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Abstract – The telecommunication system being a critical pillar of emergency management, intelligent 
deployment and management of slices in an affected area will help emergency responders. Techniques such 
as automated management of Machine Learning (ML) pipelines across the edge and emergency responder 
devices, usage of hierarchical closed-loops, and offloading inference tasks closer to the edge can minimize 
latencies for first responders in case of emergencies. This study describes the major results from building a 
Proof of Concept (PoC) for network resource allocation for emergency management using a hierarchical 
autonomous Artificial Intelligence (AI)/ML-based closed-loops in the mobile network, organized by the 
Internal Telecommunication Union Focus Group on Autonomous Networks (ITU FG-AN). The background 
scenario for this PoC included the interaction between a higher closed-loop in the Operations Support System 
(OSS) and a lower closed-loop in Radio Access Network (RAN) to intelligently share RAN resources between 
the public and the emergency responder slice. Representation of closed-loop “controllers” in a declarative 
fashion (intent), triggering “imperative actions” in the “underlay” based on the intent, setup of a data pipeline 
between various components, and methods of “influencing” lower layer loops using specific logic/models, 
were some of the essential aspects investigated by various teams. The main conclusions are summarised in 
this paper, including the significant observations and limitations from the PoC as well as future directions. 
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1. INTRODUCTION
With the transformation of digital media and 
communication technology, the use of mechanism 
centers on the use of network analytics data and 
social media scraping as data collected is being 
examined to detect and respond to emergencies [1]. 
Emergency Responders (ERs) might use various 
devices which might need real-time Artificial 
Intelligence (AI)/Machine Learning (ML) inference 
and transmission. For instance, a firefighter’s 
helmet mounted camera may use image recognition 
to detect humans in a burning building and transmit 
it to an operating center for further analysis and 
action. Therefore, telecommunication systems are a 
critical pillar of emergency management. However, 
due to congestion or damage to infrastructure 
caused by natural disasters or malicious attacks, the 
communication systems often face difficulty during 
emergencies. Therefore, it is a complicated task to 

manually or statically configure networks to 
support the influx of emergency responders within 
a verse geographical location [2].  

Detection of emergencies and providing 
connectivity to emergency responders according to 
predefined Service Level Agreements (SLAs) 
remains a challenge for the network operators. 
Furthermore, Next Generation Networks (NGNs) 
are also expected to operate and manage a 
heterogeneous network infrastructure with 
increased complexity that can cope with a wide and 
flexible range of services, technologies, verticals, 
and device requirements [3]. Therefore, to offer the 
service-level requirements of emergency 
responders, it is pertinent to ensure that network 
slices operate dynamically and autonomously. 
Efforts are being made to enable an automatic 
orchestration of network resources across different 
domains with a high Quality of Service (QoS), 
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leveraging Zero-touch network and Service 
Management (ZSM) and Network Slicing (NS) 
techniques [3-6]. 

Therefore, resource allocation is expected to 
become more complex as the allocation demand 
changes more frequently, thus creating the need to 
optimize the network providers' operational 
efficacy [7]. This is possible in autonomous 
networks, which can ensure optimal network 
resource allocation without human intervention. 
Intelligent resource management in networks can 
help emergency responders in the affected area 
through effective NS, etc. [8]. Inputs from 
emergency responders can be used to optimize 
resource allocation using close-loops. Integration of 
closed-loops helps to monitor, analyze, and 
optimize network configurations while applying 
operator-specific policies. The use of hierarchical 
closed-loops has been studied in [7]. The multi-
domain architecture of telecommunication 
networks makes it possible to integrate hierarchical 
closed-loops in Radio Access Network (RAN), Core 
Network (CN), and management planes. The use of 
closed-loops to optimize resource allocation in 
networks has been studied in [7, 9]. 

The ITU FG-AN organized a build-a-thon challenge 
in 2021 to demonstrate and validate important use 
cases for autonomous networks, creating PoC 
implementations and tools in the process relating to 
emergency management. Interactions between a 
higher closed-loop in the Operations Support 
System (OSS) and a lower closed-loop in the RAN to 
intelligently share RAN resources between the 
public and emergency responder slice were used as 
the background scenario for this PoC. This study 
summarises the outcome of the challenge submitted 
by the various teams that participated in creating 
the PoC of the use case. The main outputs of the 
challenge include: (1) the implementation of a 
higher closed-loop “controllers” in a declarative 
fashion (intent), (2) the design and implementation 
of a lower closed-loop with Cloud Radio Access 
Network (C-RAN) to trigger “imperative actions” in 
the “underlay” based on the intent, (3) 
implementation of a simulation environment for 
data pipeline between various components; 
formulation of methods/algorithms for “influencing” 
lower layer loops using specific logic/models, and 
(4) the integration of the closed-loops and systems
into an Open Radio Access Network (O-RAN)-based
software platform, ready to be tested in the 5G
Berlin testbed.

In this study, we design and deploy closed-loops to 
optimize detection and resource allocation in case 
of emergencies. In particular, a set of hierarchical 
AI/ML-based closed-loops is proposed to 
intelligently deploy and manage slices for 
emergency responders in the affected area. A higher 
closed-loop in the OSS can detect which area is 
affected by the emergency and deploy a slice for 
emergency responders to that area. The higher 
closed-loop sets a resource arbitration policy for 
the lower closed-loop in RAN, while the lower loop 
uses this policy to intelligently share RAN resources 
between the public and emergency responder slice. 
Furthermore, the lower loop also manages ML 
pipelines across the edge and emergency responder 
devices through either split AI/ML models or 
offloading inference tasks from the devices to the 
edge. 

The main contributions of this study are 
summarised as follows: 

• We designed and implemented closed-loops
using a declarative specification. In the design,
the Mobile Network Operators (MNOs) instruct
the OSS to detect certain emergencies and
provide connectivity to emergency responders
according to predefined SLA. The operator input
is provided as an intent using Topology and
Orchestration Specification for Cloud
Applications (TOSCA). The resulting YAML file is
parsed, and the resulting components are
instantiated in a virtualized environment.

• A network testbed with a C-RAN architecture
composed of Remote Radio Units (RRUs),
Baseband Unit (BBU) pool, and the core network
was designed and implemented. In the
architecture, a Software-Defined Network (SDN)
and RAN controllers work as information
sources and agents that dynamically change the
mobile and the computer network. An AI agent
performs different actions (e.g., resource
allocation) in the testbed according to the
application, using the information provided by
SDN and RAN controllers to train and execute the 
test stage neural networks. This study shows
that validating and applying closed-loop
decisions for prioritizing resource allocation for
network slices can significantly increase
emergency response efficiency.

• We implemented a simulation environment to
generate data for model training and testing
purposes and to serve as a simulation underlay
for testing. Two simulation cases were
considered: a standalone case and a New Radio
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(NR) dual connectivity case. The results show 
that prioritized resource allocation can be 
simulated in different network topologies. The 
simulations enable us to study various 
configurations and analyze them to optimize the 
allocations. Representation of various 
configurations using text files helps us to create 
simulation topologies easily. Thus, the SRC 
(source) node (generating data corresponding to 
resource usage) and SINK node (applying 
various configurations in the form of NED files) 
are possible in the simulation environment. 

• The formulation and implementation of various
algorithms for an O-RAN-based controller
architecture to verify the resource allocation
schemes over various domains is actualized. Two 
algorithms were investigated to analyze the
Physical Resource Block (PRB) utilization in RAN. 
Results were presented considering the need for
resources of each slice can vary over time under
dynamic networking conditions. The results
show the importance of closed-loop
implementations in NS, especially for intelligent
management of RAN resources during
emergency scenarios.

• Lastly, the paper describes the integration of the
algorithms and closed-loops above into an O-
RAN-based software platform, ready to be tested
in the 5G Berlin testbed [10]. We present the
integration of the algorithms in an O-RAN near
Real-Time RAN Intelligence Controller (RIC)
with the Acumos model repository.

This paper is divided into the following sections: 
Section 2 describes all the contents related to PoC 
implementation, Section 2.1 describes the design of 
closed-loops using a declarative specification, 
Section 2.2 describes a network testbed with a 
C-RAN architecture composed of RRUs, a BBU pool,
and core network, Section 3 presents the creation of 
a simulation environment to generate data for
model training and testing purposes and serve as a
simulation underlay for testing, Section 4 describes
the various algorithms which can be integrated with 
an O-RAN-based controller architecture to verify
the resource allocation schemes, Section 5
describes the implementation of the above
algorithms in an O-RAN near Real-Time RAN
Intelligence Controller (RIC) and its integration
with the Acumos model repository, Section 6
describes the integration of these algorithms and
closed-loops into O-RAN-based software platform,
ready to be tested in the 5G Berlin testbed, Section 7
presents the observations from the implementation 
of PoC, and Section 8 concludes the paper.

1.1 Background and related studies 
This section presents some background on the 
technology and concepts used in this study. It also 
reviews some prior studies done on the subjects. 

O-RAN is an alliance of the Cloud-RAN (C-RAN) and
extensible RAN (xRAN) to merge the goals of the
two fora. O-RAN aims to achieve an open set of
interfaces driven by virtualization and
disaggregated components [11]. Based on the
desired requirements, the open interfaces enable
easy integration of new services for tuning the
network.  Due to the network automation and self-
organization capabilities it affords, the O-RAN
alliance has been significant to the realization of 5G
networks and beyond [12].

Closed-loop automation is a management 
function that utilizes feedback signals to regulate 
itself towards achieving a specific goal [7]. These 
closed-loops support autonomous behaviour by 
achieving their goals without external intervention. 
Typically, in networks, a closed-loop follows a 
process of sensing, analysis decision, and action. 
This can be deployed for dynamic resource 
allocation, self-optimization, self-healing, and 
automated service assurance [13].  

AI/ML has been applied in several areas in 
networks to improve users' Quality of Experience 
(QoE) by enabling self-organizing of the networks. 
Other functions of AI/ML include configuration and 
detection of failure of base stations, spectrum 
deployment, NS, and root cause analysis [14-17]. In 
addition, newer approaches like federated learning 
have been applied to minimize conventional ML 
approaches' latency and communication 
inefficiencies [15, 18]. Example usage includes 
spatial reuse [19] and resource allocation [18]. 

Furthermore, efforts have been made in emergency 
management networks, xApps in O-RAN, and 
testbed/simulation of virtualized core and RAN. 
Related studies in these regards are discussed as 
follows: 

Matracia, et al. [20] provide an overview of 
challenges in post-disaster communications in the 
context of 6G, airborne and spaceborne networks 
for emergency management in the networks. 
Highlights of related studies, physical and 
networking issues, and practical guidelines and 
research directions were provided. [21] describes a 
solution based on edge computing that reduces the 
amount of data transmitted in times of disaster. 
Federated learning has also been proposed to 
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provide extra resources to the edge dynamically 
during a disaster [22]. [23] discusses RAN slicing 
mechanisms for providing an appropriate amount 
of radio resources for emergency responders in a 
given use case. [24] discusses a self-planning 
solution for RAN slicing management based on live 
network measurements that enables dynamic RAN 
slice allocations. Similarly, [25] proposes an intent-
based automated slicing mechanism for core and 
RAN, which can be used to provide slices for 
mission-critical services.  

Furthermore, Kułacz and Kliks [26] propose the 
definition of policies in a file form for Dynamic 
Spectrum Access (DSA) function in OpenRAN 
networks in implementing xApps in O-RAN. [27] 
describes a modular xApp implementation in O-
RAN for a traffic steering use case based on the 
Open networking approach. [28] xApps have been 
employed on O-RAN defined Near Real-Time Radio 
Intelligence Controller (NearRT RIC) for RAN 
optimization at the RAN edge.  

Several testbed/simulation implementations have 
been proposed. For instance, [29] describes Simu5G, 
a system-level simulator for 5G networks. 
Py5cheSim, a 5G simulator that supports RAN NS, 
has been developed [30]. [31] describes design 5G-
LENA, an ns-3 module that supports end-to-end NR 
system-level simulations. [32] describes FlexRIC, a 
platform for real-time RAN control applications, [33] 
describes SD-RAN, which provides an O-RAN 
compliant cloud-native platform that can host RAN 
control applications, and [34] describes how an 
AI/ML model workflow can be deployed in O-RAN 
SC Near-RT RIC platform. 

2. THE POC DESIGN AND
IMPLEMENTATION

This study proposes the use of analytics in Service 
Management and Orchestrator (SMO) [35] in 
combination with predictive resource allocations to 
specific edge locations based on detected 
emergencies to implement the PoC. A high-level 
strategy/policy to reallocate resources among the 
slices in the non-real-time RAN Intelligence 
Controller (non-RT RIC), forms the first level of the 
closed-loop. The decision in the higher level closed-
loop in the non-RT RIC to reallocate resources may 
depend, among other things, on the type of 
emergency, e.g., a natural disaster such as an 
earthquake, law and order situation, traffic 
accidents, etc. A RAN-level may complement this 
higher-level closed-loop that uses other inputs from 

emergency responders to arbitrate resources 
among RAN nodes. Such lower-level closed-loops 
may be hosted nearer to the edge, e.g., near-RT RIC. 
The policy input from the higher loop may indicate, 
among other parameters, the different sources of 
data for the lower loop, such as system and service 
data. A RAN level closed-loop might also decide to 
offload inference tasks from ER devices to either the 
edge or use a split AI/ML model to run inference 
tasks on edge and ER devices. This decision might 
be taken based on the available network and 
computing resources. Some layers of the AI/ML 
model may be hosted in the wearable devices of the 
emergency responders, which will help in locating 
persons under distress using various inputs such as 
Global Positioning System (GPS) coordinates. 

Workflows for the closed-loops at the different 
levels are independent of each other. The only 
interaction between closed-loops is via high-level 
intents over the inter-loop interface. The closed-
loops can create new closed-loops in other network 
domains without human intervention. Each loop 
can evolve independently, although loops are 
deployed hierarchically. It can use different models 
and ML pipelines as required. Each loop may move 
up or down the autonomy levels as defined in ITU 
standard, Recommendation ITU-T Y.3173 [36]. The 
closed-loops can split and provision AI/ML models 
to other closed-loops in an automated fashion. In 
addition, we provide a low orchestration delay, 
better privacy, and flexibility for verticals 
(e.g., industrial campus networks) by making 
closed-loops in the edge domain autonomous. 
Higher loops can use historical knowledge to 
optimize and generalize lower loops using high-
level intent, resulting in increased efficiency of 
lower loops while preserving their autonomy (e.g., 
the higher loop might know certain ML models that 
are good for cyclone emergency management based 
on previous cyclones). Fig. 1 presents the workflow 
sequence for the simulation/testbed.  

2.1 Design of closed-loops using a declarative 
specification 

The high complexity of management of future 
networks, which includes the ability to provide new 
innovative services using complex network 
configurations, has led to requirements for 
autonomous behaviour. To enable low latency 
response by emergency responders, the use of 
autonomous networking concepts, including the 
following factors, were found important: (1) 
application of intent-based mechanisms to 
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coordinate closed-loops and (2) translation of 
intents into decisions and actions. These 
mechanisms allow seamless design, deployment, 
and management of emergency resources in the 
networks using operator-friendly intents.  

Several studies have been conducted regarding 
close-loops. For example, Gomes, et al. [7] 
presented a method for formulating and managing 
closed-loops using requirements communicated 
through intents. They propose new management 
functions for intent delegation, escalation, and 
reporting while focusing on how intent 
management can be integrated into the ZSM  
framework. Luzar, et al. [37] compared four TOSCA-
compliant orchestrators; Opera, Yorc, Indigo, and 
Cloudify. This comparison was made regarding ease 
of usage, open-source availability, licenses, and 
operating systems supported by the orchestrator. 
Ram O.V, et al. [38] carried out a gap analysis of 
existing frameworks in autonomous networks. Fig. 
2 shows a high-level flow chart of the intent for 
closed-loops activity, starting with the design of the 
controllers. An intent is written according to the 
design of the controllers. This high-level intent is 
parsed, and appropriate closed-loops are set up to 
meet the objective of the intent. 

 

Fig. 1 – Overview of the intent-based design and 
implementation of hierarchical closed-loops, including 

simulation and testbed domain 

 

 

 
Fig. 2 – The high-level flow chart of the study toward intent 

for closed-loops 

 
Fig. 3 – Example – Declarative intent in YAML format 

Fig. 3 shows an excerpt from the service model 
showing the definition of the model node. The intent 
specifies the model node with attributes, including 
the URL for pulling the ML model from a repository. 
Additional attributes like catalog ID, revision ID, 
and solution ID may be used to identify the model. 
For the implementation, Opensource orchestrator 
xopera [39] was considered, and simple controller 
requirements were derived. 
Fig. 4 shows the setup considered in this activity 
demo. The intent is written in TOSCA YAML v1.3. 
The intent is to create a three-node closed-loop 
comprising of a source, model, and sink nodes 
(corresponding to data collection, analysis, and 
application). This intent is parsed by the xopera 
orchestrator [39] for the deployment of the closed-
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loop. The model metadata and repository are 
defined based on the standard, Recommendation 
ITU-T Y.3176 [40]. 

Fig. 4 – Setup design for creation and parsing of  
example intent 

Fig. 5 shows the outputs specified for the three 
nodes (source, model, and sink). The outputs 
specified are the attributes of the nodes, which 
consist of the Application Programming Interface 
(APIs). Fig. 6 shows the parsing of the service model 
for the deployment of the three nodes. The APIs in 
the intents are parsed into three JSON (JavaScript 
Object Notation) files. Three docker containers are 
created for implementation, which uses the APIs for 
data collection, analysis, and adaptation. Dummy 
data based on the 3Vs (Velocity, Variety, and 
Volume) and dummy h5 model are downloaded 
from corresponding repositories according to the 
specified links. This study shows that a closed-loop 
can be represented and designed using a standard 
template demonstrated here using a three-node 
closed-loop (i.e., SRC node, ML node, and SINK 
node). 

Fig. 5 – Creation and parsing of intent in YAML 

Fig. 6 – Deployment of the nodes 

2.2 “Imperative actions” in the “underlay” 
based on the intent 

Validating and applying closed-loop decisions in the 
network is one of the major challenges in the 
intelligent allocation of resources for an emergency. 
The capability to build flexible and realistic AI-
based scenarios with different network topologies 
for 5G and quickly deploy and assess them is 
important in emergency scenarios. This section 
describes a network testbed with a C-RAN 
architecture composed of RRUs, a BBU pool, and a 
core network. A network testbed called "Connected 
AI" is described in [41]. The SDN and RAN 
controllers work as information sources about the 
network. Furthermore, they work as agents to 
dynamically change the mobile and the computer 
network. An AI agent performs different actions in 
the testbed according to the application using the 
information provided by SDN and RAN controllers 
to train and execute in the test stage. The ML 
workloads are orchestrated along the cluster to 
provide the AI agent processes. 

Results from this study show that the validation and 
application of closed-loop decisions for prioritizing 
resource allocation for network slices can 
significantly increase the efficiency of emergency 
response. This was demonstrated using priority 
assigned to an Unmanned Aerial Vehicle (UAV) 
drone based on a three-node closed-loop, i.e., 
source (SRC) node, ML node (AI Agent) and sink 
(SINK) node defined into ITU ML proposed 
architecture [42]. 
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2.2.1 Connected AI (CAI) network testbed 

The CAI testbed deploys a 5G mobile network with 
a virtualized and orchestrated structure using 
containers while focusing on integrating AI 
applications [8]. It uses open-source technologies to 
deploy and orchestrate the Virtual Network 
Functions (VNFs) to flexibly create various mobile 
network scenarios with distinct fronthaul and 
backhaul topologies. Distinctive features of the 
testbed are its low cost and the support for using AI 
to optimize the network performance.  

Fig. 7 shows the testbed structure with a C-RAN 
architecture composed of RRUs, the BBU pool, and 
the CN. The transport network is emulated by 
software using Mininet [43], enabling the 
deployment of different network topologies 
without real network components (such as 
switches and routers).  

The network contains two main controllers: the 
RYU SDN controller [44], which is responsible for 
controlling the transport network emulated by 
Mininet, and the Open-Air Interface (OAI) FlexRAN 
controller [45], which is responsible for controlling 
the base stations deployed in the testbed. Both 
controllers are connected to the AI agent, which 
receives network information from controllers and 
applies commands to change the network 
operations. No Management and Orchestration 
(MANO) component was implemented since the 
main objective of the testbed is to explore focused 
scenarios which do not include full end-to-end slice 
support to maintain simplicity and low costs. 

 
Fig. 7 – Design of the proposed testbed network [41] 

To facilitate the deployment of each VNF into 
containers in different environments and give more 
flexibility to move these functions to different 
computers in a cluster, all the testbed components 
were implemented into container [46] images. The 
RAN functions and controller were implemented 
using the OpenAirInterface software [47], while the 
core network functions were implemented using 
the Free5GC software [48]. These VNFs, 

implemented into docker containers, are 
orchestrated using Kubernetes software [49], 
enabling the management of the containers as well 
as the cluster and facilitating the deployment of 
different mobile network architectures. Fig. 8 
shows the VNFs distributed along with the cluster 
and using a Software-Defined Radio (SDR) to 
generate Radio Frequency (RF) signals to connect 
the UE to the mobile network generated by the 
testbed. The VNFs’ location can be defined by 
scripts as instructed at the testbed repository 
publicly available [41]. 

 

Fig. 8 – Testbed working at LASSE – UFPA lab using a C-RAN 
architecture [41] 

Both the fronthaul (connecting RRU and BBU) and 
the backhaul (connecting the BBU and core network) 
are implemented over Ethernet links. Therefore, the 
transport network complexity usually depends on 
the network infrastructure available, such as 
switches, routers, and other network equipment. 
We implemented the transport network with the 
Mininet software to decrease costs and increase the 
flexibility to deploy different transport network 
scenarios without infrastructure changes. It 
emulates different topologies with routers and 
switches with SDN support to make the emulated 
network management. Then, the transport network 
topology can be defined in Mininet scripts and 
different network topologies can be tested without 
extra network equipment. Our scenario deployment 
scripts are responsible for forwarding the traffic 
from fronthaul/backhaul through the emulated 
network topology. The Mininet also allows to define 
some network behaviour such as packet loss rate, 
the bandwidth available in each emulated network 
link, and latency among each node and other 
characteristics that give a remarkable amount of 
flexibility to test algorithms over different network 
topologies and conditions. Fig. 9 shows a scenario 
deployed using the testbed where the backhaul link 
is emulated using a Mininet. A simple network 
composed of two routers and one switch is 
emulated, adding a latency of 100 ms between the 
BBU pool and core network. 
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Fig. 9 – RAN slicing scenario with 3 UEs connected to a C-RAN 

structure with the backhaul virtualized using Mininet [41] 

Each component from the Mininet network devices 
(routers and switches) was connected to an RYU 
SDN controller that receives information about the 
transport network, such as the throughput 
transmitted in each link, dropped packets, and 
latency. In addition, the SDN controller can apply 
commands to change transport network operations, 
such as changing routes and applying congestion 
control algorithms, thus enabling the usage of 
external apps to provide transport network 
management through communication with the SDN 
controller to promote changes in the network while 
it is operating. Fig. 10 shows information obtained 
from the SDN controller about switch 3 in a 
topology emulated with Mininet [48]. It gives real-
time information about the switch operation, such 
as the number of received and transmitted packets 
and the port being used. 

 
Fig. 10 – Information obtained from SDN controller API about 

the switches running in the Mininet emulated network [41] 

The FlexRAN controller works as an abstraction of 
the RAN resources and provides an API that enables 
the service orchestrator entity to dynamically 
manage the RAN resources to provide information 
about the mobile network [50]. The FlexRAN 
protocol [45] defines and implements a software-
defined RAN architecture integrated with the OAI 
platform, which incorporates an API to separate 
control and data planes for the mobile RAN. This 
architecture has a master controller represented by 
the FlexRAN controller in Fig. 9 and a FlexRAN agent 

corresponding to the OAI eNB instances. Fig. 9 also 
represents the FlexRAN agent in the OAI BBU 
instances in a C-RAN scenario. The agents can act as 
local controllers with a limited network view and 
handle the functions delegated by the master or 
coordinated by the master controller.  

The FlexRAN agent API separates the control and 
data plane, allowing the control data to be managed 
by the FlexRAN controller and the eNB data plane 
on the opposite side. Fig. 11 shows the information 
received from a base station using the FlexRAN API, 
providing information such as the functional split 
being used, the number of user equipment (UEs) 
connected, buffer occupancy, and scheduling 
information. The FlexRAN APIs enable the 
development of applications related to the control 
and management of the RAN resources [32], e.g., 
schedulers, interference, and mobility manager. 
Moreover, applications related to improvements in 
the use of RAN resources make more sophisticated 
decisions [32], such as RAN slicing and adaptative 
video streaming based on channel quality. 

 
Fig. 11 – Information obtained from FlexRAN API about the 

base station running in the testbed [41] 

The AI agent is implemented based on the ITU-T 
Y.3172 [36] architecture that defined a logical 
interoperable architecture for future networks, 
which incorporates an ML overlay that operates on 
top of any specified underlay network technology 
[50]. This architecture facilitates deploying ML 
applications in different network scenarios and is 
adopted in the Connected AI (CAI) testbed. 
Specifically, ITU-T Y.3172 defined high-level 
architectural components to integrate ML into the 
network and a process pipeline [42]. Fig. 12 shows 
these components, the pipeline, and their 
respective mapping into the CAI testbed 
components. This testbed orchestrates the ML 
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workloads of the AI agent using the Kubeflow tool 
[51]. Kubeflow works integrated with Kubernetes 
to orchestrate the ML functions along with the 
cluster machines. Kubeflow enables the use of 
pipelines to define the steps of ML processing. Due 
to the high resource available in the cloud in real 
scenarios, CAI deploys the AI agent at the cloud 
location (with the core network) for simplicity. 

 
Fig. 12 – ITU-T FG-ML5G ML architecture integrated into the 

testbed structure [41] 

2.2.2 Results and discussions 

Some results exploring UAVs in critical missions 
using the testbed are presented in [52]. This study 
presents how the AI agents and the network can be 
adapted to assist mobile network users in Search, 
Diagnostic and Rescue (SDAR) missions. Fig. 13 
shows the results for a scenario with an AI agent 
controlling the number of radio resources using the 
RAN slice to prioritize drones in SDAR missions 
about other UEs connected to the network. In the 
scenarios without slices, the base station tries to 
provide an equal amount of radio resources among 
the UEs without differentiating the applications. 
When the RAN slice is used and the AI agent set a 
slice to the drones in the SDAR mission, the AI agent 
updates the number of radio resources allocated to 
the drone’s slice to guarantee at least 10 Mbps of 
throughput, the other slice with UEs receives only 
the remaining radio resources since it has less 
priority. It shows that a closed-loop can be 
implemented to control the testbed mobile network 
using AI methods despite the simplicity of the 
experiment the AI agent used. 

3. SIMULATED UNDERLAY FOR CLOSED-
LOOP-BASED RESOURCE ALLOCATION  

To complement the testbed described in Section 2.2, 
this section describes the creation of a simulation 
environment [29] to generate data for model 
training and testing purposes and also to serve as a 
simulation underlay for studying the impact of the 

 
Fig. 13 – Results without RAN slicing and a scenario with RAN 

slicing using an AI agent 

closed-loop on resource allocation scenarios in 
Medium Access Control (MAC) layer. Simu5g [29] is 
used to generate output data shown in the results 
Section 3.2 (e.g., Average served blocks in 
Downlink/Uplink) based on input parameters given 
in Table 1 (e.g., Frequency Correction Burst (Fb) 
Period, target block error probability(BLER), etc.) 
while simulating the various scenarios. This 
facilitates studying the machine learning 
algorithms' impact on resource block allocation by 
predicting the resource requirement at the UE. 
Simu5G is based on the OMNET++ simulation 
framework and incorporates the simulation 
modules from the INET library [29]. It simulates 
both the data plane of 5G RAN and the core network.  

Two types of simulation scenarios were considered 
using the Simu5G-standalone case and NR dual 
connectivity case. In the standalone scenario, gNB is 
connected to the data network through the core 
network, while in the NR dual connectivity case, 
gNB is connected to the eNB through an X2 interface. 
In addition, the eNB provides access to core and 
data networks. Sections 3.1 and 3.2 discuss the 
simulation and the results. The simulator 
configurations used in this study are simu5g v1.2.0, 
INET v4.3.2 or above and OMNET++ v6. 

3.1 Simulation scenarios  

This study defines two simulation scenarios: "single 
cell with secondary gNB” and “multi-cell with 
secondary gNB”. These two scenarios (called 
“networks” in the simulator) are defined in the NED 
(Network Description) file in OMNET++ which the 
structure of a simulated network can be described. 
NED enables the user to declare simple modules and 
connect and assemble them to form compound 
modules. Compound modules e.g., a “single cell with 
secondary gNB” and a “multi-cell with secondary 
gNB” network, can be used as simulation modules. 
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Parameters can achieve their value from either the 
NED file or the configuration, i.e., .ini file. Every 
configuration file has a “General” section that has 
general parameters like simulation time limit (“sim-
time-limit” is the physical time that is set for 
simulating the network). The “network” keyword is 
used to flag the network that needs to be simulated.  

Fig. 14 shows the two networks which are defined 
in the NED file: “single cell with secondary gNB” and 
the “multi-cell with secondary gNB”. The main 
modules that are used in this network are 
compound modules: carrier aggregation 
(carrierAggregation), packet gateway (pgw), LTE 
base station (masterEnb), NR base station 
(secondaryGnb), and UE. The carrier aggregation 
module is responsible for assigning multiple 
frequency blocks. The eNB, which directly connects 
to CN is called master eNB and the gNB, which is 
connected to the core via eNB using the X2 interface, 
is called secondary gNB. The number of UEs is 
defined using the numUe parameter of the UE 
module. In the “multi-cell with secondary gNB” case 
an extra set of eNB which are connected via X2, and 
an extra set of gNB which is in turn connected to the 
respective eNBs are shown in Fig. 15.  

 
Fig. 14 – NED file for SingleCell_withSecondaryGnb 

 

Fig. 15 – NED file for MultiCell_withSecondaryGnb 

Table 1 – Parameters described in ini file  
for network simulation 

Parameter Value 

eNodeB 
Transmission 

Power 

40dB 

Fb Period 10ms 
Target BLER 0.01 
BLER Shift 5 

#Component 
Carriers 

2 

Carrier Frequency 
of CC1 

2GHz 

Carrier Frequency 
of CC2 

6GHZ 

#UE’s 10 
UE mobility type “RandomWaypointMobility” 

UE speed Between 5mps to 15mps 
Dual Connectivity True 
# resource blocks 

for CC1 
6 

# resource blocks 
for CC2 

6 

#UE apps 2 
Amount of UDP 

application on the 
server 

(server.numApps) 

#UE’s * #UE apps 
=20 

The configuration file (also known as an “ini” file) 
contains network parameters and their 
corresponding values for each carrier component as 
shown in Table 1. The number of UEs (numUe) 
specified in the UE module is set to 10 for this 
simulation. UE mobility type and UE speed are 
defined for each UE. Dual connectivity is enabled 
and each network is configured with uplink and 
downlink. 

Carrier components are part of the carrier 
aggregation module and have carrier frequency and 
numerological index. The frequency of each carrier 
component is defined in Table 1 above. The number 
of resource blocks is also defined for each carrier 
component.  

3.2 Results of the simulations  
This section analyses the output of avgservingblock 
(average serving blocks are the resource blocks that 
are utilized at the time of simulation). The result 
files storing the simulated network's vector values 
and scalar values are analyzed after simulating the 
required network configuration. For example, 
avgservingblocks is a vector quantity because it 
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varies with the simulation time. Four outputs are 
analyzed for each network, corresponding to two 
configurations: uplink and downlink.  

The four output results that are obtained include: 
average served blocks downlink for single-cell with 
secondary gNB (Fig. 16), average served blocks 
downlink for multi-cell with secondary gNB 
(Fig. 17), average served blocks uplink for single-
cell with secondary gNB (Fig. 18), and average 
served blocks uplink for multi-cell with secondary 
gNB (Fig. 19). The simulation time is variable, and 
we use a value of 50 s, with resource allocation data 
being collected every millisecond for each of the 
four output results discussed above. This gives us 
enough data points to study the average served 
blocks for each output. The total number of 
resource blocks allocated in the results cannot 
exceed those that are set in the .ini file (specified 
across different CC, carrier components). The blue 
and orange coloured line chart represents the avg 
served blocks for master eNB and secondary gNB, 
respectively in singleCell_withSecondaryGnb, data 
flow is downlink in Fig. 16. In contrast, the blue, 
orange, green, and red coloured line chart 
represents the avg served blocks for master eNB1, 
secondary gNB1, master eNB2, and secondary gNB2, 
respectively, in MultiCell_withSecondaryGnb, and 
the data flow is downlink in Fig. 17. The blue and 
orange coloured line chart represents the avg 
served blocks for master eNB and secondary gNB, 
respectively, in singleCell_withSecondaryGnb, 
where the data flow is uplink in Fig. 18. The blue, 
orange, green and red coloured line chart 
represents the avg served blocks for master eNB1, 
secondary gNB1, master eNB2 and secondary gNB2, 
respectively, in MultiCell_withSecondaryGnb,  
where the data flow is uplink in Fig. 19. 

This study shows that prioritized resource 
allocation can be simulated in different network 
topologies. The simulations enable us to study 
various configurations and analyze them to 
optimize the allocations. Representation of various 
configurations using text files defined in [21] 
enables us to easily create simulation topologies. 
Therefore, the SRC node (generating data 
corresponding to resource usage) and SINK node 
(applying various configurations in the form of NED 
files) are possible in the simulation environment. 
Integrated analysis of generated data using AI/ML 
is for future study. 

Fig. 16 – Avg served blocks, DL, SingleCell_withSecondaryGnb 

Fig. 17 – Avg served blocks, DL, multiCell_withSecondaryGnb 

Fig. 18 – Avg served blocks, UL, singleCell_withSecondaryGnb 

Fig. 19 – Avg served blocks. UL, MultiCell_withSecondaryGnb 

4. ALGORITHMS INVESTIGATION FOR
THE RESOURCE ALLOCATION IN THE
“UNDERLAY”

This section describes the various algorithms that 
can be plugged into an O-RAN-based software 
architecture to verify the resource allocation 
schemes. The non-real-time RIC closed-loop intent 
is applied to the near real-time RIC lower loop. 
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The lower-loop monitors RAN resources and makes 
decisions to achieve the intent. Fig. 20 shows the 
illustration of the overall process of the system.  

 

Fig. 20 – Block of closed-loop implementation for an 
emergency slice 

Section 2.1 describes a closed-loop representation 
and design using a standard template and 
demonstrates it using a three-node closed-loop 
(i.e., SRC node, ML node and SINK node). Here, we 
further enhance this using a model selection service 
and a complete ML node implementation using two 
RIC xApps and demonstrate their deployment using 
docker containers. 

ML model selection (server): Different ML models for 
inference can be available with different complexity 
and performance. We dynamically select different 
ML models from a server based on the declarative 
specification of the ML model, as described in 
Section 5. The models are implemented as a docker 
container and selection may be done either 
periodically or based on an external request.  These 
ML models can be either specific to a particular 
problem or a general purpose one. The idea is that 
some ML algorithms might be too costly but can 
have a good prediction accuracy. On the other hand,  
there might be cheap ML algorithms with low-
quality inference. Depending on the requirements, 
the best ML model can be selected. 

Monitoring and resource compute (xApp 1): 
Advanced ML algorithms are applied for monitoring 
RAN resources (i.e., PRB, physical resource block 
utilization). This paper uses Gaussian Process 
Regression (GPR) as a non-parametric prediction 
technique. xApp1 reads data from a data lake either 
periodically or when needed. Then, it predicts how 
much resources will be available in the near future 
using this data. This information is used for other 
xApps to make resource allocation decisions.   

Decision (xApp 2): After receiving the forecasted 
RAN resource in the near future, xApp 2 makes a 
resource allocation decision for the current and 
emergence slices depending on their SLA 
requirements.  

This section designs and studies the closed-loop 
analysis and decision parts. Communication 
between xApps is provided through RIC Message 
Router (RMR) messaging used within the O-RAN 
software community. The workflow of the 
implementation shown in Fig. 20 is as follows: 

(1) Get intent from a higher loop. It indicates if there 
is an emergency case and monitoring xapp is 
triggered. 

(2) Subscribe to SRC to get the simulator/testbed 
data. 

(3) Write data to the data lake to be used later for 
ML training. 

(4) Data is sent to the ML node (implemented in 
xApp1) for model training and inference. 

(5) Different ML models can be selected from the 
server here and sent to xApp1 for inference. 

(6) xApp1: Resource monitoring such as PRB 
utilization. Here, the ML model is used, which can be 
fetched from our local repository. It also analyses 
whether there is an overutilization/ 
underutilization.  

(7) Result obtained on (6) is sent to xApp2, which 
will make the final decision. It decides whether 
there is a need to allocate more resources on RAN 
for an emergency slice. Then it applies the decision 
to the real network (allocate more PRB for the 
emergency slice, E2 CONTROL). 

4.1 The system implementation  
A low-level closed-loop needs to be instantiated 
that monitors and computes RAN resources and 
makes a resource allocation decision for emergency 
cases based on the high-level intent.  

The xApp1 monitors RAN resources and makes 
forecasts for the future PRB usage of the network. It 
also computes the available resources in the RAN 
domain. The forecasting and resource information 
is sent to xApp2, which is our decision xApp, 
through the RMR. RMR is developed by the O-RAN 
Software Community (SC), and we also utilize this 
messaging protocol in our implementation. xApp2 
receives the necessary information from xApp1 and 
solves the problem P2 (or P1), which are given next, 
to find out the necessary PRB resources needed for 

ML 
model 

selection
server
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and 

resource 
compute
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Decision 
xApp2

Apply to  
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ES and make the resource allocation. The output of 
xApp2 will be sent to the real network to be applied 
through the E2 interface of O-RAN when the real 
integration starts.  

We implement a  docker container that acts as a web 
server where we keep different ML models to be 
used for monitoring or any other activities to test 
the model selection. model_handler.py implements 
an ML selection/pulling task in which we select ML 
dynamically depending on the performance of the 
current ML, thus enabling us to use another ML that 
may have a better performance than the current 
model. Fig. 21 shows the implementation details of 
this activity. 

 
Fig. 21 – Workflow of the implementation 

4.2 Results and analysis  

4.2.1 Time-series forecasting of traffic for 
monitoring using Gaussian Process 
Regression 

This section studies NS implementation in the 
network to have dedicated network resources over 
various domains. For example, the operator can 
allocate dedicated frequency resources (PRBs) to 
each slice at the RAN domain. Furthermore, 
different slices may have different SLA 
requirements on latency, bandwidth, reliability, etc. 
Even though each slice's need for resources can 
vary over time under dynamic networking 
conditions, the operator needs to ensure that the 
underlying infrastructure SLAs for each slice is 
guaranteed. For example, an operator can deploy a 
separate slice for video streaming. It needs to 
allocate additional resources to meet the SLA 
requirements on the slice during peak hours of the 
day. In case of an emergency, a new slice, 
Emergency Slice (ES), must be deployed by 
operators to handle the traffic in the emergency 
area, and the necessary amount of resources must 
also be allocated to the ES. In this study, NS with ES 
is a dynamic resource allocation problem in the 

RAN domain. When an emergency occurs, the ES is 
deployed and the resources needed for the ES are 
maintained autonomously. 

To achieve autonomous resource management, 
traffic prediction of each slice is critical to gather 
information on the minimum amount of resources 
needed for the SLA requirements. It is complex to 
capture the dynamics through linear models due to 
the highly dynamic and non-linear patterns 
exhibited by wireless traffic. Artificial Neural 
Networks (ANNs), also known as deep neural 
networks or recurrent neural networks are 
commonly applied for traffic prediction. However, 
NN has well-known training challenges, and it is 
complicated to interpret the outcome of the NN 
prediction. Comparatively, Gaussian Process 
Regression (GPR) has continuously gained 
attention due to its interpretability and prediction 
accuracy. In addition, GPR can also provide 
information on the uncertainty of prediction, which 
is important when making resource allocation. In 
this study, PRB usage measurement is used to 
reflect the traffic characteristics and a time-series 
forecasting problem is formulated in which PRB 
utilization is predicted using GPR. 

We study the use of GPR for the prediction of traffic. 
The PRB usage characterizes traffic which enables 
us to predict PRB utilization in the RAN domain. 
Real-world data from [53] in an urban area shows 
PRB utilization measured over a Long-Term 
Evolution (LTE) network for a user and collected 
and reported at every 500 ms. Fig. 22 shows 1000 
samples of PRB utilization data.  

 

Fig. 22 – PRB utilisation over 1000 sample points 

Understanding the characteristics of the data is 
important in selecting the best kernel for GPR. 
Periodic and varying data characteristics observed 
in Fig. 23 and Fig. 24 enables us to determine a good 
kernel for PRB prediction with GPR, representing 
both types of characteristics.  
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Fig. 23 – Periodic-type characteristics over a period of  
100 time-step 

Fig. 24 – Constant-type characteristics over a period of  
100 time- time 

Forecasting with GPR 

Fig. 25 shows PRB forecasting with GPR. The GPR 
model is trained with the last 100 samples and the 
chosen kernel as described above. We note that 
more data may need to be used for training 
depending on the application. Then, the trained GPR 
is used to make predictions for the future 50 
samples. It can be concluded that the prediction 
with GPR is good enough to make efficient resource 
allocation proactively, as shown in Fig. 25. Note that 

GPR also provides information on the uncertainty of 
these predictions as we point to the upper bound 
when making predictions for the next 50 points. 
These upper bounds on the predictions can be 
utilized when making resource allocation to ensure 
that the correct amount of PRBs is allocated while 
satisfying the SLA requirements. 

The PRB data is stored in a local repository. It is also 
possible to use different ML models for inference. 
An example implementation for O-RAN integration 
is implemented as a separate xApp and 
prediction_xapp.py creates a docker container for 
the inference implementation as a micro-service to 
be used for O-RAN. 

We evaluate the performance of GPR prediction. We 
train with 1000 data points and evaluate the 
performance in terms of Mean Absolute Error (MAE) 
and Root Mean Squared Error (RMSE). The MAE 
and RMSE for future 4000 points are 0.077 and 
0.147 for entity reference of 0.046 and 0.081, 
respectively. 

4.2.2 Resource allocation at RAN for an 
emergency slice 

After the predicted traffic is obtained through GPR, 
the next step is to determine how many resources 
the ES should allocate. Therefore, we need to 
consider the SLAs of other slices in the network. The 
SLAs of other slices may degrade if we allocate more 
resources than the ES needs. The emergency case 
cannot be handled if we allocate fewer resources for 
the ES than it needs. 

Fig. 25 – Time-series forecasting of PRB utilization with GPR 
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We assume that RAN resources are given in terms 
of either frequency resources or PRBs. Different 
slices allocated to different amounts of PRBs can be 
determined and fixed by the operator. However, it 
is not always efficient because not every slice is 
active all the time and uses its PRBs with 100% 
utilization although this strategy is good enough to 
have a dedicated network. This means that there 
can be some leftover PRBs that are not used by the 
corresponding slices  [54], [55].  

We consider two cases:  
• Case-1: The ES does not have any dedicated PRB 

allocated, but it can only use the unused PRBs 
from other slices. The advantage of this strategy 
is it guarantees the SLAs of other slices, but ES 
can have significant degradation because it can 
only use the leftover PRBs, and after some time 
the leftover PRBs may not be large enough to 
support the emergency case.  

• Case-2: We dynamically borrow PRBs from 
other slices to support the emergency case to 
minimize the degradation of the SLAs of other 
slices. In this strategy, priority is given to the ES 
and we guarantee that the emergency case is 
solved successfully while also minimizing the 
negative impact of borrowing PRBs on the SLAs 
of other slices.  

We develop two algorithms to implement these two 
strategies: 

Leftover GPR-based PRB allocation to ES algorithm 
(ALG1)  

ALG 1 implements the first strategy in which only 
the leftover PRBs from other slices are allocated to 
the ES. The details of ALG1 are given in 
ALGORITHM 1. 

To illustrate the operations of ALG1, let us consider 
two slices and the allocated PRBS to these slices: 
T1 = 40 PRBs and T2 = 60 PRBs and in total, the 
system has T = 100 PRBs. Let us also assume that 
the PRB utilization of these slices is 80% and 90%, 
respectively. That means the first slice uses only 
40*0.8=32 PRBs and the second slice uses only 
60*0.9=54 PRBs. Hence, 40-32= 8 PRBs from the 
first slice and 60-54=6 PRBs from the second slice 
(in total 14 PRBs) can be allocated to the ES with 
ALG1 for this example. 

Priority GPR-based PRB allocation to ES  
algorithm (ALG2)  

 

ALG2 implements the second strategy in which we 
borrow PRBs from the other slice while minimizing 
the negative impact on both of them. We assume the 
ES needs an E amount of PRBs. First, we allocate the 
available leftover PRBs to the ES. If it is not enough, 
we borrow PRBs from other slices by minimizing 
their performance degradation. The details of ALG2 
are given in ALGORITHM 2. 

PRBs are borrowed from other slices to meet the 
requirement of ES and also minimize the resource 
shortage of other slices. Thus, the P1 optimization 
problem is formulated in ALG 2 

Since it involves a non-linear operation with a max 
[56] operator, the problem is difficult to solve. 
However, we use an auxiliary trick and convert this 
problem to an easily solvable integer program. This 
problem is transformed into a solvable integer 
problem using the auxiliary variable un as shown P2 
in ALG 2. 

The importance of P2 is to decide how many PRBs 
are to be taken from each of the other slices and 
allocated to the ES. These two algorithms are 
implemented, and decision_xapp.py creates a 
docker file to run this implementation as a 
microservice to be ready for use in the O-RAN 
platform. 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟏𝟏: Leftover GPR-based PRB allocation to ES 
algorithm (ALG1) 

Input: 
 
 

T = total available PRBs of the system   
(i.e., For LTE, 100 PRBs).   
W = Prediction window (i.e., next 
prediction time, 500 ms).    
P = Past training window (the last 
100 samples). 
o = Compensation. 
N = number of slices in the network. 
Tn = Amount of PRBs allocated to slice n. 
Dn = PRB utilization time-series data for 
each slice. 

Output: Allocate PRBs to ES:   𝑃𝑃𝐸𝐸𝐸𝐸 
1            For each other slice n 
2 
3 
4 
5 
6 
7 
8 
9    
10 
11 
12         End 

 Step 1: Train GPR with the latest P 
training data. 

Step 2: Forecast PRB utilization over the 
next W samples with GPR : 𝑈𝑈𝑛𝑛. 

Step 3: Calculate maximum possible PRB 
utilization using upper bound: 
𝐶𝐶𝑛𝑛 =  𝑈𝑈𝑛𝑛 + 𝑜𝑜𝑛𝑛. 

Step 4: Calculate the forecasted PRB 
usage of all other slices over next W 
samples : 𝐵𝐵𝑛𝑛 = 𝑇𝑇𝑛𝑛𝐶𝐶𝑛𝑛 

11  Step 5: 
12  

Calculate available PRBs for Emergency 
Slice:            
            𝑃𝑃𝐸𝐸𝐸𝐸 = 𝑇𝑇 − ∑ 𝑇𝑇𝑛𝑛𝐶𝐶𝑛𝑛𝑁𝑁

𝑛𝑛=1  
13  Step 6: Allocate PRBs to ES:   𝑃𝑃𝐸𝐸𝐸𝐸 
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𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟐𝟐: Priority GPR-based PRB allocation to ES 
algorithm (ALG 2) 

Input: T = Total available PRBs of the system.  
Tn = Amount of PRBs allocated to slice n. 
W = Prediction window.  
P = Past training window.  
o = Compensation. 
N = number of slices in the network. 
Dn = PRB utilization time-series data for each 
slice 
E = amount of PRBs needed for an emergency 
slice 

Output: 
 

𝑥𝑥𝑛𝑛(𝑡𝑡) = amount of PRBs needed for slice n at time t 
𝑦𝑦𝑛𝑛(𝑡𝑡) = amount of PRB taken from slice n at time t 

1       P1:  
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

𝑚𝑚𝑚𝑚𝑚𝑚∑ ∑ 𝑚𝑚𝑚𝑚𝑚𝑚 {0,𝑥𝑥𝑛𝑛(𝑡𝑡) − (𝑇𝑇𝑛𝑛 − 𝑦𝑦𝑛𝑛(𝑡𝑡))}𝑁𝑁
𝑛𝑛

𝑊𝑊
𝑡𝑡=1   

        s.t.  0 ≤ 𝑦𝑦𝑛𝑛(𝑡𝑡) ≤  𝑇𝑇𝑛𝑛 ∀𝑛𝑛  
  ∑    𝑦𝑦𝑛𝑛(𝑡𝑡)  ≥ 𝐸𝐸𝑁𝑁

𝑛𝑛  

 

   − 𝑥𝑥𝑛𝑛(𝑡𝑡): PRB usage for slice n at time t 

   −   𝑇𝑇𝑛𝑛 : Total PRBs given to slice n 
   −   𝑦𝑦𝑛𝑛(𝑡𝑡) : Number of PRBs taken from slice n 
at time t to be used for emergency slice    

12     P2:   

13 
 
 
14 

15 
 
16 
 

17 

18 

19 

20 
 
21 

min��𝑢𝑢𝑛𝑛(𝑡𝑡)
𝑁𝑁

𝑛𝑛

𝑊𝑊

𝑡𝑡−1

 

𝑥𝑥�𝑛𝑛(𝑡𝑡) + 𝑜𝑜𝑛𝑛(𝑡𝑡) − �𝑇𝑇𝑛𝑛 − 𝑦𝑦𝑛𝑛(𝑡𝑡)� ≤ 𝑢𝑢𝑛𝑛(𝑡𝑡) 

0 ≤ 𝑦𝑦𝑛𝑛(𝑡𝑡) ≤ 𝑇𝑇𝑛𝑛 ∀𝑛𝑛 

�𝑦𝑦𝑛𝑛(𝑡𝑡)  ≥ 𝐸𝐸
𝑁𝑁

𝑛𝑛

 

𝑢𝑢𝑛𝑛(𝑡𝑡) ≥ 0 

where 𝑥𝑥𝑛𝑛(𝑡𝑡) = 𝑥𝑥�𝑛𝑛(𝑡𝑡) + 𝑜𝑜𝑛𝑛(𝑡𝑡)   

𝑥𝑥𝑛𝑛(𝑡𝑡) : Actual PRB usage at time t in future. This 
cannot be known in advance. 

𝑥𝑥�𝑛𝑛(𝑡𝑡) : Estimated PRB usage with GPR 

𝑜𝑜𝑛𝑛(𝑡𝑡) : Estimation error. Upper bound provided 
by GPR can be used. 

In a simulation scenario, we assumed that we have 
two slices with different PRB requirements: 

• T1: number of PRBs assigned to Slice 1 by the 
operator (e.g., T1 = 40) 

• T2: number of PRBs assigned to Slice 2 by the 
operator(e.g., T2 = 60) 

• T: total number of PRBs in the system  
(e.g., T = 100 PRBs) 

• Time series PRB utilization for each slice, in 
percentage, with a granularity of 100ms and 
200 ms 

The performance of ALG2 was studied under the 
scenario that there are two other slices and T1 = 40 
and T2 = 60 PRBs allocated to them. By applying 

ALG2, we borrow PRBs to satisfy the requirement of 
the ES when those slices do not need the resources. 
We assume the ES needs 20 PRBs.  Fig. 26 shows the 
number of PRBs taken from other slices over 45 
time instants. Depending on the predicted PRB 
usage of other slices, ALG2 takes 11 or 12 PRBs and 
8 or 9 PRBs from the first and second slices, 
respectively, and 20 PRBs in total are ready to be 
used by the ES simultaneously.  

This section studies NS implementation in the 
network to have dynamic resource allocation over 
various domains. To analyze the PRB utilization in 
RAN, two algorithms were studied. Results are 
presented considering the need for resources of 
each slice which can vary over time under dynamic 
networking conditions. The results show the 
importance of closed-loop implementations in NS, 
especially for intelligent management of RAN 
resources during emergency scenarios. 

 
Fig. 26 – PRB allocation for ES 

5. O-RAN CONTROL-LOOP 
INSTANTIATION  

This section describes the implementation of the 
algorithms described in Section 4 in an O-RAN near 
Real-Time RAN Intelligence Controller (RIC) [57] 
and its integration with the Acumos [58] model 
repository. The model description is included in the 
declarative specification of closed-loop as discussed 
in Section 2.1. In this study, a pretrained model is 
fetched from Acumos based on the given 
description and deployed as xApp [59] in the O-RAN 
platform (See Fig. 27 for details). 

5.1 A solution workflow 
The following workflow is used for the 
implementation: 
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• RAN (E2-SIM [60] is used) is registered and 
associated with O-RAN near RT RIC. 

• RIC receives policy updates from A1 for 
triggering closed-loop PRB allocation. 

• An ML model is fetched based on the A1 policy 
details. 

• PRB utilization is predicted based on the 
analysis of test data used instead of actual data 
from E2. 

• The PRB to be allocated is computed and an E2 
control message is sent based on the inference. 
PRBs are always reserved for the emergency 
slice and additional resources can be 
reallocated based on situational considerations. 

• The allocation decision is continuously 
monitored, evaluated, and improved upon.  

The workflow steps are further explained in Fig. 27 
and discussed as follows: 
• Points 1 and 2 show that E2 SIM is up and that 

association with RIC is set up. 
• Point 3 shows the nRT RIC receives the A1 

policy update to trigger closed-loop 
monitoring. 

• Point 4 shows the A1-mediator sends A1 
Policy REQ to the “prbpred” xApp. 

• Points 5a and 5b show the model is fetched 
from the model store as per policy guidelines 
and “prbpred” instructs DataMon/Alloc xApp 
to start monitoring the data. 

• Points 6,7, and 8 show the messaging done for 
subscribing to E2 for data.  

E2 Indication is for future reference; currently, data 
is not monitored through RIC indication. In future, 
data needs to be monitored and sent to predict xApp.  
• Point 9 shows data reception from the E2 node. 

The received metrics are stored in metrics DB as  
in Point 10. 

• Upon timer expiry as in Point 11, a request for 
prediction is sent to “prbpred” xApp as in Point 
12. 

• “prbpred” uses the ML model to predict future 
utilization. Retraining may be done based on the 
new data model. The predicted values may be 
sent to DataMon/Alloc xApp as in Point 13 and 
Point 14. 

• DataMon/Alloc xApp computes the PRB to be 
allocated and sends the E2 control message 
towards E2 as in Point 15. 

5.2 Resulting implementation 
This section presents the implementation of the 
algorithms in Section 4. The algorithms can be 
instantiated in the O-RAN-RIC platform and 
prediction based on the xApp 
onboarding/deployment process and RIC platform 
components can be achieved. 

The xApps are developed based on the xApp 
Framework for Python. Separate xApp-descriptor 
files were defined detailing the configuration, RX & 
TX messages supported: 

 

 
Fig. 27 – Modified xApp process model
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Fig. 28 – xApp-descriptor file for prbpred xApp  Fig. 29 – xApp-descriptor file for allocator xApp 
 

• prbpred xApp: Initially, this xApp registers for 
PRB_PRED_REQ (PRB Prediction Request) and 
A1_POLICY_REQ (A1 Policy Request), and 
queries A1-mediator to get the policy details. A 
specific policy was created which gives model 
information and model version information to 
be used. This xApp is responsible for receiving 
A1_POLICY_REQ and saving the policy details. 
Fetch the model from the modelStore and save 
it. Predict the future PRB utilization and 
respond to alloc xApp for further processing 
based on the timer trigger. Upon reception of 
PRB_PRED_REQ, the xApp predicts PRB 
utilization for each slice and sends a response 
to Alloc xApp based on the model fetched. 
Fig. 28 shows the xApp-descriptor file for the 
prbpred xApp. 

• Allocator xApp: Initially, this xApp registers 
with the subscription manager for E2 
information and starts a timer to trigger 
PRB_PRED_REQ periodically. PRB is allocated 
for an emergency slice based on predicted 
future PRB utilization. A simple algorithm for 
PRB allocation in Section 4 is used here. In 
addition, some PRBs are shown as reserved for 
emergency/high priority events.  

The assumption taken is the total number of PRBs 
in the system is 100. Slice #1 and Slice#2 were 
configured with 35 PRBs each. 30 PRBs were 
reserved for emergency/high priority events.  

The actual Value of PRB utilized is computed based 
on the predicted PRB utilization received for each 
slice. 
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Utilised_PRB_slice1=PRB_ALLOC_SLICE1*(slice1_ut
ilisation/100) 

Utilised_PRB_slice2=PRB_ALLOC_SLICE2*(slice2_ut
ilisation/100) 

total_prb_avail = Total_PRB – (Utilised_PRB_slice1 + 
Utilised_PRB_slice2) 

The reserved PRBs are also made available because 
this is an emergency event. Alloc xApp sends the E2 
control message to allocate the available PRBs from 
the calculation. Fig. 29 shows the xApp-descriptor 
file for allocator xApp.  

Successful communication between the xApp and 
other RIC platform components was achieved as 
part of this. A model store was developed to mimic 
Acumos and have access to the pretrained model. 
E2 SIM setup was registered with the E2 component 
in the RIC platform. 

In the Dawn release, the creation of the A1 policy 
instance doesn’t trigger the A1 policy to send a 
message towards  the xApp [61]. The workflow was 
modified to send a timer-based event from alloc 
XApp to trigger PRB prediction. When the policy 
instance is created (CREATE/UPDATE messages are 
sent to xApp by A1 mediator), the prbpred xApp can 
store the model information and perform 
prediction based on the trigger. 

6. INTEGRATION OF THE POC 
This section describes the integration of the above 
implementation of closed-loops into O-RAN-based 
software platform ready to be tested in the 5G 
Berlin testbed [62]. The operator inputs the 
declarative intent to the Service Management 
Orchestrator (SMO)/Non-RT RIC, which describes 
the use case to detect emergencies and maintain the 
required SLA as described in Section 2.1. Similar to 
the mechanism described in 2.1, SMO/Non-RT RIC 
then creates a higher loop that monitors various 
parameters like network activities, input from 
emergency responders (ER), social media trends, 
etc. to detect and locate the emergency (e.g., fire in 
a building). This can be realized using either a 
hosted model in Acumos or Open Network 
Automation Platform data collection analytics 
engine (ONAP DCAE) or O-RAN rApp, as discussed 
in Sections 2.2 and 4. Once the emergency is 
detected, the higher loop sends an intent over the 
A1 interface to the Near-RT RIC, instructing it to 
handle the increased load for the corresponding 
RAN node. Real-time ML/AI inference might be 
needed by some of the ERs' devices; for firefighters 

a helmet-mounted camera may use image 
recognition to detect humans in a burning building. 
However, the devices might not have enough 
computing and might need to offload the task to the 
network edge or use split AI/ML models for 
inference. The Near-RT RIC receives the intent and 
creates a closed-loop which can monitor the 
network and compute resources of the edge and the 
ER device and maintains the SLA/QoS (quality of 
service) of the inference task as discussed in Section 
3 above. This loop can be realized using xApp. Fig. 
30 shows the simulator-based sequence for the 
integration of the activities. 

 
Fig. 30 – Simulator-based sequence for the integration of  

the activities. 
Fig. 31 shows the extensions to the sections above 
to integrate the implementation of the algorithms 
described in Section 4 in an O-RAN- RIC  and its 
integration with the Acumos [58]  model repository. 
The first addition was the A1 poller which pulls the 
A1 mediator at regular intervals and converts the 
A1 policy to a TOSCA template described in 
Section 2.1. It uses HTTP-based interfaces to 
communicate with the A1 mediator and the 
orchestrator. The dms_cli tool provided by the O-
RAN-SC was used to enable the orchestrator to 
orchestrate the xapps as specified in the A1 policy. 
Playbooks (workflows) described in Section 2.1 
were updated to integrate relevant command line 
(dms_cli) commands. These commands are used to 
onboard and install corresponding xApps.  
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The overall flow of the final integrated solution 
(see Fig. 31) is as follows: 

1. The human user or a higher loop applies an
A1 policy to the near-RT RIC. This policy is received
by the A1 mediator.

2. The A1 poller gets the policy, translates it
into the TOSCA template and sends it to the
orchestrator.

3. The orchestrator manages the RIC xapps
according to the TOSCA template using dms_cli.

4. The newly orchestrated xapps pull the
necessary models from the model repository server.

5. Pred xapp makes a time-series prediction
for future traffic in the network and how much
resources (PRB) will be available for an emergency
slice in the near future.

6. Alloc xapp sends an RMR request to pred to
get the prediction and allocates PRBs to the
emergency slice based on that.

7. Alloc xapp then sends a message over the E2 
interface to the RAN. Slice allocation messages are
verified from the console.

Fig. 31 – Overall flow of the final integrated PoC 

7. OBSERVATIONS FROM THE POC
Abstraction of nodes allows the service template to 
select concrete nodes that best match the 
requirements of the abstract nodes during 
deployment. The concrete nodes can be provided in 
a repository known to the orchestrator. Abstract 
requirements can be achieved in TOSCA YAML 
using the node_filter feature.  However, this study 
found that abstraction features like node_filter and 
substitution are not supported by certain 
implementations of orchestrators. A feature-based 
comparison of orchestrators concerning TOSCA 
compliance may be made as part of future studies. 

Besides the RAN slicing experiments exploring a 
closed-loop using the FlexRAN controller, other AI 
applications can interact with the SDN controller 
and the VNF placement functions to attend to 
different network requirements. An End-to-End 
(E2E) network slice cannot be completely 
implemented in the testbed because a MANO 
implementation was not used to avoid 
computational costs and network complexity in this 
first phase and focus on AI integration. Future 
studies may include integrating the software 
developed in our testbed into ONAP software, a 
popular MANO implementation, to provide E2E NS 
with a centralized closed-loop. The verification and 
validation of resource allocation during simulation 
in line with the traffic pattern (e.g., full buffer) when 
simulating the scenarios, e.g., dual connectivity, is 
an essential future step as we broaden the 
simulation into more scenarios. 

Creating a closed-loop with several modules brings 
communication and computation problems. Overall 
integration, including A1/O1/E1 interface 
integrations, is critical and which parts of this 
integration can be realized autonomously can be 
explored. The real-time system performance will 
have to be tested to ensure compliance with closed-
loop specifications. Integration issues with 
platforms highlight the importance of close 
coordination with underlays, as mentioned in 
Sections 2.2 and 5. 

8. CONCLUSION AND FUTURE RESEARCH
This is a collaborative study where we developed 
and implemented a hierarchical closed-loop that 
autonomously handles an emergency case. The 
study focused on intent parsing, traffic monitoring, 
resource computing, and allocation autonomously. 
The closed-loops were implemented with several 
micro-services deployed as docker containers with 
specific functions such as monitoring, computing, 
ML selection, and resource allocation. Future 
activities will focus on enhancing the attributes of 
the nodes in the template, e.g., data parameters in 
the SRC [e.g., 3xVs: velocity, variety and volume], 
Model metadata (as defined in ITU-T Y.3176), and 
SINK parameters [e.g., underlay specific APIs]. After 
integration, data pulling, model pulling, and 
adaptation can be demonstrated based on such 
enhanced attributes. The machine learning agent 
presented in the Connected AI study will be 
implemented for the built environment with ONAP 
and Acumos integration for future activities. 
Enhancing the simulator to include inputs from an 
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intent and integration with the SRC, ML and SINK 
nodes to form the closed-loop in the simulation 
domain is also an important future step. Apart from 
advanced algorithms studied, e.g., multivariant 
time-series models with monitored data and 
arriving at intelligent inference, resource 
reservation for emergencies and resource 
reallocation from lower priority services should be 
explored. Easy onboarding of xApps and the 
triggering of policy towards lower closed-loops and 
supporting visualizations can increase usability. In 
addition, extending the solution to self-learning 
closed-loops with continuous collection, analytics, 
decision and actuation and model performance 
detection needs further study. With the self-
learning close-loops, the network could trigger a 
switchover to another better performing model, 
analyze and trigger a different set of 
data/measurements for data analysis and perform 
synchronization and management across the edge 
and emergency responder devices. 

ACKNOWLEDGEMENT 
ITU FG-AN, the International Telecommunication 
Union Focus Group on Autonomous Networks, 
organized a “build-a-thon challenge” in 2021 to 
demonstrate and validate important use cases for 
autonomous networks, creating Proof of Concept 
(PoC) implementations and tools in the process. The 
majority of the works in this study were done under 
the Build-a-thon Challenge.  

REFERENCES 
[1] E. Selerio Jr, J. A. Caladcad, M. R. Catamco, 

E. M. Capinpin, and L. Ocampo, "Emergency 
preparedness during the COVID-19 pandemic: 
Modelling the roles of social media with fuzzy 
DEMATEL and analytic network process", 
Socio-economic planning sciences, p. 101217, 
2021. 

[2] K. Carlberg, E. W. Burger, and R. P. Jover, 
"Dynamic 5G Network Slicing for First 
Responders", in 2019 Principles, Systems and 
Applications of IP Telecommunications 
(IPTComm), 2019: IEEE, pp. 1-4.  

[3] J. Gallego-Madrid, R. Sanchez-Iborra, P. M. 
Ruiz, and A. F. Skarmeta, "Machine learning-
based zero-touch network and service 
management: A survey", Digital 
Communications and Networks, 2021. 

[4] V. Sciancalepore, F. Z. Yousaf, and X. Costa-
Perez, "z-TORCH: An automated NFV 
orchestration and monitoring solution", IEEE 
Transactions on Network and Service 
Management, vol. 15, no. 4, pp. 1292-1306, 
2018. 

[5] R. Wen et al., "On robustness of network 
slicing for next-generation mobile networks", 
IEEE Transactions on Communications, 
vol. 67, no. 1, pp. 430-444, 2018. 

[6] Q. Wang et al., "Enable advanced QoS-aware 
network slicing in 5G networks for slice-based 
media use cases", IEEE transactions on 
broadcasting, vol. 65, no. 2, pp. 444-453, 2019. 

[7] P. H. Gomes, M. Buhrgard, J. Harmatos, S. K. 
Mohalik, D. Roeland, and J. Niemöller, 
"Intent-driven closed loops for autonomous 
networks", Journal of ICT Standardization, 
pp. 257–290-257–290, 2021. 

[8] S. Singh, P. K. Sharma, B. Yoon, M. Shojafar, 
G. H. Cho, and I.-H. Ra, "Convergence of 
blockchain and artificial intelligence in IoT 
network for the sustainable smart city", 
Sustainable Cities and Society, vol. 63, 
p. 102364, 2020. 

[9] L. Bonati, S. D'Oro, M. Polese, S. Basagni, and 
T. Melodia, "Intelligence and learning in O-
RAN for data-driven NextG cellular networks", 
IEEE Communications Magazine, vol. 59, 
no. 10, pp. 21-27, 2021. 

[10] S. Sultana and A. Mittermaier. "Build-a-Thon 
(PoC) – 5G Berlin Test Network Functional 
Specification", https://extranet.itu.int/sites/itu-
t/focusgroups/an/input/FGAN-I-093.zip 
(accessed 07/06, 2022). 

[11] M. Polese, L. Bonati, S. D'Oro, S. Basagni, and 
T. Melodia, "Understanding O-RAN: 
Architecture, Interfaces, Algorithms, Security, 
and Research Challenges", arXiv preprint 
arXiv:2202.01032, 2022. 

[12] L. Gavrilovska, V. Rakovic, and D. Denkovski, 
"From cloud RAN to open RAN", Wireless 
Personal Communications, vol. 113, no. 3, 
pp. 1523-1539, 2020. 

[13] G. ETSI, "Zero-touch network and Service 
Management (ZSM); Reference Architecture", 
Tech. Rep, 2019.  

[14] J. Pérez-Romero, O. Sallent, R. Ferrús, and R. 
Agustí, "Knowledge-based 5G radio access 
network planning and optimization", in 2016 
International Symposium on Wireless 
Communication Systems (ISWCS), 2016: IEEE, 
pp. 359-365.  

© International Telecommunication Union, 2022 195

Guda et al.: Network resource allocation for emergency management based on closed-loop analysis

https://extranet.itu.int/sites/itu-t/focusgroups/an/input/FGAN-I-093.zip
https://extranet.itu.int/sites/itu-t/focusgroups/an/input/FGAN-I-093.zip


 

[15] X. You, C. Zhang, X. Tan, S. Jin, and H. Wu, 
"AI for 5G: research directions and paradigms", 
Science China Information Sciences, vol. 62, 
no. 2, pp. 1-13, 2019. 

[16] A. Feriani and E. Hossain, "Single and multi-
agent deep reinforcement learning for AI-
enabled wireless networks: A tutorial", IEEE 
Communications Surveys & Tutorials, 2021. 

[17] X. Wang, X. Li, and V. C. Leung, "Artificial 
intelligence-based techniques for emerging 
heterogeneous network: State of the arts, 
opportunities, and challenges", IEEE Access, 
vol. 3, pp. 1379-1391, 2015. 

[18] W. Y. B. Lim et al., "Federated learning in 
mobile edge networks: A comprehensive 
survey", IEEE Communications Surveys & 
Tutorials, vol. 22, no. 3, pp. 2031-2063, 2020. 

[19] A. Bardou, T. Begin, and A. Busson, 
"Improving the spatial reuse in ieee 802.11 ax 
wlans: A multi-armed bandit approach", in 
Proceedings of the 24th International ACM 
Conference on Modeling, Analysis and 
Simulation of Wireless and Mobile Systems, 
2021, pp. 135-144.  

[20] M. Matracia, N. Saeed, M. A. Kishk, and M.-
S. Alouini, "Post-Disaster Communications: 
Enabling Technologies, Architectures, and 
Open Challenges", arXiv preprint 
arXiv:2203.13621, 2022. 

[21] F. Liu, Y. Guo, Z. Cai, N. Xiao, and Z. Zhao, 
"Edge-enabled disaster rescue: a case study of 
searching for missing people", ACM 
Transactions on Intelligent Systems and 
Technology (TIST), vol. 10, no. 6, pp. 1-21, 
2019. 

[22] R. F. Hussain, M. A. Salehi, A. Kovalenko, Y. 
Feng, and O. Semiari, "Federated edge 
computing for disaster management in remote 
smart oil fields", in 2019 IEEE 21st 
International Conference on High 
Performance Computing and Communications; 
IEEE 17th International Conference on Smart 
City; IEEE 5th International Conference on 
Data Science and Systems 
(HPCC/SmartCity/DSS), 2019: IEEE, 
pp. 929-936.  

[23] J. Pérez-Romero et al., "Supporting mission 
critical services through radio access network 
slicing", in 2019 International Conference on 
Information and Communication Technologies 
for Disaster Management (ICT-DM), 2019: 
IEEE, pp. 1-8.  

[24] R. Ferrús, O. Sallent, J. Pérez-Romero, and R. 
Agusti, "On the automation of RAN slicing 
provisioning and cell planning in NG-RAN", 
in 2018 European Conference on Networks 
and Communications (EuCNC), 2018: IEEE, 
pp. 37-42.  

[25] K. Abbas, M. Afaq, T. Ahmed Khan, A. Rafiq, 
and W.-C. Song, "Slicing the core network and 
radio access network domains through intent-
based networking for 5g networks", 
Electronics, vol. 9, no. 10, p. 1710, 2020. 

[26] Ł. Kułacz and A. Kliks, "Dynamic Spectrum 
Allocation Using Multi-Source Context 
Information in OpenRAN Networks", Sensors, 
vol. 22, no. 9, p. 3515, 2022. 

[27] M. Dryjański, Ł. Kułacz, and A. Kliks, 
"Toward Modular and Flexible Open RAN 
Implementations in 6G Networks: Traffic 
Steering Use Case and O-RAN xApps", 
Sensors, vol. 21, no. 24, p. 8173, 2021. 

[28] H. Kumar, V. Sapru, and S. K. Jaisawal, 
"O-RAN based proactive ANR optimization", 
in 2020 IEEE Globecom Workshops 
(GC Wkshps, 2020: IEEE, pp. 1-4.  

[29] G. Nardini, D. Sabella, G. Stea, P. Thakkar, 
and A. Virdis, "Simu5G–An OMNeT++ 
Library for End-to-End Performance 
Evaluation of 5G Networks", IEEE Access, 
vol. 8, pp. 181176-181191, 2020. 

[30] G. Pereyra, C. Rattaro, and P. Belzarena, 
"Py5cheSim: a 5G Multi-Slice Cell Capacity 
Simulator", in 2021 XLVII Latin American 
Computing Conference (CLEI), 2021: IEEE, 
pp. 1-8.  

[31] 5G-LENA Team. "5G-LENA simulator", 
https://5g-lena.cttc.es/ (accessed 05/13, 2022). 

[32] X. Foukas, N. Nikaein, M. M. Kassem, M. K. 
Marina, and K. Kontovasilis, "FlexRAN: A 
flexible and programmable platform for 
software-defined radio access networks", in 
Proceedings of the 12th International on 
Conference on emerging Networking 
EXperiments and Technologies, 2016, 
pp. 427-441.  

[33] SD-RAN. "Introduction – SD-RAN Docs 1.1.0 
documentation", https://docs.sd-ran.org/sdran-
1.1/introduction.html (accessed 5/13, 2022). 

[34] H. Lee, J. Cha, D. Kwon, M. Jeong, and I. Park, 
"Hosting ai/ml workflows on o-ran ric 
platform", in 2020 IEEE Globecom Workshops 
(GC Wkshps, 2020: IEEE, pp. 1-6.  

[35] O-RAN. "O-RAN Architecture Overview", 
https://docs.o-ran-sc.org/en/latest/architecture/ 
architecture.html (accessed 03/09, 2022). 

© International Telecommunication Union, 2022196

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 2, September 2022

https://5g-lena.cttc.es/
https://docs.sd-ran.org/sdran-1.1/introduction.html
https://docs.sd-ran.org/sdran-1.1/introduction.html
https://docs.o-ran-sc.org/en/latest/architecture/architecture.html
https://docs.o-ran-sc.org/en/latest/architecture/architecture.html


 

[36] ITU‐T. "Framework for evaluating 
intelligence levels of future networks including 
IMT-2020", https://www.itu.int/rec/T-REC-
Y.3173 (accessed 30/05, 2020). 

[37] A. Luzar, S. Stanovnik, and M. Cankar, 
"Examination and Comparison of TOSCA 
Orchestration Tools", in European Conference 
on Software Architecture, 2020: Springer, 
pp. 247-259.  

[38] V. Ram O.V et al. "Proposal for a “Build-a-
thon” for ITU AI/ML in 5G Challenge (second 
edition, 2021), aligned with FGAN WG3", 
ITU Focus Group on Autonomous Network 
(FG-AN). https://extranet.itu.int/sites/itu-
t/focusgroups/an/input/FGAN-I-170-R1.docx 
(accessed 02/23, 2022). 

[39] OASIS TOSCA Simple Profile in YAML v1.3, 
xopera, 2021. [Online]. Available: https://xlab-
si.github.io/xopera-docs/ 

[40] ITU‐T. "Machine learning marketplace 
integration in future networks including IMT-
2020", https://www.itu.int/rec/T-REC-Y.3176 
(accessed 30/05, 2022). 

[41] C. V. Nahum et al., "Testbed for 5G connected 
artificial intelligence on virtualized networks", 
IEEE Access, vol. 8, pp. 223202-223213, 2020. 

[42] ITU‐T. "Architectural framework for 
machine learning in future networks including 
IMT‐2020", https://www.itu.int/rec/T-REC-
Y.3172-201906-i/en (accessed 03/12, 2022). 

[43] I. Aliyu, M. C. Feliciano, S. Van Engelenburg, 
D. O. Kim, and C. G. Lim, "A blockchain-
based federated forest for SDN-enabled in-
vehicle network intrusion detection system", 
IEEE Access, vol. 9, pp. 102593-102608, 2021. 

[44] Ryu. "Ryu API Reference", 
https://ryu.readthedocs.io/en/latest/api_ref.ht
ml (accessed 01/25, 2022). 

[45] Flexran. "Mosaic5G", https://mosaic5g.io/ 
flexran/ (accessed 01/25, 2022). 

[46] Empowering App Development for Developers 
| Docker, Docker. [Online]. Available: 
https://www.docker.com/ 

[47] O. OpenAirInterface. Accessed: Sep. 13. "5G 
Software Alliance for Democratising Wireless 
Innovation", http://www.openairinterface.org/ 
(accessed 01/25, 2022). 

[48] Free5GC. "Free5GC: Open-Source 5GC", 
https://www.free5gc.org/ (accessed 01/25, 
2022). 

[49] Kubernetes. "Kubernetes", (accessed 01/25, 
2022). 

[50] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, 
and H. Flinck, "Network slicing and 
softwarization: A survey on principles, 
enabling technologies, and solutions", IEEE 
Communications Surveys & Tutorials, vol. 20, 
no. 3, pp. 2429-2453, 2018. 

[51] E. Bisong, "Kubeflow and kubeflow pipelines", 
in Building Machine Learning and Deep 
Learning Models on Google Cloud Platform. . 
Berkeley, CA, USA: Springer, 2019. 

[52] S. Lins et al., "Artificial Intelligence for 
Enhanced Mobility and 5G Connectivity in 
UAV-Based Critical Missions", IEEE Access, 
vol. 9, pp. 111792-111801, 2021. 

[53] V. Raida, P. Svoboda, and M. Rupp, "Real 
World Performance of LTE Downlink in a 
Static Dense Urban Scenario-An Open 
Dataset", in GLOBECOM 2020-2020 IEEE 
Global Communications Conference, 2020: 
IEEE, pp. 1-6.  

[54] X. Foukas, M. K. Marina, and K. Kontovasilis, 
"Orion: RAN slicing for a flexible and cost-
effective multi-service mobile network 
architecture", in Proceedings of the 23rd 
annual international conference on mobile 
computing and networking, 2017, pp. 127-140.  

[55] A. Okic, L. Zanzi, V. Sciancalepore, A. 
Redondi, and X. Costa-Pérez, "π-ROAD: A 
learn-as-you-go framework for on-demand 
emergency slices in V2X scenarios", in IEEE 
INFOCOM 2021-IEEE Conference on 
Computer Communications, 2021: IEEE, 
pp. 1-10.  

[56] TOSCA Simple Profile in YAML Version 1.3, C. 
L. OASIS Committee Specification 01..Edited 
by Matt Rutkowski, Claude Noshpitz, 2019. 
[Online]. Available: https://docs.oasis-
open.org/tosca/TOSCA-Simple-Profile-
YAML/v1.3/TOSCA-SimpleProfile-YAML-
v1.3.html 

[57] K. Kristiansen. "Near Realtime RIC ", 
https://wiki.o-ran-sc.org/display/GS/ 
Near+Realtime+RIC+Installation (accessed 
03/09, 2022). 

[58] S. Zhao, M. Talasila, G. Jacobson, C. Borcea, 
S. A. Aftab, and J. F. Murray, "Packaging and 
sharing machine learning models via the 
acumos ai open platform", in 2018 17th IEEE 
International Conference on Machine 
Learning and Applications (ICMLA), 2018: 
IEEE, pp. 841-846.  

[59] Z. Huang. "App Writing Guide", 
https://wiki.o-ran-sc.org/display/ORANSDK/ 
App+Writing+Guide (accessed 03/09, 2022). 

© International Telecommunication Union, 2022 197

Guda et al.: Network resource allocation for emergency management based on closed-loop analysis

https://www.itu.int/rec/T-REC-Y.3173
https://www.itu.int/rec/T-REC-Y.3173
https://extranet.itu.int/sites/itu-t/focusgroups/an/input/FGAN-I-170-R1.docx
https://extranet.itu.int/sites/itu-t/focusgroups/an/input/FGAN-I-170-R1.docx
https://xlab-si.github.io/xopera-docs/
https://xlab-si.github.io/xopera-docs/
https://www.itu.int/rec/T-REC-Y.3176
https://www.itu.int/rec/T-REC-Y.3172-201906-i/en
https://www.itu.int/rec/T-REC-Y.3172-201906-i/en
https://ryu.readthedocs.io/en/latest/api_ref.html
https://ryu.readthedocs.io/en/latest/api_ref.html
https://mosaic5g.io/flexran/
https://mosaic5g.io/flexran/
https://www.docker.com/
http://www.openairinterface.org/
https://www.free5gc.org/
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-SimpleProfile-YAML-v1.3.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-SimpleProfile-YAML-v1.3.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-SimpleProfile-YAML-v1.3.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-SimpleProfile-YAML-v1.3.html
https://wiki.o-ran-sc.org/display/GS/Near+Realtime+RIC+Installation
https://wiki.o-ran-sc.org/display/GS/Near+Realtime+RIC+Installation
https://wiki.o-ran-sc.org/display/ORANSDK/App+Writing+Guide
https://wiki.o-ran-sc.org/display/ORANSDK/App+Writing+Guide


 

[60] O-RAN. "O-RAN Software Community",
https://github.com/o-ran-sc (accessed 03/09,
2022). 

[61] Z. Huang. "Traffic Steering Flows",
https://wiki.o-ran-sc.org/display/IAT/
Traffic+Steering+Flows?focusedCommentId=
41456537#comment-41456537 (accessed).

[62] S. Sultana and A. Mittermaier. "Updates on the
5G test network, Plans on intent based-network
slicing", ITU-T FGAN. 
https://extranet.itu.int/sites/itu-t/focusgroups/
an/input/FGAN-I-197.zip (accessed 03/12,
2022). 

AUTHORS 

Guda Blessed received his 
bachelor’s degree in computer 
engineering from the Federal 
University of Technology, Minna, 
2021. He made several contributions 
to the ITU Focus Group (FG) on ML 

for 5G and Autonomous Networks (AN). He has 
research interests in AI for NLP, network security, 
5G and autonomous networks and embedded 
systems. He is a mentor with WINEST Research 
group and founder of AI4Africa Research group. He 
received the Mentors Encouragement award from 
ITU AI/ML in 5G Challenge, 2021. He is currently an 
AI engineer at Prunny Technologies and also 
mentors student research projects with ITU FG-AN. 

Ibrahim Aliyu received his PhD in 
computer science and engineering 
from Chonnam National University, 
South Korea, in 2022. He also holds a 
B.Eng and M.Eng degree in computer

engineering at the Federal University of Technology, 
Minna, Nigeria, in 2014 and 2018, respectively. He 
is currently a postdoc researcher at Hyper 
Intelligence Media Network Platform Lab, Dept. of 
ICT Convergence System Engineering, Chonnam 
National University. In addition, he is contributing 
to the ITU Focus Group on Autonomous Networks. 
His current research interest is on source routing-
based in-network computing for the XR/metaverse 
applications and the development of zone adaptive 
network structure for large scale metaverse 
deployment. His other research interests include 
federated learning, data privacy, network 
SECURITY and AI for the autonomous networks. He 
received the Mentors Encouragement award from 
ITU AI/ML in 5G Challenge, 2021, and the 2017 
Korean Government Scholarship Program Award. 

James Agajo received a Bachelor of 
Engineering (B.Eng) degree in 
electrical and computer engineering 
from the Federal University of 
Technology Minna, and a Master’s of 
Engineering (M.Eng.) degree in 

electronics and telecommunication engineering 
from Nnamdi Azikiwe University, with a PhD in 
telecommunication and computer engineering from 
Nnamdi Azikiwe University. A former HOD, acting 
director and postgraduate coordinator, Dr James 
Agajo is presently an associate professor and the 
Head of the Department of Computer Engineering 
with the Federal University of Technology Minna, 
School of Electrical Engineering and Technology. He 
has published over 130 articles and received many 
awards, including IBM AI Analyst Master’s Award, 
IBM AI Analyst  Award, IBM IoT Cloud Developer 
Award, IBM Blockchain Developer Award, and IBM 
Telecommunications Insights & Solutions. 
Presently, he is also a visiting professor at I.C.T 
University U.S.A, Nile University Abuja, Baze 
University Abuja, Kebbi State University of Science 
and Technology Kebbi, University of Pretoria, 
Federal University of Petroleum Resources Effurun. 

Thiago Lima Sarmento received a 
B.Sc. degree in computer engineering
from the Federal University of Pará
(UFPA), Belém, Pará, Brazil, in 2017.
He received his Master’s in 2019 and
is pursuing his Doctor’s degree in

electrical engineering with emphasis on 
telecommunications in the Electrical Engineering 
Graduate Program at UFPA. He has been part of the 
Research and Development Center for 
Telecommunications, Automation and Electronics 
(LASSE) since 2014. His current research focuses on 
machine learning for telecommunications. 

Cleverson Veloso Nahum received a 
B.Sc. degree in computer engineering
from the Federal University of Pará
(UFPA), Belém, Pará, Brazil, in 2019.
He received his Master’s and is
pursuing his Doctor’s degree in

electrical engineering with emphasis on 
telecommunications in the Electrical Engineering 
Graduate Program at UFPA, in 2021. He is part of the 
Research and Development Center for 
Telecommunications, Automation and Electronics 
(LASSE) since 2016. His current research interests 
include network slicing, radio resource 
management, and artificial intelligence applied to 
mobile communication systems. 

© International Telecommunication Union, 2022198

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 2, September 2022

https://github.com/o-ran-sc
https://wiki.o-ran-sc.org/display/IAT/Traffic+Steering+Flows?focusedCommentId=41456537#comment-41456537
https://wiki.o-ran-sc.org/display/IAT/Traffic+Steering+Flows?focusedCommentId=41456537#comment-41456537
https://wiki.o-ran-sc.org/display/IAT/Traffic+Steering+Flows?focusedCommentId=41456537#comment-41456537
https://extranet.itu.int/sites/itu-t/focusgroups/an/input/FGAN-I-197.zip
https://extranet.itu.int/sites/itu-t/focusgroups/an/input/FGAN-I-197.zip


 

Lucas Novoa is a Brazilian, with a 
degree in electrical engineering from 
the Federal University of Pará 
(UFPA), Belém, Pará, Brazil. He is 
currently part of the Research and 

Development Center for Telecommunications, 
Automation and Electronics (LASSE), and he is 
initiating an Electrical Engineering Master's degree 
in the signal processing area. He has experience in 
the following subjects: 2G/4G/5G mobile networks, 
community networks, mobile networks and the 
transport layer. 

Rebecca Aben-Athar is  an electrical 
engineering student at the Federal 
University of Pará (UFPA), Belém, 
Pará, Brazil, since 2019. She is part of 
the Research and Development 

Center for Telecommunications, automation and 
Electronics (LASSE) since 2021. Her current 
research focuses on machine learning for 
telecommunications. 

Mariano Moura is currently a 
graduate student of electrical 
engineering at Universidade Federal 
do Pará (UFPA), Belém, Pará, Brazil. 
He is part of a research group that 
focuses on 5G network automation at 

the Research and Development Center for 
Telecommunications, Automation and Electronics 
(LASSE). 

Lucas Matni is currently a graduate 
student of computer engineering at 
Universidade Estácio de Sá, Belém, 
Pará, Brazil. He is part of the research 
group focused on the automation of 

5G networks at the Center for Research and 
Development in Telecommunications, Automation 
and Electronics (LASSE). 

Aldebaro Klautau received a 
bachelor’s (Universidade Federal do 
Pará, UFPA, 1990), M. Sc. 
(Universidade Federal de Santa 
Catarina, UFSC, 1993) and Ph. D. 
degrees (University of California at 

San Diego, UCSD, 2003) in electrical engineering. 
Since 1996, he has been with UFPA and is now a full 
professor, at the ITU Focal Point, and directs LASSE. 
He was a visiting scholar at Stockholm University, 
UCSD and The University of Texas at Austin. He is a 
researcher of the Brazilian National Council of 
Scientific and Technological Development (CNPq), a 
Senior Member of the IEEE and a senior member of 

the Brazilian Telecommunications Society (SBrT). 
His work focuses on machine learning and signal 
processing for communications and embedded 
systems. 

Deena Mukundan received a 
bachelor's degree in electrical and 
electronics engineering from the 
University of Kerala (India) in 1999, 
and has 20 years of experience in 
software engineering in the 

telecommunications domain. During this period, 
she has worked on various wireline and wireless 
technologies including IP-DSLAM, M2M, 3G/4G 
protocol stack development, and most recently in 
Automation. In addition to this, she has received a 
postgraduate diploma in AI and machine learning 
and is currently exploring the application of AI in 
the telecommunications domain. 

Divyani R Achari is affiliated with Tech Mahindra, 
India. 

Mehmet Karaca received my B.S. 
degree in telecommunication 
engineering in 2006 from Istanbul 
Technical University, Turkey. He 
received M.S. and PhD degrees in 

electronics engineering from Sabanci University, 
Turkey, in August 2008 and January 2013, 
respectively. After working two years as a system 
and research engineer at AirTies Wireless Networks, 
Istanbul, Turkey, he did his postdoctoral study at 
Lund University between 2015 and 2017. Then, he 
joined Ericsson AB, Lund as a system developer 
focusing on massive and MU-MIMO systems for 
Ericsson 5G base stations. Currently, he is an 
assistant professor at TED University, Ankara, 
Turkey. 

Doruk Tayli works at Q Bio Inc., California, USA, as 
a lead computational software engineer. 

Özge Simay Demirci is an undergraduate student 
at the Dept. of Electrical-Electronics Eng., TED 
University, Ankara, Turkey. 

V. Udaya Sankar completed his PhD 
from the ECE Department at Indian 
Institute of Science, Bangalore, in 
August 2017 and did his M.Tech from 
IIT, Roorkee in 2002-04. His thesis is 

related to the design of a distributed resource 
allocation algorithm to mitigate interference 
between femtocells using game theory. He has 4+ 
years of industrial work experience. He was AOTS 
Scholar through Hindu-Hitachi Technical Training 

© International Telecommunication Union, 2022 199

Guda et al.: Network resource allocation for emergency management based on closed-loop analysis



 

Programme, Japan, from July 2008 to December 
2008 at Hitachi Communication Technologies, 
Hitachi Limited, where he underwent training on 
standardization activity in enterprise and strategy 
establishment activity. He was an executive council 
member for IETE, Bangalore for 2008-09, an 
Execom member for IEEE-IISc Student Branch for 
2010-2012 and Chairperson for IEEE-IISc Student 
Branch for 2012 and 2013. He also represented 
IEEE-IISc Student Branch in IEEE-UPP (University 
Partnership Programme) Leaders’ Summit during 
18-21 October 2012 at Seattle, Washington, USA. He 
was leading the smart city initiative by the IEEE 
Bangalore section from 2015 to 2016. He was a 
founding member of the SIAM Student chapter of 
IISc Bangalore, IEEE-IISc Nanotechnology council. 
He is an IEEE Senior Member and IEEE HKN 
Member. Currently, he is working as an assistant 
professor in ECE Department, SRM University, 
Amaravati, AP. His research interests include game 
theory and optimization, machine learning 
algorithms, cognitive decision making systems 
design, baseband signal processing for advanced 
wireless communications, small cell networks, self-
organizing networks design using evolutionary 
biology concept, cooperative communications, 
design of algorithms for vehicular to vehicular 
communication, machine to machine 
communications, information theory and coding, 
IoT and smart grid. 

Sai Jnaneswar Juvvisetty is 
currently pursuing his bachelor’s in 
electronics and communication 
engineering at SRM University AP. 
He works as an intern in Analog 

Devices. His areas of interest include machine 
learning and deep learning. His areas of 
specialization also include IoT, embedded systems 
and 5G architecture. He also participated in the ITU 
AI ML 2021 and worked on the topic “Network 
resource allocation for emergency management 
based on closed-loop analysis”. 

V.M.V.S. Aditya is currently an 
undergraduate student in electronics 
and communication engineering at 
SRM University Andhra Pradesh, 
India. He has done several projects 

and has conference papers in the domain of Internet 
of Things, Wireless Sensor Networks, and Neural 
Networks. He also participated in the ITU AI ML 
Challenge 2021 and worked on the topic “Network 
resource allocation for emergency management  
 

based on closed-loop analysis”. His current research 
interests include the various machine learning 
algorithms in the context of 5G and wireless 
networks. 

Abhishek Dandekar received  
his bachelor’s degree in 
telecommunication engineering from 
the University of Mumbai in 2015. He 
is currently pursuing his master’s 

degree in ICT innovation at TU Berlin and writing 
his master’s thesis at Fraunhofer HHI. Before this, 
Abhishek was with the information networking lab 
at IIT Bombay, where he worked on developing 5G 
solutions for rural India using softwarised WLAN 
networks. He has contributed to IEEE and ITU 
standardization working groups and holds a patent 
for controlling SDN-based multi‐RAT networks. He 
won the judges’ prize in ITU AI/ML in the 5G 2020 
challenge. His current research interests include 
autonomous networks, distributed ML 
orchestration and industrial 5G. 

Shabnam Sultana is affiliated with Highstreet 
Technologies GmbH, Germany. 

Jinsul Kim received a B.S. degree in 
computer science from the University 
of Utah, Salt Lake City, Utah, USA, in 
1998, and the M.S. and PhD degrees in 
digital media engineering, dept. of 

information and communications from Korea 
Advanced Institute of Science and Technology 
(KAIST), Daejeon, South Korea, in 2004 and 2008. 
He worked as a researcher in IPTV Infrastructure 
Technology Research Laboratory, 
Broadcasting/Telecommunications Convergence 
Research Division, Electronics and 
Telecommunications Research Institute (ETRI), 
Daejeon, Korea from 2004 to 2009. He worked as a 
professor at Korea Nazarene University, Cheonan, 
Korea from 2009 to 2011. Currently, he is a 
professor at Chonnam National University, Gwangju, 
Korea. He has been invited to review for IEEE Trans. 
Multimedia since 2008 as an IEEE Member. He has 
been invited for TPC (Technical Program 
Committee) for IWITMA2009/2010, PC (Program 
Chair) for ICCCT2011, IWMWT2013/2014/2015, 
and General Chair for ICMWT2014. His research 
interests include QoS/QoE, cloud computing, edge 
computing, AI, energy AI, multimedia 
communication and new media (VR, AR, metaverse 
etc.). 

© International Telecommunication Union, 2022200

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 2, September 2022



 

Vishnu Ram OV has 24 years of 
hands-on experience in the field of 
telecommunications industry, 
developing and implementing 
standards, holding 13 international 

granted patents, published many papers and was 
appointed as a Scientific Advisory Board Associate 
(SABA) member of Motorola Networks. He is 
currently serving as an independent consultant, 

vice chair of the ITU-T focus group on Autonomous 
Networks (ITU-T FG-AN), and was co-editor of the 
recently published ITU-T focus group ML5G 
specifications on AI/ML which led to many 
Recommendations such as ITU-T Y.3172. He is a 
Senior Member of IEEE. His current passion 
includes coordinating global standards in ITU-T, 
liaison with other SDOs like ETSI and IRTF, 
mentoring student projects, and coordinating 
global challenges in AI/ML in 5G. 

© International Telecommunication Union, 2022 201

Guda et al.: Network resource allocation for emergency management based on closed-loop analysis


	NETWORK RESOURCE ALLOCATION FOR EMERGENCY MANAGEMENT BASED ON CLOSED-LOOP ANALYSIS
	1. INTRODUCTION
	1.1 Background and related studies

	2. The PoC Design and Implementation
	2.1 Design of closed-loops using a declarative specification
	2.2 “Imperative actions” in the “underlay” based on the intent
	2.2.1 Connected AI (CAI) network testbed
	2.2.2 Results and discussions


	3. Simulated underlay for closed-loop-based resource allocation
	3.1 Simulation scenarios
	3.2 Results of the simulations

	4. Algorithms investigation for the resource allocation in the “underlay”
	4.1 The system implementation
	4.2 Results and analysis
	4.2.1 Time-series forecasting of traffic for monitoring using Gaussian Process Regression
	4.2.2 Resource allocation at RAN for an emergency slice


	5. O-RAN Control-Loop Instantiation
	5.1 A solution workflow
	5.2 Resulting implementation

	6. Integration of THE POC
	7. Observations from the PoC
	8. Conclusion and future research
	ACKNOWLEDGEMENT
	REFERENCES



