
NETWORK RESOURCE ALLOCATION FOR EMERGENCY MANAGEMENT BASED ON
CLOSED-LOOP ANALYSIS

Guda Blessed1, Ibrahim Aliyu2, James Agajo1, Thiago Lima Sarmento3, Cleverson Veloso Nahum3, Lucas Novoa3, Rebecca Aben-
Athar3, Mariano Moura3, Lucas Matni3, Aldebaro Klautau3, Deena Mukundan4, Divyani R Achari4, Mehmet Karaca5, Doruk Tayli6,

Özge Simay Demirci5, V. Udaya Sankar7, Sai Jnaneswar Juvvisetty7, V.M.V.S. Aditya7, Abhishek Dandekar8,
Shabnam Sultana9, Jinsul Kim2, Vishnu Ram OV10

1Dept. of Computer Engineering, Federal University of Technology, Minna, Nigeria, 2Dept. of ICT Convergence System
Engineering, Chonnam National University, Gwangju, South Korea, 3Federal University of Pará (UFPA), Belém, PA, Brazil, 4Tech

Mahindra, India, 5Dept. of Electrical-Electronics, TED University, Turkey, 6Q Bio Inc., California, USA, 7SRM University,
Amaravathi, AP, India, 8TU Berlin, Germany, 9Highstreet Technologies GmbH, Germany, 10Independent expert

NOTE: Corresponding author: Ibrahim Aliyu, aliyu@ieee.org

Abstract – The telecommunication system being a critical pillar of emergency management, intelligent
deployment and management of slices in an affected area will help emergency responders. Techniques such
as automated management of Machine Learning (ML) pipelines across the edge and emergency responder
devices, usage of hierarchical closed-loops, and offloading inference tasks closer to the edge can minimize
latencies for first responders in case of emergencies. This study describes the major results from building a
Proof of Concept (PoC) for network resource allocation for emergency management using a hierarchical
autonomous Artificial Intelligence (AI)/ML-based closed-loops in the mobile network, organized by the
Internal Telecommunication Union Focus Group on Autonomous Networks (ITU FG-AN). The background
scenario for this PoC included the interaction between a higher closed-loop in the Operations Support System
(OSS) and a lower closed-loop in Radio Access Network (RAN) to intelligently share RAN resources between
the public and the emergency responder slice. Representation of closed-loop “controllers” in a declarative
fashion (intent), triggering “imperative actions” in the “underlay” based on the intent, setup of a data pipeline
between various components, and methods of “influencing” lower layer loops using specific logic/models,
were some of the essential aspects investigated by various teams. The main conclusions are summarised in
this paper, including the significant observations and limitations from the PoC as well as future directions.

Keywords – AI/ML, closed-loop, emergency, network resource allocation, PoC, RAN

1. INTRODUCTION
With the transformation of digital media and
communication technology, the use of mechanism
centers on the use of network analytics data and
social media scraping as data collected is being
examined to detect and respond to emergencies [1].
Emergency Responders (ERs) might use various
devices which might need real-time Artificial
Intelligence (AI)/Machine Learning (ML) inference
and transmission. For instance, a firefighter’s
helmet mounted camera may use image recognition
to detect humans in a burning building and transmit
it to an operating center for further analysis and
action. Therefore, telecommunication systems are a
critical pillar of emergency management. However,
due to congestion or damage to infrastructure
caused by natural disasters or malicious attacks, the
communication systems often face difficulty during
emergencies. Therefore, it is a complicated task to

manually or statically configure networks to
support the influx of emergency responders within
a verse geographical location [2].

Detection of emergencies and providing
connectivity to emergency responders according to
predefined Service Level Agreements (SLAs)
remains a challenge for the network operators.
Furthermore, Next Generation Networks (NGNs)
are also expected to operate and manage a
heterogeneous network infrastructure with
increased complexity that can cope with a wide and
flexible range of services, technologies, verticals,
and device requirements [3]. Therefore, to offer the
service-level requirements of emergency
responders, it is pertinent to ensure that network
slices operate dynamically and autonomously.
Efforts are being made to enable an automatic
orchestration of network resources across different
domains with a high Quality of Service (QoS),

©International Telecommunication Union, 2022
Some rights reserved. This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.

More information regarding the license and suggested citation, additional permissions and disclaimers is available at:
https://www.itu.int/en/journal/j-fet/Pages/default.aspx

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 2, September 2022

leveraging Zero-touch network and Service
Management (ZSM) and Network Slicing (NS)
techniques [3-6].

Therefore, resource allocation is expected to
become more complex as the allocation demand
changes more frequently, thus creating the need to
optimize the network providers' operational
efficacy [7]. This is possible in autonomous
networks, which can ensure optimal network
resource allocation without human intervention.
Intelligent resource management in networks can
help emergency responders in the affected area
through effective NS, etc. [8]. Inputs from
emergency responders can be used to optimize
resource allocation using close-loops. Integration of
closed-loops helps to monitor, analyze, and
optimize network configurations while applying
operator-specific policies. The use of hierarchical
closed-loops has been studied in [7]. The multi-
domain architecture of telecommunication
networks makes it possible to integrate hierarchical
closed-loops in Radio Access Network (RAN), Core
Network (CN), and management planes. The use of
closed-loops to optimize resource allocation in
networks has been studied in [7, 9].

The ITU FG-AN organized a build-a-thon challenge
in 2021 to demonstrate and validate important use
cases for autonomous networks, creating PoC
implementations and tools in the process relating to
emergency management. Interactions between a
higher closed-loop in the Operations Support
System (OSS) and a lower closed-loop in the RAN to
intelligently share RAN resources between the
public and emergency responder slice were used as
the background scenario for this PoC. This study
summarises the outcome of the challenge submitted
by the various teams that participated in creating
the PoC of the use case. The main outputs of the
challenge include: (1) the implementation of a
higher closed-loop “controllers” in a declarative
fashion (intent), (2) the design and implementation
of a lower closed-loop with Cloud Radio Access
Network (C-RAN) to trigger “imperative actions” in
the “underlay” based on the intent, (3)
implementation of a simulation environment for
data pipeline between various components;
formulation of methods/algorithms for “influencing”
lower layer loops using specific logic/models, and
(4) the integration of the closed-loops and systems
into an Open Radio Access Network (O-RAN)-based
software platform, ready to be tested in the 5G
Berlin testbed.

In this study, we design and deploy closed-loops to
optimize detection and resource allocation in case
of emergencies. In particular, a set of hierarchical
AI/ML-based closed-loops is proposed to
intelligently deploy and manage slices for
emergency responders in the affected area. A higher
closed-loop in the OSS can detect which area is
affected by the emergency and deploy a slice for
emergency responders to that area. The higher
closed-loop sets a resource arbitration policy for
the lower closed-loop in RAN, while the lower loop
uses this policy to intelligently share RAN resources
between the public and emergency responder slice.
Furthermore, the lower loop also manages ML
pipelines across the edge and emergency responder
devices through either split AI/ML models or
offloading inference tasks from the devices to the
edge.

The main contributions of this study are
summarised as follows:

• We designed and implemented closed-loops
using a declarative specification. In the design,
the Mobile Network Operators (MNOs) instruct
the OSS to detect certain emergencies and
provide connectivity to emergency responders
according to predefined SLA. The operator input
is provided as an intent using Topology and
Orchestration Specification for Cloud
Applications (TOSCA). The resulting YAML file is
parsed, and the resulting components are
instantiated in a virtualized environment.

• A network testbed with a C-RAN architecture
composed of Remote Radio Units (RRUs),
Baseband Unit (BBU) pool, and the core network
was designed and implemented. In the
architecture, a Software-Defined Network (SDN)
and RAN controllers work as information
sources and agents that dynamically change the
mobile and the computer network. An AI agent
performs different actions (e.g., resource
allocation) in the testbed according to the
application, using the information provided by
SDN and RAN controllers to train and execute the
test stage neural networks. This study shows
that validating and applying closed-loop
decisions for prioritizing resource allocation for
network slices can significantly increase
emergency response efficiency.

• We implemented a simulation environment to
generate data for model training and testing
purposes and to serve as a simulation underlay
for testing. Two simulation cases were
considered: a standalone case and a New Radio

© International Telecommunication Union, 2022176

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 2, September 2022

(NR) dual connectivity case. The results show
that prioritized resource allocation can be
simulated in different network topologies. The
simulations enable us to study various
configurations and analyze them to optimize the
allocations. Representation of various
configurations using text files helps us to create
simulation topologies easily. Thus, the SRC
(source) node (generating data corresponding to
resource usage) and SINK node (applying
various configurations in the form of NED files)
are possible in the simulation environment.

• The formulation and implementation of various
algorithms for an O-RAN-based controller
architecture to verify the resource allocation
schemes over various domains is actualized. Two
algorithms were investigated to analyze the
Physical Resource Block (PRB) utilization in RAN.
Results were presented considering the need for
resources of each slice can vary over time under
dynamic networking conditions. The results
show the importance of closed-loop
implementations in NS, especially for intelligent
management of RAN resources during
emergency scenarios.

• Lastly, the paper describes the integration of the
algorithms and closed-loops above into an O-
RAN-based software platform, ready to be tested
in the 5G Berlin testbed [10]. We present the
integration of the algorithms in an O-RAN near
Real-Time RAN Intelligence Controller (RIC)
with the Acumos model repository.

This paper is divided into the following sections:
Section 2 describes all the contents related to PoC
implementation, Section 2.1 describes the design of
closed-loops using a declarative specification,
Section 2.2 describes a network testbed with a
C-RAN architecture composed of RRUs, a BBU pool,
and core network, Section 3 presents the creation of
a simulation environment to generate data for
model training and testing purposes and serve as a
simulation underlay for testing, Section 4 describes
the various algorithms which can be integrated with
an O-RAN-based controller architecture to verify
the resource allocation schemes, Section 5
describes the implementation of the above
algorithms in an O-RAN near Real-Time RAN
Intelligence Controller (RIC) and its integration
with the Acumos model repository, Section 6
describes the integration of these algorithms and
closed-loops into O-RAN-based software platform,
ready to be tested in the 5G Berlin testbed, Section 7
presents the observations from the implementation
of PoC, and Section 8 concludes the paper.

1.1 Background and related studies
This section presents some background on the
technology and concepts used in this study. It also
reviews some prior studies done on the subjects.

O-RAN is an alliance of the Cloud-RAN (C-RAN) and
extensible RAN (xRAN) to merge the goals of the
two fora. O-RAN aims to achieve an open set of
interfaces driven by virtualization and
disaggregated components [11]. Based on the
desired requirements, the open interfaces enable
easy integration of new services for tuning the
network. Due to the network automation and self-
organization capabilities it affords, the O-RAN
alliance has been significant to the realization of 5G
networks and beyond [12].

Closed-loop automation is a management
function that utilizes feedback signals to regulate
itself towards achieving a specific goal [7]. These
closed-loops support autonomous behaviour by
achieving their goals without external intervention.
Typically, in networks, a closed-loop follows a
process of sensing, analysis decision, and action.
This can be deployed for dynamic resource
allocation, self-optimization, self-healing, and
automated service assurance [13].

AI/ML has been applied in several areas in
networks to improve users' Quality of Experience
(QoE) by enabling self-organizing of the networks.
Other functions of AI/ML include configuration and
detection of failure of base stations, spectrum
deployment, NS, and root cause analysis [14-17]. In
addition, newer approaches like federated learning
have been applied to minimize conventional ML
approaches' latency and communication
inefficiencies [15, 18]. Example usage includes
spatial reuse [19] and resource allocation [18].

Furthermore, efforts have been made in emergency
management networks, xApps in O-RAN, and
testbed/simulation of virtualized core and RAN.
Related studies in these regards are discussed as
follows:

Matracia, et al. [20] provide an overview of
challenges in post-disaster communications in the
context of 6G, airborne and spaceborne networks
for emergency management in the networks.
Highlights of related studies, physical and
networking issues, and practical guidelines and
research directions were provided. [21] describes a
solution based on edge computing that reduces the
amount of data transmitted in times of disaster.
Federated learning has also been proposed to

© International Telecommunication Union, 2022 177

Guda et al.: Network resource allocation for emergency management based on closed-loop analysis

provide extra resources to the edge dynamically
during a disaster [22]. [23] discusses RAN slicing
mechanisms for providing an appropriate amount
of radio resources for emergency responders in a
given use case. [24] discusses a self-planning
solution for RAN slicing management based on live
network measurements that enables dynamic RAN
slice allocations. Similarly, [25] proposes an intent-
based automated slicing mechanism for core and
RAN, which can be used to provide slices for
mission-critical services.

Furthermore, Kułacz and Kliks [26] propose the
definition of policies in a file form for Dynamic
Spectrum Access (DSA) function in OpenRAN
networks in implementing xApps in O-RAN. [27]
describes a modular xApp implementation in O-
RAN for a traffic steering use case based on the
Open networking approach. [28] xApps have been
employed on O-RAN defined Near Real-Time Radio
Intelligence Controller (NearRT RIC) for RAN
optimization at the RAN edge.

Several testbed/simulation implementations have
been proposed. For instance, [29] describes Simu5G,
a system-level simulator for 5G networks.
Py5cheSim, a 5G simulator that supports RAN NS,
has been developed [30]. [31] describes design 5G-
LENA, an ns-3 module that supports end-to-end NR
system-level simulations. [32] describes FlexRIC, a
platform for real-time RAN control applications, [33]
describes SD-RAN, which provides an O-RAN
compliant cloud-native platform that can host RAN
control applications, and [34] describes how an
AI/ML model workflow can be deployed in O-RAN
SC Near-RT RIC platform.

2. THE POC DESIGN AND
IMPLEMENTATION

This study proposes the use of analytics in Service
Management and Orchestrator (SMO) [35] in
combination with predictive resource allocations to
specific edge locations based on detected
emergencies to implement the PoC. A high-level
strategy/policy to reallocate resources among the
slices in the non-real-time RAN Intelligence
Controller (non-RT RIC), forms the first level of the
closed-loop. The decision in the higher level closed-
loop in the non-RT RIC to reallocate resources may
depend, among other things, on the type of
emergency, e.g., a natural disaster such as an
earthquake, law and order situation, traffic
accidents, etc. A RAN-level may complement this
higher-level closed-loop that uses other inputs from

emergency responders to arbitrate resources
among RAN nodes. Such lower-level closed-loops
may be hosted nearer to the edge, e.g., near-RT RIC.
The policy input from the higher loop may indicate,
among other parameters, the different sources of
data for the lower loop, such as system and service
data. A RAN level closed-loop might also decide to
offload inference tasks from ER devices to either the
edge or use a split AI/ML model to run inference
tasks on edge and ER devices. This decision might
be taken based on the available network and
computing resources. Some layers of the AI/ML
model may be hosted in the wearable devices of the
emergency responders, which will help in locating
persons under distress using various inputs such as
Global Positioning System (GPS) coordinates.

Workflows for the closed-loops at the different
levels are independent of each other. The only
interaction between closed-loops is via high-level
intents over the inter-loop interface. The closed-
loops can create new closed-loops in other network
domains without human intervention. Each loop
can evolve independently, although loops are
deployed hierarchically. It can use different models
and ML pipelines as required. Each loop may move
up or down the autonomy levels as defined in ITU
standard, Recommendation ITU-T Y.3173 [36]. The
closed-loops can split and provision AI/ML models
to other closed-loops in an automated fashion. In
addition, we provide a low orchestration delay,
better privacy, and flexibility for verticals
(e.g., industrial campus networks) by making
closed-loops in the edge domain autonomous.
Higher loops can use historical knowledge to
optimize and generalize lower loops using high-
level intent, resulting in increased efficiency of
lower loops while preserving their autonomy (e.g.,
the higher loop might know certain ML models that
are good for cyclone emergency management based
on previous cyclones). Fig. 1 presents the workflow
sequence for the simulation/testbed.

2.1 Design of closed-loops using a declarative
specification

The high complexity of management of future
networks, which includes the ability to provide new
innovative services using complex network
configurations, has led to requirements for
autonomous behaviour. To enable low latency
response by emergency responders, the use of
autonomous networking concepts, including the
following factors, were found important: (1)
application of intent-based mechanisms to

© International Telecommunication Union, 2022178

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 2, September 2022

coordinate closed-loops and (2) translation of
intents into decisions and actions. These
mechanisms allow seamless design, deployment,
and management of emergency resources in the
networks using operator-friendly intents.

Several studies have been conducted regarding
close-loops. For example, Gomes, et al. [7]
presented a method for formulating and managing
closed-loops using requirements communicated
through intents. They propose new management
functions for intent delegation, escalation, and
reporting while focusing on how intent
management can be integrated into the ZSM
framework. Luzar, et al. [37] compared four TOSCA-
compliant orchestrators; Opera, Yorc, Indigo, and
Cloudify. This comparison was made regarding ease
of usage, open-source availability, licenses, and
operating systems supported by the orchestrator.
Ram O.V, et al. [38] carried out a gap analysis of
existing frameworks in autonomous networks. Fig.
2 shows a high-level flow chart of the intent for
closed-loops activity, starting with the design of the
controllers. An intent is written according to the
design of the controllers. This high-level intent is
parsed, and appropriate closed-loops are set up to
meet the objective of the intent.

Fig. 1 – Overview of the intent-based design and
implementation of hierarchical closed-loops, including

simulation and testbed domain

Fig. 2 – The high-level flow chart of the study toward intent

for closed-loops

Fig. 3 – Example – Declarative intent in YAML format

Fig. 3 shows an excerpt from the service model
showing the definition of the model node. The intent
specifies the model node with attributes, including
the URL for pulling the ML model from a repository.
Additional attributes like catalog ID, revision ID,
and solution ID may be used to identify the model.
For the implementation, Opensource orchestrator
xopera [39] was considered, and simple controller
requirements were derived.
Fig. 4 shows the setup considered in this activity
demo. The intent is written in TOSCA YAML v1.3.
The intent is to create a three-node closed-loop
comprising of a source, model, and sink nodes
(corresponding to data collection, analysis, and
application). This intent is parsed by the xopera
orchestrator [39] for the deployment of the closed-

Designer 2. Derive ML
pipeline
requirements
[Y.3172]

4. Model
selection
and Push
[Y.3176]

H
ig

he
r l

oo
p

pr
ov

is
io

ni
ng

Lo
w

er
 lo

op

pr
ov

is
io

ni
ng

6. Instantiating
higher loop as
rApp

8. Instantiating lower loop
as xApp

𝟏𝟏.𝑪𝑨𝑨 𝑨𝑨𝒏𝒕𝒆𝒏𝒕
𝒇𝒓𝒐𝒎 𝑨𝑨𝑵𝑨𝑨
[𝑨𝑨𝑨𝑨𝑺𝑪𝑨𝑨 𝒃𝒂𝒔𝒆𝒅]

5. O1
procedures

for Data
transfer

𝑨𝑨𝒄𝒖𝒎𝒐𝒔 𝑫𝑪𝑨𝑨𝑬: :
𝑨𝑨𝑨𝑨𝑭𝑨𝑨

𝑵𝒐𝒏 − 𝑨𝑨𝑨𝑨
𝑨𝑨𝑨𝑨𝑪 ∷ 𝑨𝑨𝑵
𝑪𝒐𝒏𝒕𝒓𝒐𝒍𝒍𝒆𝒓

𝒏𝑨𝑨𝑨𝑨 𝑨𝑨𝑨𝑨𝑪
∷ 𝑨𝑨𝑵
𝑪𝒐𝒏𝒕𝒓𝒐𝒍𝒍𝒆𝒓

𝑨𝑨𝟏𝟏
𝒕𝒆𝒓𝒎𝒊𝒏𝒂𝒕𝒊𝒐𝒏
(𝒆.𝒈.𝑫𝑼)

Compose/
Accept the
intent in
YAML

Design of
controller

Create and
deploy the
higher loop

Inter-
controller

event

Create and
deploy the
lower loop

Create
lower
loop?

Available
models?

Pull
models

Yes

Stop

Start

Yes

No

No

© International Telecommunication Union, 2022 179

Guda et al.: Network resource allocation for emergency management based on closed-loop analysis

loop. The model metadata and repository are
defined based on the standard, Recommendation
ITU-T Y.3176 [40].

Fig. 4 – Setup design for creation and parsing of
example intent

Fig. 5 shows the outputs specified for the three
nodes (source, model, and sink). The outputs
specified are the attributes of the nodes, which
consist of the Application Programming Interface
(APIs). Fig. 6 shows the parsing of the service model
for the deployment of the three nodes. The APIs in
the intents are parsed into three JSON (JavaScript
Object Notation) files. Three docker containers are
created for implementation, which uses the APIs for
data collection, analysis, and adaptation. Dummy
data based on the 3Vs (Velocity, Variety, and
Volume) and dummy h5 model are downloaded
from corresponding repositories according to the
specified links. This study shows that a closed-loop
can be represented and designed using a standard
template demonstrated here using a three-node
closed-loop (i.e., SRC node, ML node, and SINK
node).

Fig. 5 – Creation and parsing of intent in YAML

Fig. 6 – Deployment of the nodes

2.2 “Imperative actions” in the “underlay”
based on the intent

Validating and applying closed-loop decisions in the
network is one of the major challenges in the
intelligent allocation of resources for an emergency.
The capability to build flexible and realistic AI-
based scenarios with different network topologies
for 5G and quickly deploy and assess them is
important in emergency scenarios. This section
describes a network testbed with a C-RAN
architecture composed of RRUs, a BBU pool, and a
core network. A network testbed called "Connected
AI" is described in [41]. The SDN and RAN
controllers work as information sources about the
network. Furthermore, they work as agents to
dynamically change the mobile and the computer
network. An AI agent performs different actions in
the testbed according to the application using the
information provided by SDN and RAN controllers
to train and execute in the test stage. The ML
workloads are orchestrated along the cluster to
provide the AI agent processes.

Results from this study show that the validation and
application of closed-loop decisions for prioritizing
resource allocation for network slices can
significantly increase the efficiency of emergency
response. This was demonstrated using priority
assigned to an Unmanned Aerial Vehicle (UAV)
drone based on a three-node closed-loop, i.e.,
source (SRC) node, ML node (AI Agent) and sink
(SINK) node defined into ITU ML proposed
architecture [42].

𝑨𝑨𝒏𝒕𝒆𝒏𝒕𝒔
 (𝒚𝒂𝒎𝒍)

𝑨𝑨𝒓𝒄𝒉𝒆𝒔𝒕𝒓𝒂𝒕𝒐𝒓
(𝒙𝑨𝑨𝒑𝒆𝒓𝒂) 𝑺𝒐𝒖𝒓𝒄𝒆 M𝒐𝒅𝒆𝒍 𝑺𝒊𝒏𝒌

Collection
of data

Application
of inference

Download model

𝑨𝑨𝒏𝒔𝒊𝒃𝒍𝒆

𝑵𝒆𝒕𝒘𝒐𝒓𝒌
 𝑨𝑨𝒏𝒔𝒕𝒂𝒏𝒄𝒆

REST
API

REST
API

𝑨𝑨𝒐𝒅𝒆𝒍 𝒓𝒆𝒑𝒐𝒔𝒊𝒕𝒐𝒓𝒚

[Y.3176]

Closed
Loop

Controller

© International Telecommunication Union, 2022180

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 2, September 2022

2.2.1 Connected AI (CAI) network testbed

The CAI testbed deploys a 5G mobile network with
a virtualized and orchestrated structure using
containers while focusing on integrating AI
applications [8]. It uses open-source technologies to
deploy and orchestrate the Virtual Network
Functions (VNFs) to flexibly create various mobile
network scenarios with distinct fronthaul and
backhaul topologies. Distinctive features of the
testbed are its low cost and the support for using AI
to optimize the network performance.

Fig. 7 shows the testbed structure with a C-RAN
architecture composed of RRUs, the BBU pool, and
the CN. The transport network is emulated by
software using Mininet [43], enabling the
deployment of different network topologies
without real network components (such as
switches and routers).

The network contains two main controllers: the
RYU SDN controller [44], which is responsible for
controlling the transport network emulated by
Mininet, and the Open-Air Interface (OAI) FlexRAN
controller [45], which is responsible for controlling
the base stations deployed in the testbed. Both
controllers are connected to the AI agent, which
receives network information from controllers and
applies commands to change the network
operations. No Management and Orchestration
(MANO) component was implemented since the
main objective of the testbed is to explore focused
scenarios which do not include full end-to-end slice
support to maintain simplicity and low costs.

Fig. 7 – Design of the proposed testbed network [41]

To facilitate the deployment of each VNF into
containers in different environments and give more
flexibility to move these functions to different
computers in a cluster, all the testbed components
were implemented into container [46] images. The
RAN functions and controller were implemented
using the OpenAirInterface software [47], while the
core network functions were implemented using
the Free5GC software [48]. These VNFs,

implemented into docker containers, are
orchestrated using Kubernetes software [49],
enabling the management of the containers as well
as the cluster and facilitating the deployment of
different mobile network architectures. Fig. 8
shows the VNFs distributed along with the cluster
and using a Software-Defined Radio (SDR) to
generate Radio Frequency (RF) signals to connect
the UE to the mobile network generated by the
testbed. The VNFs’ location can be defined by
scripts as instructed at the testbed repository
publicly available [41].

Fig. 8 – Testbed working at LASSE – UFPA lab using a C-RAN
architecture [41]

Both the fronthaul (connecting RRU and BBU) and
the backhaul (connecting the BBU and core network)
are implemented over Ethernet links. Therefore, the
transport network complexity usually depends on
the network infrastructure available, such as
switches, routers, and other network equipment.
We implemented the transport network with the
Mininet software to decrease costs and increase the
flexibility to deploy different transport network
scenarios without infrastructure changes. It
emulates different topologies with routers and
switches with SDN support to make the emulated
network management. Then, the transport network
topology can be defined in Mininet scripts and
different network topologies can be tested without
extra network equipment. Our scenario deployment
scripts are responsible for forwarding the traffic
from fronthaul/backhaul through the emulated
network topology. The Mininet also allows to define
some network behaviour such as packet loss rate,
the bandwidth available in each emulated network
link, and latency among each node and other
characteristics that give a remarkable amount of
flexibility to test algorithms over different network
topologies and conditions. Fig. 9 shows a scenario
deployed using the testbed where the backhaul link
is emulated using a Mininet. A simple network
composed of two routers and one switch is
emulated, adding a latency of 100 ms between the
BBU pool and core network.

© International Telecommunication Union, 2022 181

Guda et al.: Network resource allocation for emergency management based on closed-loop analysis

Fig. 9 – RAN slicing scenario with 3 UEs connected to a C-RAN

structure with the backhaul virtualized using Mininet [41]

Each component from the Mininet network devices
(routers and switches) was connected to an RYU
SDN controller that receives information about the
transport network, such as the throughput
transmitted in each link, dropped packets, and
latency. In addition, the SDN controller can apply
commands to change transport network operations,
such as changing routes and applying congestion
control algorithms, thus enabling the usage of
external apps to provide transport network
management through communication with the SDN
controller to promote changes in the network while
it is operating. Fig. 10 shows information obtained
from the SDN controller about switch 3 in a
topology emulated with Mininet [48]. It gives real-
time information about the switch operation, such
as the number of received and transmitted packets
and the port being used.

Fig. 10 – Information obtained from SDN controller API about

the switches running in the Mininet emulated network [41]

The FlexRAN controller works as an abstraction of
the RAN resources and provides an API that enables
the service orchestrator entity to dynamically
manage the RAN resources to provide information
about the mobile network [50]. The FlexRAN
protocol [45] defines and implements a software-
defined RAN architecture integrated with the OAI
platform, which incorporates an API to separate
control and data planes for the mobile RAN. This
architecture has a master controller represented by
the FlexRAN controller in Fig. 9 and a FlexRAN agent

corresponding to the OAI eNB instances. Fig. 9 also
represents the FlexRAN agent in the OAI BBU
instances in a C-RAN scenario. The agents can act as
local controllers with a limited network view and
handle the functions delegated by the master or
coordinated by the master controller.

The FlexRAN agent API separates the control and
data plane, allowing the control data to be managed
by the FlexRAN controller and the eNB data plane
on the opposite side. Fig. 11 shows the information
received from a base station using the FlexRAN API,
providing information such as the functional split
being used, the number of user equipment (UEs)
connected, buffer occupancy, and scheduling
information. The FlexRAN APIs enable the
development of applications related to the control
and management of the RAN resources [32], e.g.,
schedulers, interference, and mobility manager.
Moreover, applications related to improvements in
the use of RAN resources make more sophisticated
decisions [32], such as RAN slicing and adaptative
video streaming based on channel quality.

Fig. 11 – Information obtained from FlexRAN API about the

base station running in the testbed [41]

The AI agent is implemented based on the ITU-T
Y.3172 [36] architecture that defined a logical
interoperable architecture for future networks,
which incorporates an ML overlay that operates on
top of any specified underlay network technology
[50]. This architecture facilitates deploying ML
applications in different network scenarios and is
adopted in the Connected AI (CAI) testbed.
Specifically, ITU-T Y.3172 defined high-level
architectural components to integrate ML into the
network and a process pipeline [42]. Fig. 12 shows
these components, the pipeline, and their
respective mapping into the CAI testbed
components. This testbed orchestrates the ML

© International Telecommunication Union, 2022182

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 2, September 2022

workloads of the AI agent using the Kubeflow tool
[51]. Kubeflow works integrated with Kubernetes
to orchestrate the ML functions along with the
cluster machines. Kubeflow enables the use of
pipelines to define the steps of ML processing. Due
to the high resource available in the cloud in real
scenarios, CAI deploys the AI agent at the cloud
location (with the core network) for simplicity.

Fig. 12 – ITU-T FG-ML5G ML architecture integrated into the

testbed structure [41]

2.2.2 Results and discussions

Some results exploring UAVs in critical missions
using the testbed are presented in [52]. This study
presents how the AI agents and the network can be
adapted to assist mobile network users in Search,
Diagnostic and Rescue (SDAR) missions. Fig. 13
shows the results for a scenario with an AI agent
controlling the number of radio resources using the
RAN slice to prioritize drones in SDAR missions
about other UEs connected to the network. In the
scenarios without slices, the base station tries to
provide an equal amount of radio resources among
the UEs without differentiating the applications.
When the RAN slice is used and the AI agent set a
slice to the drones in the SDAR mission, the AI agent
updates the number of radio resources allocated to
the drone’s slice to guarantee at least 10 Mbps of
throughput, the other slice with UEs receives only
the remaining radio resources since it has less
priority. It shows that a closed-loop can be
implemented to control the testbed mobile network
using AI methods despite the simplicity of the
experiment the AI agent used.

3. SIMULATED UNDERLAY FOR CLOSED-
LOOP-BASED RESOURCE ALLOCATION

To complement the testbed described in Section 2.2,
this section describes the creation of a simulation
environment [29] to generate data for model
training and testing purposes and also to serve as a
simulation underlay for studying the impact of the

Fig. 13 – Results without RAN slicing and a scenario with RAN

slicing using an AI agent

closed-loop on resource allocation scenarios in
Medium Access Control (MAC) layer. Simu5g [29] is
used to generate output data shown in the results
Section 3.2 (e.g., Average served blocks in
Downlink/Uplink) based on input parameters given
in Table 1 (e.g., Frequency Correction Burst (Fb)
Period, target block error probability(BLER), etc.)
while simulating the various scenarios. This
facilitates studying the machine learning
algorithms' impact on resource block allocation by
predicting the resource requirement at the UE.
Simu5G is based on the OMNET++ simulation
framework and incorporates the simulation
modules from the INET library [29]. It simulates
both the data plane of 5G RAN and the core network.

Two types of simulation scenarios were considered
using the Simu5G-standalone case and NR dual
connectivity case. In the standalone scenario, gNB is
connected to the data network through the core
network, while in the NR dual connectivity case,
gNB is connected to the eNB through an X2 interface.
In addition, the eNB provides access to core and
data networks. Sections 3.1 and 3.2 discuss the
simulation and the results. The simulator
configurations used in this study are simu5g v1.2.0,
INET v4.3.2 or above and OMNET++ v6.

3.1 Simulation scenarios

This study defines two simulation scenarios: "single
cell with secondary gNB” and “multi-cell with
secondary gNB”. These two scenarios (called
“networks” in the simulator) are defined in the NED
(Network Description) file in OMNET++ which the
structure of a simulated network can be described.
NED enables the user to declare simple modules and
connect and assemble them to form compound
modules. Compound modules e.g., a “single cell with
secondary gNB” and a “multi-cell with secondary
gNB” network, can be used as simulation modules.

© International Telecommunication Union, 2022 183

Guda et al.: Network resource allocation for emergency management based on closed-loop analysis

Parameters can achieve their value from either the
NED file or the configuration, i.e., .ini file. Every
configuration file has a “General” section that has
general parameters like simulation time limit (“sim-
time-limit” is the physical time that is set for
simulating the network). The “network” keyword is
used to flag the network that needs to be simulated.

Fig. 14 shows the two networks which are defined
in the NED file: “single cell with secondary gNB” and
the “multi-cell with secondary gNB”. The main
modules that are used in this network are
compound modules: carrier aggregation
(carrierAggregation), packet gateway (pgw), LTE
base station (masterEnb), NR base station
(secondaryGnb), and UE. The carrier aggregation
module is responsible for assigning multiple
frequency blocks. The eNB, which directly connects
to CN is called master eNB and the gNB, which is
connected to the core via eNB using the X2 interface,
is called secondary gNB. The number of UEs is
defined using the numUe parameter of the UE
module. In the “multi-cell with secondary gNB” case
an extra set of eNB which are connected via X2, and
an extra set of gNB which is in turn connected to the
respective eNBs are shown in Fig. 15.

Fig. 14 – NED file for SingleCell_withSecondaryGnb

Fig. 15 – NED file for MultiCell_withSecondaryGnb

Table 1 – Parameters described in ini file
for network simulation

Parameter Value

eNodeB
Transmission

Power

40dB

Fb Period 10ms
Target BLER 0.01
BLER Shift 5

#Component
Carriers

2

Carrier Frequency
of CC1

2GHz

Carrier Frequency
of CC2

6GHZ

#UE’s 10
UE mobility type “RandomWaypointMobility”

UE speed Between 5mps to 15mps
Dual Connectivity True
resource blocks

for CC1
6

resource blocks
for CC2

6

#UE apps 2
Amount of UDP

application on the
server

(server.numApps)

#UE’s * #UE apps
=20

The configuration file (also known as an “ini” file)
contains network parameters and their
corresponding values for each carrier component as
shown in Table 1. The number of UEs (numUe)
specified in the UE module is set to 10 for this
simulation. UE mobility type and UE speed are
defined for each UE. Dual connectivity is enabled
and each network is configured with uplink and
downlink.

Carrier components are part of the carrier
aggregation module and have carrier frequency and
numerological index. The frequency of each carrier
component is defined in Table 1 above. The number
of resource blocks is also defined for each carrier
component.

3.2 Results of the simulations
This section analyses the output of avgservingblock
(average serving blocks are the resource blocks that
are utilized at the time of simulation). The result
files storing the simulated network's vector values
and scalar values are analyzed after simulating the
required network configuration. For example,
avgservingblocks is a vector quantity because it

© International Telecommunication Union, 2022184

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 2, September 2022

varies with the simulation time. Four outputs are
analyzed for each network, corresponding to two
configurations: uplink and downlink.

The four output results that are obtained include:
average served blocks downlink for single-cell with
secondary gNB (Fig. 16), average served blocks
downlink for multi-cell with secondary gNB
(Fig. 17), average served blocks uplink for single-
cell with secondary gNB (Fig. 18), and average
served blocks uplink for multi-cell with secondary
gNB (Fig. 19). The simulation time is variable, and
we use a value of 50 s, with resource allocation data
being collected every millisecond for each of the
four output results discussed above. This gives us
enough data points to study the average served
blocks for each output. The total number of
resource blocks allocated in the results cannot
exceed those that are set in the .ini file (specified
across different CC, carrier components). The blue
and orange coloured line chart represents the avg
served blocks for master eNB and secondary gNB,
respectively in singleCell_withSecondaryGnb, data
flow is downlink in Fig. 16. In contrast, the blue,
orange, green, and red coloured line chart
represents the avg served blocks for master eNB1,
secondary gNB1, master eNB2, and secondary gNB2,
respectively, in MultiCell_withSecondaryGnb, and
the data flow is downlink in Fig. 17. The blue and
orange coloured line chart represents the avg
served blocks for master eNB and secondary gNB,
respectively, in singleCell_withSecondaryGnb,
where the data flow is uplink in Fig. 18. The blue,
orange, green and red coloured line chart
represents the avg served blocks for master eNB1,
secondary gNB1, master eNB2 and secondary gNB2,
respectively, in MultiCell_withSecondaryGnb,
where the data flow is uplink in Fig. 19.

This study shows that prioritized resource
allocation can be simulated in different network
topologies. The simulations enable us to study
various configurations and analyze them to
optimize the allocations. Representation of various
configurations using text files defined in [21]
enables us to easily create simulation topologies.
Therefore, the SRC node (generating data
corresponding to resource usage) and SINK node
(applying various configurations in the form of NED
files) are possible in the simulation environment.
Integrated analysis of generated data using AI/ML
is for future study.

Fig. 16 – Avg served blocks, DL, SingleCell_withSecondaryGnb

Fig. 17 – Avg served blocks, DL, multiCell_withSecondaryGnb

Fig. 18 – Avg served blocks, UL, singleCell_withSecondaryGnb

Fig. 19 – Avg served blocks. UL, MultiCell_withSecondaryGnb

4. ALGORITHMS INVESTIGATION FOR
THE RESOURCE ALLOCATION IN THE
“UNDERLAY”

This section describes the various algorithms that
can be plugged into an O-RAN-based software
architecture to verify the resource allocation
schemes. The non-real-time RIC closed-loop intent
is applied to the near real-time RIC lower loop.

SingleCell_withSecondaryGnB.masterEnb.cellularNic.mac
SingleCell_withSecondaryGnB.secondaryGnb.cellularNic.mac

0 10 20 30 40 50
Simulation time (s)

4

6

8

0

2

Av
g

se
rv

ed
 b

lo
ck

 (b
lo

ck
)

Av
g

se
rv

ed
 b

lo
ck

 (b
lo

ck
)

0 10 20 30 40 50

2

4

6

8

10
MultiCell_withSecondaryGnB.masterEnb1.cellularNic.mac

MultiCell_withSecondaryGnB.secondaryGnb2.cellularNic.mac
MultiCell_withSecondaryGnB.masteryEnb2.cellularNic.mac
MultiCell_withSecondaryGnB.secondaryGnb1.cellularNic.mac

Simulation time (s)

SingleCell_withSecondaryGnB.masterEnb.cellularNic.mac
SingleCell_withSecondaryGnB.secondaryGnb.cellularNic.mac

0 10 20 30 40 50
Simulation time (s)

Av
g

se
rv

ed
 b

lo
ck

 (b
lo

ck
)

4

6

8

0

2

0 10 20 30 40 50
Simulation time (s)

4

8

12

Av
g

se
rv

ed
 b

lo
ck

 (b
lo

ck
)

0

MultiCell_withSecondaryGnB.masterEnb1.cellularNic.mac

MultiCell_withSecondaryGnB.secondaryGnb2.cellularNic.mac
MultiCell_withSecondaryGnB.masteryEnb2.cellularNic.mac
MultiCell_withSecondaryGnB.secondaryGnb1.cellularNic.mac

© International Telecommunication Union, 2022 185

Guda et al.: Network resource allocation for emergency management based on closed-loop analysis

The lower-loop monitors RAN resources and makes
decisions to achieve the intent. Fig. 20 shows the
illustration of the overall process of the system.

Fig. 20 – Block of closed-loop implementation for an
emergency slice

Section 2.1 describes a closed-loop representation
and design using a standard template and
demonstrates it using a three-node closed-loop
(i.e., SRC node, ML node and SINK node). Here, we
further enhance this using a model selection service
and a complete ML node implementation using two
RIC xApps and demonstrate their deployment using
docker containers.

ML model selection (server): Different ML models for
inference can be available with different complexity
and performance. We dynamically select different
ML models from a server based on the declarative
specification of the ML model, as described in
Section 5. The models are implemented as a docker
container and selection may be done either
periodically or based on an external request. These
ML models can be either specific to a particular
problem or a general purpose one. The idea is that
some ML algorithms might be too costly but can
have a good prediction accuracy. On the other hand,
there might be cheap ML algorithms with low-
quality inference. Depending on the requirements,
the best ML model can be selected.

Monitoring and resource compute (xApp 1):
Advanced ML algorithms are applied for monitoring
RAN resources (i.e., PRB, physical resource block
utilization). This paper uses Gaussian Process
Regression (GPR) as a non-parametric prediction
technique. xApp1 reads data from a data lake either
periodically or when needed. Then, it predicts how
much resources will be available in the near future
using this data. This information is used for other
xApps to make resource allocation decisions.

Decision (xApp 2): After receiving the forecasted
RAN resource in the near future, xApp 2 makes a
resource allocation decision for the current and
emergence slices depending on their SLA
requirements.

This section designs and studies the closed-loop
analysis and decision parts. Communication
between xApps is provided through RIC Message
Router (RMR) messaging used within the O-RAN
software community. The workflow of the
implementation shown in Fig. 20 is as follows:

(1) Get intent from a higher loop. It indicates if there
is an emergency case and monitoring xapp is
triggered.

(2) Subscribe to SRC to get the simulator/testbed
data.

(3) Write data to the data lake to be used later for
ML training.

(4) Data is sent to the ML node (implemented in
xApp1) for model training and inference.

(5) Different ML models can be selected from the
server here and sent to xApp1 for inference.

(6) xApp1: Resource monitoring such as PRB
utilization. Here, the ML model is used, which can be
fetched from our local repository. It also analyses
whether there is an overutilization/
underutilization.

(7) Result obtained on (6) is sent to xApp2, which
will make the final decision. It decides whether
there is a need to allocate more resources on RAN
for an emergency slice. Then it applies the decision
to the real network (allocate more PRB for the
emergency slice, E2 CONTROL).

4.1 The system implementation
A low-level closed-loop needs to be instantiated
that monitors and computes RAN resources and
makes a resource allocation decision for emergency
cases based on the high-level intent.

The xApp1 monitors RAN resources and makes
forecasts for the future PRB usage of the network. It
also computes the available resources in the RAN
domain. The forecasting and resource information
is sent to xApp2, which is our decision xApp,
through the RMR. RMR is developed by the O-RAN
Software Community (SC), and we also utilize this
messaging protocol in our implementation. xApp2
receives the necessary information from xApp1 and
solves the problem P2 (or P1), which are given next,
to find out the necessary PRB resources needed for

ML
model

selection
server

Monitoring
and

resource
compute

xApp1

Decision
xApp2

Apply to
network

simu5g

xApp
for sim

Data
lake get

data

ML model
from server

(3)

(5)

E2
integration
subscription

(8)
(7)

(6)

(1)

Closed-loop
consisting of
several xApps

(4)

(2)

Write/read
data

Intent A1

© International Telecommunication Union, 2022186

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 2, September 2022

ES and make the resource allocation. The output of
xApp2 will be sent to the real network to be applied
through the E2 interface of O-RAN when the real
integration starts.

We implement a docker container that acts as a web
server where we keep different ML models to be
used for monitoring or any other activities to test
the model selection. model_handler.py implements
an ML selection/pulling task in which we select ML
dynamically depending on the performance of the
current ML, thus enabling us to use another ML that
may have a better performance than the current
model. Fig. 21 shows the implementation details of
this activity.

Fig. 21 – Workflow of the implementation

4.2 Results and analysis

4.2.1 Time-series forecasting of traffic for
monitoring using Gaussian Process
Regression

This section studies NS implementation in the
network to have dedicated network resources over
various domains. For example, the operator can
allocate dedicated frequency resources (PRBs) to
each slice at the RAN domain. Furthermore,
different slices may have different SLA
requirements on latency, bandwidth, reliability, etc.
Even though each slice's need for resources can
vary over time under dynamic networking
conditions, the operator needs to ensure that the
underlying infrastructure SLAs for each slice is
guaranteed. For example, an operator can deploy a
separate slice for video streaming. It needs to
allocate additional resources to meet the SLA
requirements on the slice during peak hours of the
day. In case of an emergency, a new slice,
Emergency Slice (ES), must be deployed by
operators to handle the traffic in the emergency
area, and the necessary amount of resources must
also be allocated to the ES. In this study, NS with ES
is a dynamic resource allocation problem in the

RAN domain. When an emergency occurs, the ES is
deployed and the resources needed for the ES are
maintained autonomously.

To achieve autonomous resource management,
traffic prediction of each slice is critical to gather
information on the minimum amount of resources
needed for the SLA requirements. It is complex to
capture the dynamics through linear models due to
the highly dynamic and non-linear patterns
exhibited by wireless traffic. Artificial Neural
Networks (ANNs), also known as deep neural
networks or recurrent neural networks are
commonly applied for traffic prediction. However,
NN has well-known training challenges, and it is
complicated to interpret the outcome of the NN
prediction. Comparatively, Gaussian Process
Regression (GPR) has continuously gained
attention due to its interpretability and prediction
accuracy. In addition, GPR can also provide
information on the uncertainty of prediction, which
is important when making resource allocation. In
this study, PRB usage measurement is used to
reflect the traffic characteristics and a time-series
forecasting problem is formulated in which PRB
utilization is predicted using GPR.

We study the use of GPR for the prediction of traffic.
The PRB usage characterizes traffic which enables
us to predict PRB utilization in the RAN domain.
Real-world data from [53] in an urban area shows
PRB utilization measured over a Long-Term
Evolution (LTE) network for a user and collected
and reported at every 500 ms. Fig. 22 shows 1000
samples of PRB utilization data.

Fig. 22 – PRB utilisation over 1000 sample points

Understanding the characteristics of the data is
important in selecting the best kernel for GPR.
Periodic and varying data characteristics observed
in Fig. 23 and Fig. 24 enables us to determine a good
kernel for PRB prediction with GPR, representing
both types of characteristics.

M1

sink Decision to be
applied E2

SRC

PRB data

Local
repository

RIC xApp2
decision
Allocate
resource for ES

ML
pipeline

C

Server ML
model server
selection

RIC xApp1
monitoring
and analyze

0 20 40 60 80
Sample

PR
B

 u
til

iz
at

io
n

Sa
m

pl
e

30

40

50

60

70

80

90

100

100

© International Telecommunication Union, 2022 187

Guda et al.: Network resource allocation for emergency management based on closed-loop analysis

Fig. 23 – Periodic-type characteristics over a period of
100 time-step

Fig. 24 – Constant-type characteristics over a period of
100 time- time

Forecasting with GPR

Fig. 25 shows PRB forecasting with GPR. The GPR
model is trained with the last 100 samples and the
chosen kernel as described above. We note that
more data may need to be used for training
depending on the application. Then, the trained GPR
is used to make predictions for the future 50
samples. It can be concluded that the prediction
with GPR is good enough to make efficient resource
allocation proactively, as shown in Fig. 25. Note that

GPR also provides information on the uncertainty of
these predictions as we point to the upper bound
when making predictions for the next 50 points.
These upper bounds on the predictions can be
utilized when making resource allocation to ensure
that the correct amount of PRBs is allocated while
satisfying the SLA requirements.

The PRB data is stored in a local repository. It is also
possible to use different ML models for inference.
An example implementation for O-RAN integration
is implemented as a separate xApp and
prediction_xapp.py creates a docker container for
the inference implementation as a micro-service to
be used for O-RAN.

We evaluate the performance of GPR prediction. We
train with 1000 data points and evaluate the
performance in terms of Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE). The MAE
and RMSE for future 4000 points are 0.077 and
0.147 for entity reference of 0.046 and 0.081,
respectively.

4.2.2 Resource allocation at RAN for an
emergency slice

After the predicted traffic is obtained through GPR,
the next step is to determine how many resources
the ES should allocate. Therefore, we need to
consider the SLAs of other slices in the network. The
SLAs of other slices may degrade if we allocate more
resources than the ES needs. The emergency case
cannot be handled if we allocate fewer resources for
the ES than it needs.

Fig. 25 – Time-series forecasting of PRB utilization with GPR

0 20 40 60 80 100
Sample

PR
B

 u
til

iz
at

io
n

Sa
m

pl
e

40

50

60

70

80

90

0 20 40 60 80
Sample

PR
B

 u
til

iz
at

io
n

Sa
m

pl
e

40

50

60

70

80

90

100

Used for training (last P samples)

Actual
Predicted

Credible_interval
Forecast starts

Upper bound for the
prediction over W sample

(Actual – Predict) < 10%

Sample

PR
B

 u
til

iz
at

io
n

of
 a

 g
iv

en
 s

lic
e

55

60

65

70

75

80

0 40 60 80 100 14012020

© International Telecommunication Union, 2022188

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 2, September 2022

We assume that RAN resources are given in terms
of either frequency resources or PRBs. Different
slices allocated to different amounts of PRBs can be
determined and fixed by the operator. However, it
is not always efficient because not every slice is
active all the time and uses its PRBs with 100%
utilization although this strategy is good enough to
have a dedicated network. This means that there
can be some leftover PRBs that are not used by the
corresponding slices [54], [55].

We consider two cases:
• Case-1: The ES does not have any dedicated PRB

allocated, but it can only use the unused PRBs
from other slices. The advantage of this strategy
is it guarantees the SLAs of other slices, but ES
can have significant degradation because it can
only use the leftover PRBs, and after some time
the leftover PRBs may not be large enough to
support the emergency case.

• Case-2: We dynamically borrow PRBs from
other slices to support the emergency case to
minimize the degradation of the SLAs of other
slices. In this strategy, priority is given to the ES
and we guarantee that the emergency case is
solved successfully while also minimizing the
negative impact of borrowing PRBs on the SLAs
of other slices.

We develop two algorithms to implement these two
strategies:

Leftover GPR-based PRB allocation to ES algorithm
(ALG1)

ALG 1 implements the first strategy in which only
the leftover PRBs from other slices are allocated to
the ES. The details of ALG1 are given in
ALGORITHM 1.

To illustrate the operations of ALG1, let us consider
two slices and the allocated PRBS to these slices:
T1 = 40 PRBs and T2 = 60 PRBs and in total, the
system has T = 100 PRBs. Let us also assume that
the PRB utilization of these slices is 80% and 90%,
respectively. That means the first slice uses only
40*0.8=32 PRBs and the second slice uses only
60*0.9=54 PRBs. Hence, 40-32= 8 PRBs from the
first slice and 60-54=6 PRBs from the second slice
(in total 14 PRBs) can be allocated to the ES with
ALG1 for this example.

Priority GPR-based PRB allocation to ES
algorithm (ALG2)

ALG2 implements the second strategy in which we
borrow PRBs from the other slice while minimizing
the negative impact on both of them. We assume the
ES needs an E amount of PRBs. First, we allocate the
available leftover PRBs to the ES. If it is not enough,
we borrow PRBs from other slices by minimizing
their performance degradation. The details of ALG2
are given in ALGORITHM 2.

PRBs are borrowed from other slices to meet the
requirement of ES and also minimize the resource
shortage of other slices. Thus, the P1 optimization
problem is formulated in ALG 2

Since it involves a non-linear operation with a max
[56] operator, the problem is difficult to solve.
However, we use an auxiliary trick and convert this
problem to an easily solvable integer program. This
problem is transformed into a solvable integer
problem using the auxiliary variable un as shown P2
in ALG 2.

The importance of P2 is to decide how many PRBs
are to be taken from each of the other slices and
allocated to the ES. These two algorithms are
implemented, and decision_xapp.py creates a
docker file to run this implementation as a
microservice to be ready for use in the O-RAN
platform.

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟏𝟏: Leftover GPR-based PRB allocation to ES
algorithm (ALG1)

Input:

T = total available PRBs of the system
(i.e., For LTE, 100 PRBs).
W = Prediction window (i.e., next
prediction time, 500 ms).
P = Past training window (the last
100 samples).
o = Compensation.
N = number of slices in the network.
Tn = Amount of PRBs allocated to slice n.
Dn = PRB utilization time-series data for
each slice.

Output: Allocate PRBs to ES: 𝑃𝑃𝐸𝐸𝐸𝐸
1 For each other slice n
2
3
4
5
6
7
8
9
10
11
12 End

 Step 1: Train GPR with the latest P
training data.

Step 2: Forecast PRB utilization over the
next W samples with GPR : 𝑈𝑈𝑛𝑛.

Step 3: Calculate maximum possible PRB
utilization using upper bound:
𝐶𝐶𝑛𝑛 = 𝑈𝑈𝑛𝑛 + 𝑜𝑜𝑛𝑛.

Step 4: Calculate the forecasted PRB
usage of all other slices over next W
samples : 𝐵𝐵𝑛𝑛 = 𝑇𝑇𝑛𝑛𝐶𝐶𝑛𝑛

11 Step 5:
12

Calculate available PRBs for Emergency
Slice:
 𝑃𝑃𝐸𝐸𝐸𝐸 = 𝑇𝑇 − ∑ 𝑇𝑇𝑛𝑛𝐶𝐶𝑛𝑛𝑁𝑁

𝑛𝑛=1
13 Step 6: Allocate PRBs to ES: 𝑃𝑃𝐸𝐸𝐸𝐸

© International Telecommunication Union, 2022 189

Guda et al.: Network resource allocation for emergency management based on closed-loop analysis

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟐𝟐: Priority GPR-based PRB allocation to ES
algorithm (ALG 2)

Input: T = Total available PRBs of the system.
Tn = Amount of PRBs allocated to slice n.
W = Prediction window.
P = Past training window.
o = Compensation.
N = number of slices in the network.
Dn = PRB utilization time-series data for each
slice
E = amount of PRBs needed for an emergency
slice

Output:

𝑥𝑥𝑛𝑛(𝑡𝑡) = amount of PRBs needed for slice n at time t
𝑦𝑦𝑛𝑛(𝑡𝑡) = amount of PRB taken from slice n at time t

1 P1:
2
3
4
5
6
7
8
9
10
11

𝑚𝑚𝑚𝑚𝑚𝑚∑ ∑ 𝑚𝑚𝑚𝑚𝑚𝑚 {0,𝑥𝑥𝑛𝑛(𝑡𝑡) − (𝑇𝑇𝑛𝑛 − 𝑦𝑦𝑛𝑛(𝑡𝑡))}𝑁𝑁
𝑛𝑛

𝑊𝑊
𝑡𝑡=1

 s.t. 0 ≤ 𝑦𝑦𝑛𝑛(𝑡𝑡) ≤ 𝑇𝑇𝑛𝑛 ∀𝑛𝑛
 ∑ 𝑦𝑦𝑛𝑛(𝑡𝑡) ≥ 𝐸𝐸𝑁𝑁

𝑛𝑛

 − 𝑥𝑥𝑛𝑛(𝑡𝑡): PRB usage for slice n at time t

 − 𝑇𝑇𝑛𝑛 : Total PRBs given to slice n
 − 𝑦𝑦𝑛𝑛(𝑡𝑡) : Number of PRBs taken from slice n
at time t to be used for emergency slice

12 P2:

13

14

15

16

17

18

19

20

21

min��𝑢𝑢𝑛𝑛(𝑡𝑡)
𝑁𝑁

𝑛𝑛

𝑊𝑊

𝑡𝑡−1

𝑥𝑥�𝑛𝑛(𝑡𝑡) + 𝑜𝑜𝑛𝑛(𝑡𝑡) − �𝑇𝑇𝑛𝑛 − 𝑦𝑦𝑛𝑛(𝑡𝑡)� ≤ 𝑢𝑢𝑛𝑛(𝑡𝑡)

0 ≤ 𝑦𝑦𝑛𝑛(𝑡𝑡) ≤ 𝑇𝑇𝑛𝑛 ∀𝑛𝑛

�𝑦𝑦𝑛𝑛(𝑡𝑡) ≥ 𝐸𝐸
𝑁𝑁

𝑛𝑛

𝑢𝑢𝑛𝑛(𝑡𝑡) ≥ 0

where 𝑥𝑥𝑛𝑛(𝑡𝑡) = 𝑥𝑥�𝑛𝑛(𝑡𝑡) + 𝑜𝑜𝑛𝑛(𝑡𝑡)

𝑥𝑥𝑛𝑛(𝑡𝑡) : Actual PRB usage at time t in future. This
cannot be known in advance.

𝑥𝑥�𝑛𝑛(𝑡𝑡) : Estimated PRB usage with GPR

𝑜𝑜𝑛𝑛(𝑡𝑡) : Estimation error. Upper bound provided
by GPR can be used.

In a simulation scenario, we assumed that we have
two slices with different PRB requirements:

• T1: number of PRBs assigned to Slice 1 by the
operator (e.g., T1 = 40)

• T2: number of PRBs assigned to Slice 2 by the
operator(e.g., T2 = 60)

• T: total number of PRBs in the system
(e.g., T = 100 PRBs)

• Time series PRB utilization for each slice, in
percentage, with a granularity of 100ms and
200 ms

The performance of ALG2 was studied under the
scenario that there are two other slices and T1 = 40
and T2 = 60 PRBs allocated to them. By applying

ALG2, we borrow PRBs to satisfy the requirement of
the ES when those slices do not need the resources.
We assume the ES needs 20 PRBs. Fig. 26 shows the
number of PRBs taken from other slices over 45
time instants. Depending on the predicted PRB
usage of other slices, ALG2 takes 11 or 12 PRBs and
8 or 9 PRBs from the first and second slices,
respectively, and 20 PRBs in total are ready to be
used by the ES simultaneously.

This section studies NS implementation in the
network to have dynamic resource allocation over
various domains. To analyze the PRB utilization in
RAN, two algorithms were studied. Results are
presented considering the need for resources of
each slice which can vary over time under dynamic
networking conditions. The results show the
importance of closed-loop implementations in NS,
especially for intelligent management of RAN
resources during emergency scenarios.

Fig. 26 – PRB allocation for ES

5. O-RAN CONTROL-LOOP
INSTANTIATION

This section describes the implementation of the
algorithms described in Section 4 in an O-RAN near
Real-Time RAN Intelligence Controller (RIC) [57]
and its integration with the Acumos [58] model
repository. The model description is included in the
declarative specification of closed-loop as discussed
in Section 2.1. In this study, a pretrained model is
fetched from Acumos based on the given
description and deployed as xApp [59] in the O-RAN
platform (See Fig. 27 for details).

5.1 A solution workflow
The following workflow is used for the
implementation:

Decision time index

PR
B

s
ta

ke
n

fr
om

 o
th

er
sl

ic
e

7

8

9

10

11

12

13

14

0 5 10 15 20 25 30 35 40 45

PRBs taken from Slice 1
PRBs taken from Slice 2

© International Telecommunication Union, 2022190

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 2, September 2022

• RAN (E2-SIM [60] is used) is registered and
associated with O-RAN near RT RIC.

• RIC receives policy updates from A1 for
triggering closed-loop PRB allocation.

• An ML model is fetched based on the A1 policy
details.

• PRB utilization is predicted based on the
analysis of test data used instead of actual data
from E2.

• The PRB to be allocated is computed and an E2
control message is sent based on the inference.
PRBs are always reserved for the emergency
slice and additional resources can be
reallocated based on situational considerations.

• The allocation decision is continuously
monitored, evaluated, and improved upon.

The workflow steps are further explained in Fig. 27
and discussed as follows:
• Points 1 and 2 show that E2 SIM is up and that

association with RIC is set up.
• Point 3 shows the nRT RIC receives the A1

policy update to trigger closed-loop
monitoring.

• Point 4 shows the A1-mediator sends A1
Policy REQ to the “prbpred” xApp.

• Points 5a and 5b show the model is fetched
from the model store as per policy guidelines
and “prbpred” instructs DataMon/Alloc xApp
to start monitoring the data.

• Points 6,7, and 8 show the messaging done for
subscribing to E2 for data.

E2 Indication is for future reference; currently, data
is not monitored through RIC indication. In future,
data needs to be monitored and sent to predict xApp.
• Point 9 shows data reception from the E2 node.

The received metrics are stored in metrics DB as
in Point 10.

• Upon timer expiry as in Point 11, a request for
prediction is sent to “prbpred” xApp as in Point
12.

• “prbpred” uses the ML model to predict future
utilization. Retraining may be done based on the
new data model. The predicted values may be
sent to DataMon/Alloc xApp as in Point 13 and
Point 14.

• DataMon/Alloc xApp computes the PRB to be
allocated and sends the E2 control message
towards E2 as in Point 15.

5.2 Resulting implementation
This section presents the implementation of the
algorithms in Section 4. The algorithms can be
instantiated in the O-RAN-RIC platform and
prediction based on the xApp
onboarding/deployment process and RIC platform
components can be achieved.

The xApps are developed based on the xApp
Framework for Python. Separate xApp-descriptor
files were defined detailing the configuration, RX &
TX messages supported:

Fig. 27 – Modified xApp process model

Service Management & Orchestration Framework
Non-Real Time RAN Intelligent Controller

(RIC non-RT)

E2-SIM

E2

A1

Model Store
ML Design Studio

(Design Model)

ML Training Host
(Train & Retrain Models)

Deploy Untrained Model

Upload Trained
Model

REST

A1-mediator

Subscription MGR

E2-TERM

Predict- xApp

Data Mon/Alloc
xApp

A1 POLICY Query/REQ

A1 POLICY Create : PRB Alloc Model3

E2 SETUP REQ/RSP

RIC SU
BSCRIPTIO

N
 REQ

/RSP

RIC INDICATION

PRB_PRED_REQ

TIMER EXPIRY

Near-RT RIC

E2 MGR

E2 SETUP REQ/RSP

E2 INDICATION 1

2

4

E2 CONTROL
(PRB allocation)

8

Fetch Model-REST

xAPP’s

RIC PLT components

Supported

To be supported
Supported partially

Data
Metrics

DB

START_DATA_MONITORING

E2 REST SUBSCRIPTION REQ/RSP

REST SUBSCRIPTION NOTIF

STORE_METRICS

FETCH_METRICS/
RETRAIN_MODEL

PRB_PRED_RSP

5a

5b

6

7

9

10

11

12

13

14

15

Closed Loop

Model
Artifacts

© International Telecommunication Union, 2022 191

Guda et al.: Network resource allocation for emergency management based on closed-loop analysis

https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=20873778
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=20873778

Fig. 28 – xApp-descriptor file for prbpred xApp Fig. 29 – xApp-descriptor file for allocator xApp

• prbpred xApp: Initially, this xApp registers for
PRB_PRED_REQ (PRB Prediction Request) and
A1_POLICY_REQ (A1 Policy Request), and
queries A1-mediator to get the policy details. A
specific policy was created which gives model
information and model version information to
be used. This xApp is responsible for receiving
A1_POLICY_REQ and saving the policy details.
Fetch the model from the modelStore and save
it. Predict the future PRB utilization and
respond to alloc xApp for further processing
based on the timer trigger. Upon reception of
PRB_PRED_REQ, the xApp predicts PRB
utilization for each slice and sends a response
to Alloc xApp based on the model fetched.
Fig. 28 shows the xApp-descriptor file for the
prbpred xApp.

• Allocator xApp: Initially, this xApp registers
with the subscription manager for E2
information and starts a timer to trigger
PRB_PRED_REQ periodically. PRB is allocated
for an emergency slice based on predicted
future PRB utilization. A simple algorithm for
PRB allocation in Section 4 is used here. In
addition, some PRBs are shown as reserved for
emergency/high priority events.

The assumption taken is the total number of PRBs
in the system is 100. Slice #1 and Slice#2 were
configured with 35 PRBs each. 30 PRBs were
reserved for emergency/high priority events.

The actual Value of PRB utilized is computed based
on the predicted PRB utilization received for each
slice.

© International Telecommunication Union, 2022192

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 2, September 2022

Utilised_PRB_slice1=PRB_ALLOC_SLICE1*(slice1_ut
ilisation/100)

Utilised_PRB_slice2=PRB_ALLOC_SLICE2*(slice2_ut
ilisation/100)

total_prb_avail = Total_PRB – (Utilised_PRB_slice1 +
Utilised_PRB_slice2)

The reserved PRBs are also made available because
this is an emergency event. Alloc xApp sends the E2
control message to allocate the available PRBs from
the calculation. Fig. 29 shows the xApp-descriptor
file for allocator xApp.

Successful communication between the xApp and
other RIC platform components was achieved as
part of this. A model store was developed to mimic
Acumos and have access to the pretrained model.
E2 SIM setup was registered with the E2 component
in the RIC platform.

In the Dawn release, the creation of the A1 policy
instance doesn’t trigger the A1 policy to send a
message towards the xApp [61]. The workflow was
modified to send a timer-based event from alloc
XApp to trigger PRB prediction. When the policy
instance is created (CREATE/UPDATE messages are
sent to xApp by A1 mediator), the prbpred xApp can
store the model information and perform
prediction based on the trigger.

6. INTEGRATION OF THE POC
This section describes the integration of the above
implementation of closed-loops into O-RAN-based
software platform ready to be tested in the 5G
Berlin testbed [62]. The operator inputs the
declarative intent to the Service Management
Orchestrator (SMO)/Non-RT RIC, which describes
the use case to detect emergencies and maintain the
required SLA as described in Section 2.1. Similar to
the mechanism described in 2.1, SMO/Non-RT RIC
then creates a higher loop that monitors various
parameters like network activities, input from
emergency responders (ER), social media trends,
etc. to detect and locate the emergency (e.g., fire in
a building). This can be realized using either a
hosted model in Acumos or Open Network
Automation Platform data collection analytics
engine (ONAP DCAE) or O-RAN rApp, as discussed
in Sections 2.2 and 4. Once the emergency is
detected, the higher loop sends an intent over the
A1 interface to the Near-RT RIC, instructing it to
handle the increased load for the corresponding
RAN node. Real-time ML/AI inference might be
needed by some of the ERs' devices; for firefighters

a helmet-mounted camera may use image
recognition to detect humans in a burning building.
However, the devices might not have enough
computing and might need to offload the task to the
network edge or use split AI/ML models for
inference. The Near-RT RIC receives the intent and
creates a closed-loop which can monitor the
network and compute resources of the edge and the
ER device and maintains the SLA/QoS (quality of
service) of the inference task as discussed in Section
3 above. This loop can be realized using xApp. Fig.
30 shows the simulator-based sequence for the
integration of the activities.

Fig. 30 – Simulator-based sequence for the integration of

the activities.
Fig. 31 shows the extensions to the sections above
to integrate the implementation of the algorithms
described in Section 4 in an O-RAN- RIC and its
integration with the Acumos [58] model repository.
The first addition was the A1 poller which pulls the
A1 mediator at regular intervals and converts the
A1 policy to a TOSCA template described in
Section 2.1. It uses HTTP-based interfaces to
communicate with the A1 mediator and the
orchestrator. The dms_cli tool provided by the O-
RAN-SC was used to enable the orchestrator to
orchestrate the xapps as specified in the A1 policy.
Playbooks (workflows) described in Section 2.1
were updated to integrate relevant command line
(dms_cli) commands. These commands are used to
onboard and install corresponding xApps.

Designer 2. Derive ML
pipeline
requirements
[Y.3172]

4. Model
selection
and Push
[Y.3176]

H
ig

he
r l

oo
p

pr
ov

is
io

ni
ng

Lo
w

er
 lo

op

pr
ov

is
io

ni
ng

6. Instantiating
higher loop as
rApp

8. Instantiating lower loop
as xApp

𝟏𝟏.𝑪𝑨𝑨 𝑨𝑨𝒏𝒕𝒆𝒏𝒕
𝒇𝒓𝒐𝒎 𝑨𝑨𝑵𝑨𝑨
[𝑨𝑨𝑨𝑨𝑺𝑪𝑨𝑨 𝒃𝒂𝒔𝒆𝒅]

5. O1
procedures

for Data
transfer

WA

*Wrapper API: WA

WA

WA

𝑨𝑨𝒄𝒖𝒎𝒐𝒔 𝑫𝑪𝑨𝑨𝑬: :
𝑨𝑨𝑨𝑨𝑭𝑨𝑨

𝑵𝒐𝒏 − 𝑨𝑨𝑨𝑨
𝑨𝑨𝑨𝑨𝑪 ∷ 𝑨𝑨𝑵
𝑪𝒐𝒏𝒕𝒓𝒐𝒍𝒍𝒆𝒓

𝒏𝑨𝑨𝑨𝑨 𝑨𝑨𝑨𝑨𝑪
∷ 𝑨𝑨𝑵
𝑪𝒐𝒏𝒕𝒓𝒐𝒍𝒍𝒆𝒓

𝑨𝑨𝟏𝟏
𝒕𝒆𝒓𝒎𝒊𝒏𝒂𝒕𝒊𝒐𝒏
(𝒆.𝒈.𝑫𝑼)

© International Telecommunication Union, 2022 193

Guda et al.: Network resource allocation for emergency management based on closed-loop analysis

The overall flow of the final integrated solution
(see Fig. 31) is as follows:

1. The human user or a higher loop applies an
A1 policy to the near-RT RIC. This policy is received
by the A1 mediator.

2. The A1 poller gets the policy, translates it
into the TOSCA template and sends it to the
orchestrator.

3. The orchestrator manages the RIC xapps
according to the TOSCA template using dms_cli.

4. The newly orchestrated xapps pull the
necessary models from the model repository server.

5. Pred xapp makes a time-series prediction
for future traffic in the network and how much
resources (PRB) will be available for an emergency
slice in the near future.

6. Alloc xapp sends an RMR request to pred to
get the prediction and allocates PRBs to the
emergency slice based on that.

7. Alloc xapp then sends a message over the E2
interface to the RAN. Slice allocation messages are
verified from the console.

Fig. 31 – Overall flow of the final integrated PoC

7. OBSERVATIONS FROM THE POC
Abstraction of nodes allows the service template to
select concrete nodes that best match the
requirements of the abstract nodes during
deployment. The concrete nodes can be provided in
a repository known to the orchestrator. Abstract
requirements can be achieved in TOSCA YAML
using the node_filter feature. However, this study
found that abstraction features like node_filter and
substitution are not supported by certain
implementations of orchestrators. A feature-based
comparison of orchestrators concerning TOSCA
compliance may be made as part of future studies.

Besides the RAN slicing experiments exploring a
closed-loop using the FlexRAN controller, other AI
applications can interact with the SDN controller
and the VNF placement functions to attend to
different network requirements. An End-to-End
(E2E) network slice cannot be completely
implemented in the testbed because a MANO
implementation was not used to avoid
computational costs and network complexity in this
first phase and focus on AI integration. Future
studies may include integrating the software
developed in our testbed into ONAP software, a
popular MANO implementation, to provide E2E NS
with a centralized closed-loop. The verification and
validation of resource allocation during simulation
in line with the traffic pattern (e.g., full buffer) when
simulating the scenarios, e.g., dual connectivity, is
an essential future step as we broaden the
simulation into more scenarios.

Creating a closed-loop with several modules brings
communication and computation problems. Overall
integration, including A1/O1/E1 interface
integrations, is critical and which parts of this
integration can be realized autonomously can be
explored. The real-time system performance will
have to be tested to ensure compliance with closed-
loop specifications. Integration issues with
platforms highlight the importance of close
coordination with underlays, as mentioned in
Sections 2.2 and 5.

8. CONCLUSION AND FUTURE RESEARCH
This is a collaborative study where we developed
and implemented a hierarchical closed-loop that
autonomously handles an emergency case. The
study focused on intent parsing, traffic monitoring,
resource computing, and allocation autonomously.
The closed-loops were implemented with several
micro-services deployed as docker containers with
specific functions such as monitoring, computing,
ML selection, and resource allocation. Future
activities will focus on enhancing the attributes of
the nodes in the template, e.g., data parameters in
the SRC [e.g., 3xVs: velocity, variety and volume],
Model metadata (as defined in ITU-T Y.3176), and
SINK parameters [e.g., underlay specific APIs]. After
integration, data pulling, model pulling, and
adaptation can be demonstrated based on such
enhanced attributes. The machine learning agent
presented in the Connected AI study will be
implemented for the built environment with ONAP
and Acumos integration for future activities.
Enhancing the simulator to include inputs from an

© International Telecommunication Union, 2022194

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 2, September 2022

intent and integration with the SRC, ML and SINK
nodes to form the closed-loop in the simulation
domain is also an important future step. Apart from
advanced algorithms studied, e.g., multivariant
time-series models with monitored data and
arriving at intelligent inference, resource
reservation for emergencies and resource
reallocation from lower priority services should be
explored. Easy onboarding of xApps and the
triggering of policy towards lower closed-loops and
supporting visualizations can increase usability. In
addition, extending the solution to self-learning
closed-loops with continuous collection, analytics,
decision and actuation and model performance
detection needs further study. With the self-
learning close-loops, the network could trigger a
switchover to another better performing model,
analyze and trigger a different set of
data/measurements for data analysis and perform
synchronization and management across the edge
and emergency responder devices.

ACKNOWLEDGEMENT
ITU FG-AN, the International Telecommunication
Union Focus Group on Autonomous Networks,
organized a “build-a-thon challenge” in 2021 to
demonstrate and validate important use cases for
autonomous networks, creating Proof of Concept
(PoC) implementations and tools in the process. The
majority of the works in this study were done under
the Build-a-thon Challenge.

REFERENCES
[1] E. Selerio Jr, J. A. Caladcad, M. R. Catamco,

E. M. Capinpin, and L. Ocampo, "Emergency
preparedness during the COVID-19 pandemic:
Modelling the roles of social media with fuzzy
DEMATEL and analytic network process",
Socio-economic planning sciences, p. 101217,
2021.

[2] K. Carlberg, E. W. Burger, and R. P. Jover,
"Dynamic 5G Network Slicing for First
Responders", in 2019 Principles, Systems and
Applications of IP Telecommunications
(IPTComm), 2019: IEEE, pp. 1-4.

[3] J. Gallego-Madrid, R. Sanchez-Iborra, P. M.
Ruiz, and A. F. Skarmeta, "Machine learning-
based zero-touch network and service
management: A survey", Digital
Communications and Networks, 2021.

[4] V. Sciancalepore, F. Z. Yousaf, and X. Costa-
Perez, "z-TORCH: An automated NFV
orchestration and monitoring solution", IEEE
Transactions on Network and Service
Management, vol. 15, no. 4, pp. 1292-1306,
2018.

[5] R. Wen et al., "On robustness of network
slicing for next-generation mobile networks",
IEEE Transactions on Communications,
vol. 67, no. 1, pp. 430-444, 2018.

[6] Q. Wang et al., "Enable advanced QoS-aware
network slicing in 5G networks for slice-based
media use cases", IEEE transactions on
broadcasting, vol. 65, no. 2, pp. 444-453, 2019.

[7] P. H. Gomes, M. Buhrgard, J. Harmatos, S. K.
Mohalik, D. Roeland, and J. Niemöller,
"Intent-driven closed loops for autonomous
networks", Journal of ICT Standardization,
pp. 257–290-257–290, 2021.

[8] S. Singh, P. K. Sharma, B. Yoon, M. Shojafar,
G. H. Cho, and I.-H. Ra, "Convergence of
blockchain and artificial intelligence in IoT
network for the sustainable smart city",
Sustainable Cities and Society, vol. 63,
p. 102364, 2020.

[9] L. Bonati, S. D'Oro, M. Polese, S. Basagni, and
T. Melodia, "Intelligence and learning in O-
RAN for data-driven NextG cellular networks",
IEEE Communications Magazine, vol. 59,
no. 10, pp. 21-27, 2021.

[10] S. Sultana and A. Mittermaier. "Build-a-Thon
(PoC) – 5G Berlin Test Network Functional
Specification", https://extranet.itu.int/sites/itu-
t/focusgroups/an/input/FGAN-I-093.zip
(accessed 07/06, 2022).

[11] M. Polese, L. Bonati, S. D'Oro, S. Basagni, and
T. Melodia, "Understanding O-RAN:
Architecture, Interfaces, Algorithms, Security,
and Research Challenges", arXiv preprint
arXiv:2202.01032, 2022.

[12] L. Gavrilovska, V. Rakovic, and D. Denkovski,
"From cloud RAN to open RAN", Wireless
Personal Communications, vol. 113, no. 3,
pp. 1523-1539, 2020.

[13] G. ETSI, "Zero-touch network and Service
Management (ZSM); Reference Architecture",
Tech. Rep, 2019.

[14] J. Pérez-Romero, O. Sallent, R. Ferrús, and R.
Agustí, "Knowledge-based 5G radio access
network planning and optimization", in 2016
International Symposium on Wireless
Communication Systems (ISWCS), 2016: IEEE,
pp. 359-365.

© International Telecommunication Union, 2022 195

Guda et al.: Network resource allocation for emergency management based on closed-loop analysis

https://extranet.itu.int/sites/itu-t/focusgroups/an/input/FGAN-I-093.zip
https://extranet.itu.int/sites/itu-t/focusgroups/an/input/FGAN-I-093.zip

[15] X. You, C. Zhang, X. Tan, S. Jin, and H. Wu,
"AI for 5G: research directions and paradigms",
Science China Information Sciences, vol. 62,
no. 2, pp. 1-13, 2019.

[16] A. Feriani and E. Hossain, "Single and multi-
agent deep reinforcement learning for AI-
enabled wireless networks: A tutorial", IEEE
Communications Surveys & Tutorials, 2021.

[17] X. Wang, X. Li, and V. C. Leung, "Artificial
intelligence-based techniques for emerging
heterogeneous network: State of the arts,
opportunities, and challenges", IEEE Access,
vol. 3, pp. 1379-1391, 2015.

[18] W. Y. B. Lim et al., "Federated learning in
mobile edge networks: A comprehensive
survey", IEEE Communications Surveys &
Tutorials, vol. 22, no. 3, pp. 2031-2063, 2020.

[19] A. Bardou, T. Begin, and A. Busson,
"Improving the spatial reuse in ieee 802.11 ax
wlans: A multi-armed bandit approach", in
Proceedings of the 24th International ACM
Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems,
2021, pp. 135-144.

[20] M. Matracia, N. Saeed, M. A. Kishk, and M.-
S. Alouini, "Post-Disaster Communications:
Enabling Technologies, Architectures, and
Open Challenges", arXiv preprint
arXiv:2203.13621, 2022.

[21] F. Liu, Y. Guo, Z. Cai, N. Xiao, and Z. Zhao,
"Edge-enabled disaster rescue: a case study of
searching for missing people", ACM
Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 6, pp. 1-21,
2019.

[22] R. F. Hussain, M. A. Salehi, A. Kovalenko, Y.
Feng, and O. Semiari, "Federated edge
computing for disaster management in remote
smart oil fields", in 2019 IEEE 21st
International Conference on High
Performance Computing and Communications;
IEEE 17th International Conference on Smart
City; IEEE 5th International Conference on
Data Science and Systems
(HPCC/SmartCity/DSS), 2019: IEEE,
pp. 929-936.

[23] J. Pérez-Romero et al., "Supporting mission
critical services through radio access network
slicing", in 2019 International Conference on
Information and Communication Technologies
for Disaster Management (ICT-DM), 2019:
IEEE, pp. 1-8.

[24] R. Ferrús, O. Sallent, J. Pérez-Romero, and R.
Agusti, "On the automation of RAN slicing
provisioning and cell planning in NG-RAN",
in 2018 European Conference on Networks
and Communications (EuCNC), 2018: IEEE,
pp. 37-42.

[25] K. Abbas, M. Afaq, T. Ahmed Khan, A. Rafiq,
and W.-C. Song, "Slicing the core network and
radio access network domains through intent-
based networking for 5g networks",
Electronics, vol. 9, no. 10, p. 1710, 2020.

[26] Ł. Kułacz and A. Kliks, "Dynamic Spectrum
Allocation Using Multi-Source Context
Information in OpenRAN Networks", Sensors,
vol. 22, no. 9, p. 3515, 2022.

[27] M. Dryjański, Ł. Kułacz, and A. Kliks,
"Toward Modular and Flexible Open RAN
Implementations in 6G Networks: Traffic
Steering Use Case and O-RAN xApps",
Sensors, vol. 21, no. 24, p. 8173, 2021.

[28] H. Kumar, V. Sapru, and S. K. Jaisawal,
"O-RAN based proactive ANR optimization",
in 2020 IEEE Globecom Workshops
(GC Wkshps, 2020: IEEE, pp. 1-4.

[29] G. Nardini, D. Sabella, G. Stea, P. Thakkar,
and A. Virdis, "Simu5G–An OMNeT++
Library for End-to-End Performance
Evaluation of 5G Networks", IEEE Access,
vol. 8, pp. 181176-181191, 2020.

[30] G. Pereyra, C. Rattaro, and P. Belzarena,
"Py5cheSim: a 5G Multi-Slice Cell Capacity
Simulator", in 2021 XLVII Latin American
Computing Conference (CLEI), 2021: IEEE,
pp. 1-8.

[31] 5G-LENA Team. "5G-LENA simulator",
https://5g-lena.cttc.es/ (accessed 05/13, 2022).

[32] X. Foukas, N. Nikaein, M. M. Kassem, M. K.
Marina, and K. Kontovasilis, "FlexRAN: A
flexible and programmable platform for
software-defined radio access networks", in
Proceedings of the 12th International on
Conference on emerging Networking
EXperiments and Technologies, 2016,
pp. 427-441.

[33] SD-RAN. "Introduction – SD-RAN Docs 1.1.0
documentation", https://docs.sd-ran.org/sdran-
1.1/introduction.html (accessed 5/13, 2022).

[34] H. Lee, J. Cha, D. Kwon, M. Jeong, and I. Park,
"Hosting ai/ml workflows on o-ran ric
platform", in 2020 IEEE Globecom Workshops
(GC Wkshps, 2020: IEEE, pp. 1-6.

[35] O-RAN. "O-RAN Architecture Overview",
https://docs.o-ran-sc.org/en/latest/architecture/
architecture.html (accessed 03/09, 2022).

© International Telecommunication Union, 2022196

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 2, September 2022

https://5g-lena.cttc.es/
https://docs.sd-ran.org/sdran-1.1/introduction.html
https://docs.sd-ran.org/sdran-1.1/introduction.html
https://docs.o-ran-sc.org/en/latest/architecture/architecture.html
https://docs.o-ran-sc.org/en/latest/architecture/architecture.html

[36] ITU‐T. "Framework for evaluating
intelligence levels of future networks including
IMT-2020", https://www.itu.int/rec/T-REC-
Y.3173 (accessed 30/05, 2020).

[37] A. Luzar, S. Stanovnik, and M. Cankar,
"Examination and Comparison of TOSCA
Orchestration Tools", in European Conference
on Software Architecture, 2020: Springer,
pp. 247-259.

[38] V. Ram O.V et al. "Proposal for a “Build-a-
thon” for ITU AI/ML in 5G Challenge (second
edition, 2021), aligned with FGAN WG3",
ITU Focus Group on Autonomous Network
(FG-AN). https://extranet.itu.int/sites/itu-
t/focusgroups/an/input/FGAN-I-170-R1.docx
(accessed 02/23, 2022).

[39] OASIS TOSCA Simple Profile in YAML v1.3,
xopera, 2021. [Online]. Available: https://xlab-
si.github.io/xopera-docs/

[40] ITU‐T. "Machine learning marketplace
integration in future networks including IMT-
2020", https://www.itu.int/rec/T-REC-Y.3176
(accessed 30/05, 2022).

[41] C. V. Nahum et al., "Testbed for 5G connected
artificial intelligence on virtualized networks",
IEEE Access, vol. 8, pp. 223202-223213, 2020.

[42] ITU‐T. "Architectural framework for
machine learning in future networks including
IMT‐2020", https://www.itu.int/rec/T-REC-
Y.3172-201906-i/en (accessed 03/12, 2022).

[43] I. Aliyu, M. C. Feliciano, S. Van Engelenburg,
D. O. Kim, and C. G. Lim, "A blockchain-
based federated forest for SDN-enabled in-
vehicle network intrusion detection system",
IEEE Access, vol. 9, pp. 102593-102608, 2021.

[44] Ryu. "Ryu API Reference",
https://ryu.readthedocs.io/en/latest/api_ref.ht
ml (accessed 01/25, 2022).

[45] Flexran. "Mosaic5G", https://mosaic5g.io/
flexran/ (accessed 01/25, 2022).

[46] Empowering App Development for Developers
| Docker, Docker. [Online]. Available:
https://www.docker.com/

[47] O. OpenAirInterface. Accessed: Sep. 13. "5G
Software Alliance for Democratising Wireless
Innovation", http://www.openairinterface.org/
(accessed 01/25, 2022).

[48] Free5GC. "Free5GC: Open-Source 5GC",
https://www.free5gc.org/ (accessed 01/25,
2022).

[49] Kubernetes. "Kubernetes", (accessed 01/25,
2022).

[50] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini,
and H. Flinck, "Network slicing and
softwarization: A survey on principles,
enabling technologies, and solutions", IEEE
Communications Surveys & Tutorials, vol. 20,
no. 3, pp. 2429-2453, 2018.

[51] E. Bisong, "Kubeflow and kubeflow pipelines",
in Building Machine Learning and Deep
Learning Models on Google Cloud Platform. .
Berkeley, CA, USA: Springer, 2019.

[52] S. Lins et al., "Artificial Intelligence for
Enhanced Mobility and 5G Connectivity in
UAV-Based Critical Missions", IEEE Access,
vol. 9, pp. 111792-111801, 2021.

[53] V. Raida, P. Svoboda, and M. Rupp, "Real
World Performance of LTE Downlink in a
Static Dense Urban Scenario-An Open
Dataset", in GLOBECOM 2020-2020 IEEE
Global Communications Conference, 2020:
IEEE, pp. 1-6.

[54] X. Foukas, M. K. Marina, and K. Kontovasilis,
"Orion: RAN slicing for a flexible and cost-
effective multi-service mobile network
architecture", in Proceedings of the 23rd
annual international conference on mobile
computing and networking, 2017, pp. 127-140.

[55] A. Okic, L. Zanzi, V. Sciancalepore, A.
Redondi, and X. Costa-Pérez, "π-ROAD: A
learn-as-you-go framework for on-demand
emergency slices in V2X scenarios", in IEEE
INFOCOM 2021-IEEE Conference on
Computer Communications, 2021: IEEE,
pp. 1-10.

[56] TOSCA Simple Profile in YAML Version 1.3, C.
L. OASIS Committee Specification 01..Edited
by Matt Rutkowski, Claude Noshpitz, 2019.
[Online]. Available: https://docs.oasis-
open.org/tosca/TOSCA-Simple-Profile-
YAML/v1.3/TOSCA-SimpleProfile-YAML-
v1.3.html

[57] K. Kristiansen. "Near Realtime RIC ",
https://wiki.o-ran-sc.org/display/GS/
Near+Realtime+RIC+Installation (accessed
03/09, 2022).

[58] S. Zhao, M. Talasila, G. Jacobson, C. Borcea,
S. A. Aftab, and J. F. Murray, "Packaging and
sharing machine learning models via the
acumos ai open platform", in 2018 17th IEEE
International Conference on Machine
Learning and Applications (ICMLA), 2018:
IEEE, pp. 841-846.

[59] Z. Huang. "App Writing Guide",
https://wiki.o-ran-sc.org/display/ORANSDK/
App+Writing+Guide (accessed 03/09, 2022).

© International Telecommunication Union, 2022 197

Guda et al.: Network resource allocation for emergency management based on closed-loop analysis

https://www.itu.int/rec/T-REC-Y.3173
https://www.itu.int/rec/T-REC-Y.3173
https://extranet.itu.int/sites/itu-t/focusgroups/an/input/FGAN-I-170-R1.docx
https://extranet.itu.int/sites/itu-t/focusgroups/an/input/FGAN-I-170-R1.docx
https://xlab-si.github.io/xopera-docs/
https://xlab-si.github.io/xopera-docs/
https://www.itu.int/rec/T-REC-Y.3176
https://www.itu.int/rec/T-REC-Y.3172-201906-i/en
https://www.itu.int/rec/T-REC-Y.3172-201906-i/en
https://ryu.readthedocs.io/en/latest/api_ref.html
https://ryu.readthedocs.io/en/latest/api_ref.html
https://mosaic5g.io/flexran/
https://mosaic5g.io/flexran/
https://www.docker.com/
http://www.openairinterface.org/
https://www.free5gc.org/
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-SimpleProfile-YAML-v1.3.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-SimpleProfile-YAML-v1.3.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-SimpleProfile-YAML-v1.3.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-SimpleProfile-YAML-v1.3.html
https://wiki.o-ran-sc.org/display/GS/Near+Realtime+RIC+Installation
https://wiki.o-ran-sc.org/display/GS/Near+Realtime+RIC+Installation
https://wiki.o-ran-sc.org/display/ORANSDK/App+Writing+Guide
https://wiki.o-ran-sc.org/display/ORANSDK/App+Writing+Guide

[60] O-RAN. "O-RAN Software Community",
https://github.com/o-ran-sc (accessed 03/09,
2022).

[61] Z. Huang. "Traffic Steering Flows",
https://wiki.o-ran-sc.org/display/IAT/
Traffic+Steering+Flows?focusedCommentId=
41456537#comment-41456537 (accessed).

[62] S. Sultana and A. Mittermaier. "Updates on the
5G test network, Plans on intent based-network
slicing", ITU-T FGAN.
https://extranet.itu.int/sites/itu-t/focusgroups/
an/input/FGAN-I-197.zip (accessed 03/12,
2022).

AUTHORS

Guda Blessed received his
bachelor’s degree in computer
engineering from the Federal
University of Technology, Minna,
2021. He made several contributions
to the ITU Focus Group (FG) on ML

for 5G and Autonomous Networks (AN). He has
research interests in AI for NLP, network security,
5G and autonomous networks and embedded
systems. He is a mentor with WINEST Research
group and founder of AI4Africa Research group. He
received the Mentors Encouragement award from
ITU AI/ML in 5G Challenge, 2021. He is currently an
AI engineer at Prunny Technologies and also
mentors student research projects with ITU FG-AN.

Ibrahim Aliyu received his PhD in
computer science and engineering
from Chonnam National University,
South Korea, in 2022. He also holds a
B.Eng and M.Eng degree in computer

engineering at the Federal University of Technology,
Minna, Nigeria, in 2014 and 2018, respectively. He
is currently a postdoc researcher at Hyper
Intelligence Media Network Platform Lab, Dept. of
ICT Convergence System Engineering, Chonnam
National University. In addition, he is contributing
to the ITU Focus Group on Autonomous Networks.
His current research interest is on source routing-
based in-network computing for the XR/metaverse
applications and the development of zone adaptive
network structure for large scale metaverse
deployment. His other research interests include
federated learning, data privacy, network
SECURITY and AI for the autonomous networks. He
received the Mentors Encouragement award from
ITU AI/ML in 5G Challenge, 2021, and the 2017
Korean Government Scholarship Program Award.

James Agajo received a Bachelor of
Engineering (B.Eng) degree in
electrical and computer engineering
from the Federal University of
Technology Minna, and a Master’s of
Engineering (M.Eng.) degree in

electronics and telecommunication engineering
from Nnamdi Azikiwe University, with a PhD in
telecommunication and computer engineering from
Nnamdi Azikiwe University. A former HOD, acting
director and postgraduate coordinator, Dr James
Agajo is presently an associate professor and the
Head of the Department of Computer Engineering
with the Federal University of Technology Minna,
School of Electrical Engineering and Technology. He
has published over 130 articles and received many
awards, including IBM AI Analyst Master’s Award,
IBM AI Analyst Award, IBM IoT Cloud Developer
Award, IBM Blockchain Developer Award, and IBM
Telecommunications Insights & Solutions.
Presently, he is also a visiting professor at I.C.T
University U.S.A, Nile University Abuja, Baze
University Abuja, Kebbi State University of Science
and Technology Kebbi, University of Pretoria,
Federal University of Petroleum Resources Effurun.

Thiago Lima Sarmento received a
B.Sc. degree in computer engineering
from the Federal University of Pará
(UFPA), Belém, Pará, Brazil, in 2017.
He received his Master’s in 2019 and
is pursuing his Doctor’s degree in

electrical engineering with emphasis on
telecommunications in the Electrical Engineering
Graduate Program at UFPA. He has been part of the
Research and Development Center for
Telecommunications, Automation and Electronics
(LASSE) since 2014. His current research focuses on
machine learning for telecommunications.

Cleverson Veloso Nahum received a
B.Sc. degree in computer engineering
from the Federal University of Pará
(UFPA), Belém, Pará, Brazil, in 2019.
He received his Master’s and is
pursuing his Doctor’s degree in

electrical engineering with emphasis on
telecommunications in the Electrical Engineering
Graduate Program at UFPA, in 2021. He is part of the
Research and Development Center for
Telecommunications, Automation and Electronics
(LASSE) since 2016. His current research interests
include network slicing, radio resource
management, and artificial intelligence applied to
mobile communication systems.

© International Telecommunication Union, 2022198

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 2, September 2022

https://github.com/o-ran-sc
https://wiki.o-ran-sc.org/display/IAT/Traffic+Steering+Flows?focusedCommentId=41456537#comment-41456537
https://wiki.o-ran-sc.org/display/IAT/Traffic+Steering+Flows?focusedCommentId=41456537#comment-41456537
https://wiki.o-ran-sc.org/display/IAT/Traffic+Steering+Flows?focusedCommentId=41456537#comment-41456537
https://extranet.itu.int/sites/itu-t/focusgroups/an/input/FGAN-I-197.zip
https://extranet.itu.int/sites/itu-t/focusgroups/an/input/FGAN-I-197.zip

Lucas Novoa is a Brazilian, with a
degree in electrical engineering from
the Federal University of Pará
(UFPA), Belém, Pará, Brazil. He is
currently part of the Research and

Development Center for Telecommunications,
Automation and Electronics (LASSE), and he is
initiating an Electrical Engineering Master's degree
in the signal processing area. He has experience in
the following subjects: 2G/4G/5G mobile networks,
community networks, mobile networks and the
transport layer.

Rebecca Aben-Athar is an electrical
engineering student at the Federal
University of Pará (UFPA), Belém,
Pará, Brazil, since 2019. She is part of
the Research and Development

Center for Telecommunications, automation and
Electronics (LASSE) since 2021. Her current
research focuses on machine learning for
telecommunications.

Mariano Moura is currently a
graduate student of electrical
engineering at Universidade Federal
do Pará (UFPA), Belém, Pará, Brazil.
He is part of a research group that
focuses on 5G network automation at

the Research and Development Center for
Telecommunications, Automation and Electronics
(LASSE).

Lucas Matni is currently a graduate
student of computer engineering at
Universidade Estácio de Sá, Belém,
Pará, Brazil. He is part of the research
group focused on the automation of

5G networks at the Center for Research and
Development in Telecommunications, Automation
and Electronics (LASSE).

Aldebaro Klautau received a
bachelor’s (Universidade Federal do
Pará, UFPA, 1990), M. Sc.
(Universidade Federal de Santa
Catarina, UFSC, 1993) and Ph. D.
degrees (University of California at

San Diego, UCSD, 2003) in electrical engineering.
Since 1996, he has been with UFPA and is now a full
professor, at the ITU Focal Point, and directs LASSE.
He was a visiting scholar at Stockholm University,
UCSD and The University of Texas at Austin. He is a
researcher of the Brazilian National Council of
Scientific and Technological Development (CNPq), a
Senior Member of the IEEE and a senior member of

the Brazilian Telecommunications Society (SBrT).
His work focuses on machine learning and signal
processing for communications and embedded
systems.

Deena Mukundan received a
bachelor's degree in electrical and
electronics engineering from the
University of Kerala (India) in 1999,
and has 20 years of experience in
software engineering in the

telecommunications domain. During this period,
she has worked on various wireline and wireless
technologies including IP-DSLAM, M2M, 3G/4G
protocol stack development, and most recently in
Automation. In addition to this, she has received a
postgraduate diploma in AI and machine learning
and is currently exploring the application of AI in
the telecommunications domain.

Divyani R Achari is affiliated with Tech Mahindra,
India.

Mehmet Karaca received my B.S.
degree in telecommunication
engineering in 2006 from Istanbul
Technical University, Turkey. He
received M.S. and PhD degrees in

electronics engineering from Sabanci University,
Turkey, in August 2008 and January 2013,
respectively. After working two years as a system
and research engineer at AirTies Wireless Networks,
Istanbul, Turkey, he did his postdoctoral study at
Lund University between 2015 and 2017. Then, he
joined Ericsson AB, Lund as a system developer
focusing on massive and MU-MIMO systems for
Ericsson 5G base stations. Currently, he is an
assistant professor at TED University, Ankara,
Turkey.

Doruk Tayli works at Q Bio Inc., California, USA, as
a lead computational software engineer.

Özge Simay Demirci is an undergraduate student
at the Dept. of Electrical-Electronics Eng., TED
University, Ankara, Turkey.

V. Udaya Sankar completed his PhD
from the ECE Department at Indian
Institute of Science, Bangalore, in
August 2017 and did his M.Tech from
IIT, Roorkee in 2002-04. His thesis is

related to the design of a distributed resource
allocation algorithm to mitigate interference
between femtocells using game theory. He has 4+
years of industrial work experience. He was AOTS
Scholar through Hindu-Hitachi Technical Training

© International Telecommunication Union, 2022 199

Guda et al.: Network resource allocation for emergency management based on closed-loop analysis

Programme, Japan, from July 2008 to December
2008 at Hitachi Communication Technologies,
Hitachi Limited, where he underwent training on
standardization activity in enterprise and strategy
establishment activity. He was an executive council
member for IETE, Bangalore for 2008-09, an
Execom member for IEEE-IISc Student Branch for
2010-2012 and Chairperson for IEEE-IISc Student
Branch for 2012 and 2013. He also represented
IEEE-IISc Student Branch in IEEE-UPP (University
Partnership Programme) Leaders’ Summit during
18-21 October 2012 at Seattle, Washington, USA. He
was leading the smart city initiative by the IEEE
Bangalore section from 2015 to 2016. He was a
founding member of the SIAM Student chapter of
IISc Bangalore, IEEE-IISc Nanotechnology council.
He is an IEEE Senior Member and IEEE HKN
Member. Currently, he is working as an assistant
professor in ECE Department, SRM University,
Amaravati, AP. His research interests include game
theory and optimization, machine learning
algorithms, cognitive decision making systems
design, baseband signal processing for advanced
wireless communications, small cell networks, self-
organizing networks design using evolutionary
biology concept, cooperative communications,
design of algorithms for vehicular to vehicular
communication, machine to machine
communications, information theory and coding,
IoT and smart grid.

Sai Jnaneswar Juvvisetty is
currently pursuing his bachelor’s in
electronics and communication
engineering at SRM University AP.
He works as an intern in Analog

Devices. His areas of interest include machine
learning and deep learning. His areas of
specialization also include IoT, embedded systems
and 5G architecture. He also participated in the ITU
AI ML 2021 and worked on the topic “Network
resource allocation for emergency management
based on closed-loop analysis”.

V.M.V.S. Aditya is currently an
undergraduate student in electronics
and communication engineering at
SRM University Andhra Pradesh,
India. He has done several projects

and has conference papers in the domain of Internet
of Things, Wireless Sensor Networks, and Neural
Networks. He also participated in the ITU AI ML
Challenge 2021 and worked on the topic “Network
resource allocation for emergency management

based on closed-loop analysis”. His current research
interests include the various machine learning
algorithms in the context of 5G and wireless
networks.

Abhishek Dandekar received
his bachelor’s degree in
telecommunication engineering from
the University of Mumbai in 2015. He
is currently pursuing his master’s

degree in ICT innovation at TU Berlin and writing
his master’s thesis at Fraunhofer HHI. Before this,
Abhishek was with the information networking lab
at IIT Bombay, where he worked on developing 5G
solutions for rural India using softwarised WLAN
networks. He has contributed to IEEE and ITU
standardization working groups and holds a patent
for controlling SDN-based multi‐RAT networks. He
won the judges’ prize in ITU AI/ML in the 5G 2020
challenge. His current research interests include
autonomous networks, distributed ML
orchestration and industrial 5G.

Shabnam Sultana is affiliated with Highstreet
Technologies GmbH, Germany.

Jinsul Kim received a B.S. degree in
computer science from the University
of Utah, Salt Lake City, Utah, USA, in
1998, and the M.S. and PhD degrees in
digital media engineering, dept. of

information and communications from Korea
Advanced Institute of Science and Technology
(KAIST), Daejeon, South Korea, in 2004 and 2008.
He worked as a researcher in IPTV Infrastructure
Technology Research Laboratory,
Broadcasting/Telecommunications Convergence
Research Division, Electronics and
Telecommunications Research Institute (ETRI),
Daejeon, Korea from 2004 to 2009. He worked as a
professor at Korea Nazarene University, Cheonan,
Korea from 2009 to 2011. Currently, he is a
professor at Chonnam National University, Gwangju,
Korea. He has been invited to review for IEEE Trans.
Multimedia since 2008 as an IEEE Member. He has
been invited for TPC (Technical Program
Committee) for IWITMA2009/2010, PC (Program
Chair) for ICCCT2011, IWMWT2013/2014/2015,
and General Chair for ICMWT2014. His research
interests include QoS/QoE, cloud computing, edge
computing, AI, energy AI, multimedia
communication and new media (VR, AR, metaverse
etc.).

© International Telecommunication Union, 2022200

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 2, September 2022

Vishnu Ram OV has 24 years of
hands-on experience in the field of
telecommunications industry,
developing and implementing
standards, holding 13 international

granted patents, published many papers and was
appointed as a Scientific Advisory Board Associate
(SABA) member of Motorola Networks. He is
currently serving as an independent consultant,

vice chair of the ITU-T focus group on Autonomous
Networks (ITU-T FG-AN), and was co-editor of the
recently published ITU-T focus group ML5G
specifications on AI/ML which led to many
Recommendations such as ITU-T Y.3172. He is a
Senior Member of IEEE. His current passion
includes coordinating global standards in ITU-T,
liaison with other SDOs like ETSI and IRTF,
mentoring student projects, and coordinating
global challenges in AI/ML in 5G.

© International Telecommunication Union, 2022 201

Guda et al.: Network resource allocation for emergency management based on closed-loop analysis

	NETWORK RESOURCE ALLOCATION FOR EMERGENCY MANAGEMENT BASED ON CLOSED-LOOP ANALYSIS
	1. INTRODUCTION
	1.1 Background and related studies

	2. The PoC Design and Implementation
	2.1 Design of closed-loops using a declarative specification
	2.2 “Imperative actions” in the “underlay” based on the intent
	2.2.1 Connected AI (CAI) network testbed
	2.2.2 Results and discussions

	3. Simulated underlay for closed-loop-based resource allocation
	3.1 Simulation scenarios
	3.2 Results of the simulations

	4. Algorithms investigation for the resource allocation in the “underlay”
	4.1 The system implementation
	4.2 Results and analysis
	4.2.1 Time-series forecasting of traffic for monitoring using Gaussian Process Regression
	4.2.2 Resource allocation at RAN for an emergency slice

	5. O-RAN Control-Loop Instantiation
	5.1 A solution workflow
	5.2 Resulting implementation

	6. Integration of THE POC
	7. Observations from the PoC
	8. Conclusion and future research
	ACKNOWLEDGEMENT
	REFERENCES

