob. that the queue is
at state 0
L← 1

B
(π0 +

∑B
j=1 j(π0 · pow(ρ, j)))

baseline_link← [π0, ρ,L] ▷ Obs: Only [L] for Model 1
L← L×queue_size

l_LinkCapacity
baseline_path← GetPathDelay(L,ELP )
return baseline_link, baseline_path
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