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Abstract – Radio link sustainability gets affected by weather adversities such as snow, fog, cloud, rain, 
thunderstorm, etc. A proactive solution in radio link failure scenarios is necessary to overcome economic 
loss and maintain the Quality of Service (QoS). To address the issue, our work contributes towards building 
a machine-learning-based solution to predict the radio link failure when generic regional weather forecast 
data, key performance indices of radio link and spatial nature of the data are available. After rigorous data 
preprocessing, ensembling models like logistic regression, random forest, light BGM, XGBoost and gradient 
boosting classifiers were trained to predict the Radio Link Failure (RLF) for two cases i.e., day-1-predict and 
day-5-predict. Since it is a classification use case, the metrics used for our work are precision, recall, and F1 
score. The performance of the gradient boosting classifier was better as compared to the other models with 
an F1 score of 0.95 for both day-1-predict and day-5-predict.   

Keywords – Data preprocessing, key performance indices, machine learning, radio link failure, weather 
forecast

1. INTRODUCTION

Establishing reliable communications is of prime 
importance in today’s era of telecommunications. 
One of the challenges the radio engineers face in 
achieving this is radio link failure. RLF can hinder 
communication reliability and increase network 
latency. In extreme cases, for critical applications, if 
the communication link is interrupted for a longer 
time it may incur a huge economic loss. In some 
cases, a radio link failure scenario demands 
manpower and a larger recovery time to resolve the 
issue. Research towards RLF prediction has gained 
attention in Long-Term Evolution – Advanced (LTE-
A) networks [1], in 5G [2] which promises to offer 
Ultra-Reliable Low Latency Communications 
(URLLC), etc. In fact, RLF is a  general problem in 
any wireless communication network. 

There are many factors that contribute to radio link 
failure among which weather-based disruptions are 
also of major concern.  The Qualit of Service (QoS) 
of a radio link can be affected by large variations in 
the weather parameters like rain, temperature, 
humidity, wind, etc. However, the frequency of 
operation decides which weather parameter affects 
the quality of radio connectivity [3]–[5]. There are 
some passive methods by which some action is 
taken once the RLF is sensed; some actions taken 
are initiating the reconfiguring process, changing 
the antenna direction and polarization, providing 
low-cost structural support, activating backup 

virtual machines, redirecting the network traffic, etc 
[6]. Using such passive methods may sometimes 
extend the restoration for hours or increase the 
latency which would incur a huge loss to the service 
provider/network operator. A proactive approach 
would be a better solution in such cases. Hence 
predicting the RLF is one of the problems which 
researchers are trying to address.  

1.1 Problem definition and proposed solution 

There is scope for improved proactive solutions to 
predict radio link failure, especially based on 
variations in the weather conditions. Estimating the 
probability of RLF based on weather phenomena is 
the need of the hour and so is devising an accurate 
model to predict it. Our work considers the 
variation in various weather parameters, along with 
Radio Link (RL) Key Performance Indicators (KPIs), 
over a large range of geographical features to 
generalize the prediction model, which in fact is not 
documented in the existing literature to the best of 
our knowledge. The primary objective is to predict 
the event of radio link failure for the next day of 
measurement and on the subsequent fifth day. The 
major challenges and contributions of the work are 
highlighted below. 

● With the dataset being in a crude format and
highly biased with many features, there is a
major effort towards rigorous data analysis to
select the most relevant features, class
rebalancing and data integration.
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● With the processed dataset, in the model-
building approach, testing majorly with
ensembling Machine-Learning (ML) techniques
has been tried.

In the next section, we discuss some of the related 
works pertaining to the problem statement. In 
Section 3, complete data analysis has been 
presented with appropriate visualization. Also, the 
challenges encountered while dealing with the 
datasets to select the most appropriate features and 
structure them have been discussed. The actual flow 
of data preparation has been presented in Section 4. 
In Section 5, testing of all the ML algorithms used for 
model building and for cross-validation and 
inferencing has been presented. The final results 
have been analyzed and discussed in Section 6. The 
work is concluded along with the future scope in 
Section 7. 

2. RELATED WORK

Although there are good studies to understand and 
establish the relationships between weather 
conditions and radio link quality, there are only a 
few pieces of work in the scope of our problem 
statement i.e., to predict RLF subjected to weather 
adversities. The research work in [7], [8] establish 
that there is negative correlation between signal 
strength and humidity, whereas temperature seems 
to be positively correlated with signal strength. In a 
study on impact of humidity and temperature on 
radio signal quality [9], the authors claim that 
temperature plays a significant role, as compared to 
humidity, in determining the grade of a given radio 
channel in the ISM band. The impact of weather 
conditions on the quality of the radio channel is 
determined by the frequency of operation and the 
terrain conditions. The effect of wind and rain in 
tropical forests has been investigated in [10]. The 
authors modeled the received signal under such 
conditions and they found that it would fit Rician-K 
distribution wherein the K-factor would decrease as 
the wind or rain gets intensified. Effects of weather 
conditions on radio link quality in Ultra-High 
Frequency (UHF) in a tropical region were 
examined in [8]. With their work they could 
establish that there is an anti-correlation between 
radio link quality and weather parameters like 
wind, humidity and temperature, with humidity 
being the strongest influencer. Authors in [11] 
established the relationship between specific path 
attenuation and the rainfall rate in different 
frequencies of operation like 900 MHz (2G), 

1800 MHz (4G) and other 5G. With extensive 
measurements and evaluation, they infer that the 
relationship between path attenuation and rainfall 
rate is linear. The impact of various weather 
parameters in industrial wireless sensor network 
setup in the ISM (industrial, scientific and medical) 
band i.e., 2.4GHz was studied in [12]. With the 
experimental setup, Received Signal Strength 
Indicator (RSSI), Link Quality Indicator (LQI) and 
noise floor readings were measured for each 
received packet along with environmental 
information such as temperature, humidity, fog and 
rainfall. The study concluded that temperature has 
a major impact on communications, whereas the 
effect of fog and rain was less severe unless the 
rainfall would cross 2-3 mm/hour. Signal 
attenuation in GHz frequency of operation can be 
dominated by extreme rainfall. Study of the effect of 
rain attenuation in mm-wave communication is one 
of the hot topics on which research is focused as we 
are heading towards 5G and 6G communication 
technology [13]. An exponential model which would 
be helpful in modeling and predicting rainfall was 
proposed in [14] for k-region, which would be 
helpful in designing communication satellite 
systems. 

Researchers have adopted a proactive approach in 
predicting the role of weather conditions in the 
radio environment. Machine learning/artificial 
intelligence-based solutions are hence being 
proposed in this direction. In [15], link failure in 
LTE and 5G networks due to failure in handover is 
predicted using Recurrent Neural Network (RNN) 
by continuously monitoring the changes in the 
Reference Signal Received Power/ Reference Signal 
Received Quality (RSRP/RSRQ). Their trained 
model could predict RLF due to handover within a 
time lapse of a hundred milliseconds. A combination 
of Long Short Term Memory (LSTM) and Support 
Vector Machine (SVM) is proposed in [2] to 
establish a correlation between RLF and various 
parameters like RSRP, RSRQ, channel quality 
indicator and power headroom. The authors 
claimed a validation accuracy of 98% in predicting 
radio link failure. C. Luo et. al. [16] presented an 
online scheme called OCEAN for prediction of 
channel state information of a channel which is 
affected by various features like frequency band, 
location, time, temperature and humidity. Another 
study [17] estimates the radio signal attenuation, 
based on ensembles of forecast rainfall fields from 
the latest radar rainfall fields observed, which is 
nowcasted for 5G networks. The forecast 
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attenuation data obtained from the proposed short-
term ensemble prediction system was within the 
90% confidence region.  

From the above literature survey, we understand 
that more investigations are required to establish a 
generalized relation between weather parameters 
and radio signal strength. Although proactive 
solutions have been proposed in certain radio 
environments, there is scope for more research 
considering different operating conditions. In view 
of this, it is of interest to carry out studies to predict 
RLF considering both radio environment and 
weather conditions over an extended period of 
time. 

3. DATASET DESCRIPTION AND
ANALYSIS

3.1 Dataset description 

The dataset for our study consists of extensive 
measurements of both weather conditions and RL 
KPIs. An illustration of the scenario for the data 
capture is shown in Fig. 1. With the backhaul links 
considered, measurements from the weather 
stations and the radio receiver sites form the key 
parameters in developing an RLF prediction model. 
The dataset was a compilation of region-wise data 
corresponding to several KPIs and corresponding 
historical weather features along with weather 
forecasts recorded at the meteorological stations. 
The distance matrix was used to map weather 
features recorded at weather stations to 
approximate weather conditions at radio stations. 

For the given use case, we used the dataset having 
information about the radio link characteristics and 
weather parameters. The information gathered 
from meteorological stations consists of station 
clutter class type and antenna height above ground 
level. There are 20 unique weather stations and 
eight clutter class categories. The different clutter 
classes considered are dense-tree, low-medium 
urban, airport, open-in-urban, low-sparse-urban, 
sea, sparse-tree and open land with variable counts 
in each class. Most weather stations belong to 
dense-tree clutter class and other classes are in 
minority. Further, the dataset consists of different 
clutter classes of radio station sites belonging to the 
same categories as discussed. There are around 
1500 unique radio stations where radio link status 
has been recorded. Radio station sites mostly 
belong to the urban clutter class, inland water and 
greenhouse clutter class type. 

The RL dataset consists of around 1,900,000 unique 
samples. The radio stations considered are of the 
cellular networks operating in the UHF band. The 
Key Performance Indicators (KPIs) recorded for 
radio links consist of information on modulation 
techniques employed i.e., n-QAM, five operating 
frequencies, link traffic, additive_bit_error with 
definite timestamp, maximum_received_signal_ 
strength. The dataset also contains radio link failure 
TRUE/FALSE labels. The measurements were 
recorded for the radio link failures over a period of 
two years. The features recorded by historical 
weather measurements at meteorological stations 
consist of temperature, wind direction, wind speed, 
humidity, precipitation, precipitation_coefficient 
and pressure. The measurements were documented 
for every hour of the day. 

Fig. 1 - Illustration of the operating scenario 

3.2 Feature distribution and importance 

Radio link samples are highly disproportionate in 
the dataset and many of the features were 
visualized as not distributed properly. True radio 
links are a minority class as compared to false 
samples. True samples are less than 1% in the 
available dataset which was addressed by up-
sampling the minority class. Fig. 2 shows the feature 
distribution of some of the important KPIs affecting 
radio link failure. From the distribution, it is seen 
that the repeated error count has a very narrow 
distribution. In case of link unavailable time, the 
variation in the distribution can be observed.  

The joint distribution plot of different KPIs is shown 
in Fig. 3 and the corresponding correlation is 
visualized with the heat map in Fig. 4. It can be 
observed from Fig. 4 that there is moderate 
correlation  between the KPIs considered and the 
interdependency is less. Machine learning models 
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are built to identify the important KPIs which affect 
the radio link, keeping RLF as target. Logistic 
regression, CART decision tree and random-forest 
classifiers were used iteratively. The findings with 
the higher coefficient values are the important 
features. The identified features are 
repeated_error_count, link_unavailabe_time, 
link_available_time, error_count, additive_bit_error 
and maximum_received_signal_strength. 

Fig. 2 - Feature distribution of repeated_error_count and 
link_unavailabe_time 

Fig. 3 - Joint distribution plot of KPIs (Color-coded with RLF target) 
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Fig. 4 - Correlation heatmap of important KPIs 

3.3 Dataset challenges 

Several challenges were encountered with the 
dataset used and they are listed below. 

(i) Spatio-temporal correlation: The location of
radio station sites and weather stations is not the
same. Weather conditions at radio station sites
were required to be approximated by the weather
condition recorded at meteorological stations
around each radio link site.

(ii) High feature space: RLF depends not only on the
weather features but on a combination of multiple
other factors like weather conditions (both
historical data and forecasts), link performance
indicators – operating frequencies, link traffic,
received signal strength, bit error rate, modulation
scheme, link_unavailable_time, etc. and topological
features – clutter class type, radio station ground
height, meteorological stations etc.

(iii) Highly imbalanced dataset: Only 0.0612% of
the dataset were TRUE radio link failures samples.

4. DATA PREPARATION

In this section, we have discussed the aspects of 
data preparation and various preprocessing 
techniques employed. 

4.1 Mapping weather station and radio station 

The mapping scheme between weather station and 
radio station is dependent on various factors such 
as spatial positioning of weather stations and radio 

station sites, wind direction, terrain conditions, etc. 
apart from the physical distance. We used the 
Euclidean distance metric to measure the least 
distance between the weather station and radio 
station site. The graph in Fig. 5 shows the distance 
distribution of the nearest weather station of the 
available radio stations. This shows that there are 
quite a good number of weather stations closely 
located to radio stations. Hence both the sites are 
mapped and  the dataset is prepared accordingly.  

4.2 Handling high feature space and categorical 
features 

The dataset contains a large number of both 
categorical and numerical features. One-hot 
encoding on categorical features results in a curse 
of dimensionality. Various feature representation 
techniques were employed for different types of 
categorical features such as binary decomposition 
on the clutter class, level-encoding for 
weather_dayX in weather station forecast and one-
hot encoding for RL KPIs. Clutter class features in 
radio stations and weather stations and 
weather_dayX feature in weather forecast were 
decomposed into binary vectors based on the effect 
the binary feature would have on the target. The 
clutter class was decomposed into height, density 
and other, with binary values representing each 
clutter class type. Level encoding was used for 
Weather_DayX features – moisture, cloudy, windy, 
snow, thunderstorm in weather forecast data. 
Categorical features with lesser entries are encoded 
using a one-hot encoding scheme. The parameters 
‘link-separation’, ’equipment_vendor’, 
’adaptive_modulation’, ’operating_frequency_band’, 
’modulation’ were represented using one-hot 
representation. The dimensionality of input feature 
space was further reduced by ranking features 
based on their importance. Iteratively least 
important features were removed based on the 
threshold set on the F1 score. 

Fig. 5 – Euclidean distance distribution of nearest weather 
station of radio stations 
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4.3 Data rebalancing 

Due to an unbalanced dataset, the minority class of 
the RL dataset was up-sampled to improve the ratio 
using the Synthetic Minority Over-Sampling 
Technique (SMOTE). SMOTE is a common technique 
used to up-sample minority classes of the 
unbalanced datasets. Instead of duplicating 
observations, it creates new observations along the 
lines of a randomly chosen point and its nearest 
neighbors. The original unbalanced dataset was 
down-sampled by random selection of false labels 
to obtain the ratio of 1:4 of TRUE v/s FALSE class. 
This down-sampled dataset was fed into SMOTE to 
obtain a balanced 1:1 class representation for 
further model processing. For the day 1 model, 
around 14636 new samples (12247 TRUE  class and 
2389 FALSE class) were created by SMOTE.    

4.4 Dataset integration 

Hourly data samples were aggregated to represent 
weather conditions on each day at each 
meteorological station. Weather features were 
mapped using the mapping scheme across each 
radio station. Target labels were created based on 
failure on the next day and also for the next 5th day. 
The training dataset sample format is shown in 
Fig. 6. 

5. ML MODEL AND INFERENCES

To address two different targets, we have built the 
models separately for ‘day-1-predict’ and ‘day-
5-predict’. The irregularities such as -nan-, -inf- and
null values were treated rather than dropping, to
retain the less number of TRUE samples. Certain
irrelevant features were discarded through the
process of feature selection. The dataset was
cleaned and structured relevant to the context
before passing on to the model. The training dataset
was split  as 75% train and 25% test dataset. In our
approach, ensembling and boosting techniques for
model building have been adopted. The first base
model was logistic regression and its performance
on the dataset was satisfactory. The other ensemble
models which were trained and tested include
random forest, light BGM, XGBoost and gradient
boosting classifiers. The models were trained and
an optimized set of parameters were obtained by
hyper-paramter tuning. RandomizedSearchCV was
used to find the optimized set of model hyper-
parameters. Further K-fold cross validation is used,
which splits the data into ‘n’ subsets (n=10),
computes the performance of the model and returns
an array of all the accuracies. The optimized hyper-
parameters and performance metrics for each
individual model are tabulated in Table 1 and
Table 2 Among the models considered, the gradient
boosting classifier performed the best for both the
predictions.

Identifiers 
[Device_ID, 

Date&time etc.] 

RL 
KPIs 

Historical 
weather 
features 

Weather 
forecast 

Categorical features 
[binary decomposed 

vectors, one-hot vectors] 

Radio station and 
weather station 

info [height] 

Target 
[day-1-predict, 
day-5-predict] 

Fig. 6 - Training dataset sample features 

Table 1 - Tuned hyperparameters and performance metrics of different ML models, for day-1-predict 

ML Model Hyper-parameters Precision Recall F1 Score 

Logistic regression C= 0.1, penalty= 'l2',solver='liblinear' 0.89 0.83 0.85 

Gradient boosting classifier {'n_estimators': 250, 'max_depth': 9, 'learning_rate': 1} 0.96 0.93 0.95 

XGBoost 
{'subsample': 1, 'n_estimators': 800,  'max_depth': 10,  

'learning_rate': 0.03, 'colsample_bytree': 1} 
0.95 0.94 0.94 

LGBM classifier 
{'subsample': 1.0, 'num_leaves': 24, 'min_sum_hessian_in_leaf': 

0, 'min_data_in_leaf': 20, 'max_depth': 30,  'max_bin': 90, 
'learning_rate': 1.0, 'feature_fraction': 0.9, 'bagging_fraction': 1} 

0.95 0.94 0.95 

Random forest 
{'n_estimators': 600, 'min_samples_split': 2, 'min_samples_leaf': 

1, 'max_features': 'auto', 'max_depth': 15, 'bootstrap': False} 
0.94 0.94 0.94 
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Table 2 - Tuned hyper-parameters and performance metrics of different ML models, for day-5-predict 

ML Model Hyper-parameters Precision Recall F1 Score 

Logistic regression C= 0.1, penalty= 'l2',solver='liblinear' 0.82 0.85 0.83 

Gradient boosting classifier {'n_estimators': 250, 'max_depth': 7, 'learning_rate': 1} 0.95 0.95 0.95 

XGBoost 
{'subsample': 1, 'n_estimators': 800,  'max_depth': 10, 

'learning_rate': 0.03, 'colsample_bytree': 1} 
0.96 0.94 0.95 

LGBM classifier 
{'subsample': 0.01, 'num_leaves': 80, 'min_sum_hessian_in_leaf': 0,  

'min_data_in_leaf': 20,  'max_depth': 30,  'max_bin': 20,  
'learning_rate': 1.0,  'feature_fraction': 0.1,  'bagging_fraction': 0.8} 

0.97 0.94 0.95 

Random forest 
{'n_estimators': 300, 'min_samples_split': 10,  'min_samples_leaf': 1,  

'max_features': 'sqrt',  'max_depth': 15,  'bootstrap': False} 
0.96 0.93 0.94 

6. RESULTS AND DISCUSSION

This section deals with a complete description of 
the results and relative analysis. The dataset we 
have used with preprocessing for both train and test 
is tabulated with the corresponding shape in Table 
3. Among all the boosting models, the gradient
boosting classifier provided the best result and the
corresponding confusion matrices are shown in
Fig. 7. It can be seen that the model classifies TRUE
failure and FALSE failure with scores greater than
90% in both cases.

The feature importance graph shown in Fig. 8, for 
day-1-predict and day-5-predict respectively, are 
derived from the Shapley Additive explanations 
(SHAP) library. It can be observed that there are 
highly correlated variables that contribute to the 
TRUE class prediction. The effect of up-sampling on 
model performance is shown in Table 4. With up-
sampling, the gradient boosting classifier exhibits 
an increase in F1 score by 0.07, with the same set of 
hyper-parameters.  

Validation performance was observed on the best 
model for day 1 and day 5 predictions with the 
corresponding confusion matrices shown in Fig. 9. 
A set of unseen data (about 5% of the original 
dataset) was set aside for validation performance. 
From Table 5, it can be observed that both the 
models have high F1 scores on an unseen validation 
dataset. This ensures that the model is not 
overfitting on the training dataset. 

Table 3 – Shape of the dataset used for class prediction 

Sample train 
shape (x,y) 

Day-1-predict (4113, 63) 

Day-5-predict (4107, 107) 

Sample test 
shape (x,y) 

Day-1-predict (1371, 63) 

Day-5-predict (1369, 107) 

Table 4 – Comparison of effect due to up-sampling on model 
performance 

F1 Score without 
up-sampling 

F1 Score with 
up-sampling 

Day-1-predict 0.88 0.95 

Day-5-predict 0.88 0.95 

Table 5 - Validation performance of the model 

Validation Performance F1 Score 

Day 1 Predict 0.96 

Day 5 Predict 0.97 

© International Telecommunication Union, 2022 171

Priyanshu M et al.: AI powered solution for radio link failure prediction based on link features and weather forecast



Fig. 7 - Confusion matrix for best model for (a) day-1-predict (b) day-5-predict 

Fig. 8 - Feature importance of  (a) day-1-predict (b) day-5-predict 

 

Fig. 9 - Confusion matrix of validation performance for (a) day-1-predict (b) day-5-predict

7. CONCLUSION

Radio link failure depends on various factors which 
include weather factors such as temperature, 
humidity and radio link KPIs, etc. In this work, a 
machine-learning-based solution was proposed  to 
predict the radio link failure when a generic 
regional weather forecast data, radio link KPIs and  
spatial nature of the data (regions of weather 
station and radio station) are available. Though the 
dataset had a good number of samples, narrow 

distribution for many features was observed 
through visualization, which indeed was a challenge 
for the work. Hence the data was processed 
rigorously and subsequently ensembling models 
were trained to predict the RLF for two cases i.e., 
day-1-predict and day-5-predict. We also presented 
how the gradient boosting classifier rendered the 
best performance. The presence of thunderstorm 
and moisture in day-1 forecasts have a major impact 
on predicting radio link failures.  

(a) (b) 

(a) (b) 

(b) (a) 
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The inferences drawn using the prediction model 
would help the engineers to understand major 
causes of failure and would try to work on action to 
reduce its effects. Accurate predictions can save 
man-hours as many RL changes require a field 
engineer in person. It provides a better 
understanding of the role and significance of 
different weather conditions and thereby helps in 
field deployment and planning in the future in the 
long term. Also, the predictions help in carrying 
analytics of cost factor due to RLF and devise 
techniques that could be used to reduce link 
failures. In  future, we would like to extend our work 
implementing the complete pipeline for 
productionalization of the model using necessary 
industry frameworks. 
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