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Abstract – In recent years, indoor localization using wireless systems has been an important area of research for its appli‑
cations towards health, security and the tracking of users. A Global Positioning System (GPS) is considered as the best solution
for localization for outdoor scenarios but it fails to provide accurate positioning for indoor scenarios. Wi‑Fi ϔingerprinting
methods using received signal strength from multiple access points are popular for solving indoor localization problem. As
the wireless systems move towards higher frequencies, higher bandwidth and a large antenna array, sensing has also become
feasible along with communication, which is an important research area towards 6G named as Integrated Communication
And Sensing (ISAC). ISAC relies on sensing parameter estimations, such as estimation of ϔine range, Doppler and angular infor‑
mationwhich contains the signature of the surrounding objects. A localization problem can be solved by analysing the sensing
parameters. In this paper, we propose a solution for the localization problem for IEEE 802.11ay WLAN systems based on sig‑
nal processing and Machine Learning (ML) in indoor scenarios. First, signal processing is used to estimate the channel in a
Doppler and angular domainwhich separates the signal reϔlected from the different objects based on their range, velocity and
the angular placement. Then, an MLmodel is used to localize the objects in the different parts of the indoor environment. We
use a state‑of‑the‑art ML algorithm such as feed forward neural networks. Further, we evaluate our algorithm for a scenario
where there is a room with a transmitter and receiver, and on a dataset generated by a simulator provided by the National
Institute of Science and Technology (NIST). We show that the proposed algorithm for localization, which predicts the number
of persons in different parts of a room, achieves accuracy of 99% at Signal to Noise Ratio (SNR) of 18 dB and is able to count
up to eight persons in a room with 99% accuracy at SNR greater than 0 dB.
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1. INTRODUCTION

Integrated Sensing And Communication (ISAC) is an
emerging ϐield and an important area towards 6G where
along with the information transfer, sensing is also kept
in focus while designing the system [1]. Sensing using the
existing communication resources pave the path for ISAC.
For indoor scenarios, a Wi‑Fi signal is a viable option for
sensing. Sensing revolves around the knowledge of the
scattering of rays from the objects, which provide a unique
signature about them. The reϐlected signal at the receiver,
helps to localize the objects or even identify them. Ma‑
chine learning techniques help in identifying patterns or
a signature and can map it to the location in the local map
[1].

With the advancement of 5G, there have been signiϐicant
improvements in system frequency and bandwidth. With
the increment in system frequency and bandwidth, the
wavelength becomes shorter, which results in ϐine range
estimation for object detection [2]. Radio Detection And
Ranging (RADAR) has been used for detecting objects. In
literature, in order to detect objects, a channel is estimated
and a range‑Doppler or range‑angle heatmap is produced
[3], [4]. A change in environment causes changes in these
heatmaps. The heatmap is unique for each different envi‑
ronment and is considered a ϐingerprint of the context or
abstract local map. With the uniqueness in the heatmap,

localization and sensing has become an area of interest in 
the next generation systems [2].

Research in ISAC has been done to ϐind the methods for 
coexistence of communication systems and RADAR. In [5], 
an architecture of 5G communication systems and RADAR 
is designed on chip. As 5G mmWave bands have a higher 
bandwidth compared to a legacy system and it is expected 
to be even higher for next generation systems, this allows 
communication systems to be a great platform for high res‑ 
olution sensing. In [6], several techniques such as wave‑ 
form design, sensing signal architecture, and antenna dis‑ 
tribution are discussed for coexistence of communication 
and sensing systems. In [7], convergent 6G communica‑ 
tion, localization and sensing systems are deϐined and its 
possible solutions are discussed which also involves Arti‑ 
ϐicial intelligence (AI) and Reconϐigurable Intelligent Sur‑ 
faces (RIS). Possible designs of 6G localization and sens‑ 
ing systems are discussed in [2] with a 100 GHz frequency 
system, RIS and advance signal processing techniques. For 
applications related to biomedicine and security, Simulta‑ 
neous Localization And Mapping (SLAM) to automatically 
construct maps of complex indoor environments are also 
discussed in the paper. In [2], challenges to make ISAC fea‑ 
sible, are also discussed, such as high‑accuracy cm‑level 
positioning and high‑resolution 3D sensing/imaging, ef‑ 
ϐiciently sharing resources in time, frequency and space 
domains, leveraging the real‑time energy‑efϐicient AI/ML 
techniques.
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An Indoor Positioning System (IPS) using radio waves has 
been an area of interest in literature and it is seen as an 
alternative to Global Positioning System (GPS) in indoor 
scenarios. A Wi‑Fi system provides better connectivity 
than a cellular system and is usually used for indoor 
localization [8][9]. Signal strength‑based localization 
methods have been popular in literature where 
multiple access points are used for triangulation to 
estimate the location of an object of interest. These 
methods fail to provide ϐine range resolution with 
limited access points, performs poorly in a 
Non‑Line‑Of‑Sight (NLOS) environment and provide a 
sub‑meter level of accuracy [10].

Localization using radio signals has always been an area of 
interest. For an indoor scenario, Wi‑Fi is viable and a 
better option than a cellular system. Several methods 
have been proposed for indoor localization using Wi‑Fi 
signals such as [8], which describes the implementation 
of a Wi‑Fi ϐingerprinting method using a Received Signal 
Strength Indicator (RSSI) from access points to determine 
the position of users in indoor areas. In [9], multiple Wi‑Fi 
sources around the indoor area are used for localization 
and object tracking and the algorithm primarily relies on 
a triangulation method.

As the RSSI‑based method suffers in NLOS conditions, in 
[10], location‑speciϐic Channel State Information (CSI) is 
used as a ϐingerprint and is claimed to provide 5cm pre‑ 
cision in an 20cm×70cm area in a non‑line‑of‑sight ofϐice 
environment with one link measurement. In [11], a solu‑ 
tion for Simultaneous Localization And Mapping (SLAM) is 
proposed using channel state information. It captures the 
local spatial geometry of the area using CSI in a channel 
chart in such a way that points which are closer in space 
also appears closer in the channel chart. This is done by 
extracting features from the channel and applying dimen‑ 
sionality reduction algorithms. In [12], a RADAR is used to 
capture the 2‑D RADAR image of the surroundings and that 
is used as an input for iterative closest point algorithms to 
solve a SLAM problem.

In this paper, we present an algorithm based on signal 
processing and ML for indoor localization in an ISAC kind 
of setup. We also propose a model for counting the to‑ 
tal number of persons in the environment. We use an in‑ 
door scenario such as a room and use a radio signal in the 
form of the channel estimation ϐield of Wi‑Fi signal (IEEE 
802.11ay). At the receiver, we estimate the channel in the 
Doppler and angular domain to extract the features that 
are relevant for estimation of the users’ location such as 
range, velocity and the angular information of the users. 
We refer these features as sensible features further in this 
paper. Finally, we propose machine learning models to 
map the features to localize and count the persons in the 
surroundings. Main contributions of the paper are as fol‑ 
lows:

• Estimating channel in angular domain for Wi‑Fi 
signals (IEEE 802.11ay).

• Methods for extracting sensible features from the raw
data of Wi‑Fi signals (IEEE 802.11ay) at the receiver
for localization tasks.

• Proposing a machine learning model for the localiza‑
tion of persons in the surrounding environment.

This paper is organized as follows: Section 2 describes the 
system model. In Section 3, sensible features are extracted 
followed by the ML model description in Section 4, and 
results are presented followed by the conclusion in 
Section 5.

2. SYSTEM MODEL
We consider an indoor scenario with a transmitter (Tx) 
and a receiver (Rx) which communicate using IEEE 
802.11ay packets. An IEEE 802.11ay packet is of duration 
𝑇𝑝 seconds which contains preamble, Channel Estimation 
Field (CEF) and data symbols. Tx and Rx communicate us‑ 
ing an antenna array of 𝑁𝑡𝑥 and 𝑁𝑟𝑥 elements 
respectively. Packets are transmitted with a carrier 
frequency of 60 GHz. In this paper, we focus on CEF for a 
person’s localization in the indoor scenario. CEF consists 
of Golay Sequence of length 1024 as shown in Fig. 1 where 
𝐴512 and 𝐵512 are the complementary sequences of length 
512 which follow the following property:

𝜓𝐴512,𝐴512 (𝑘) + 𝜓𝐵512,𝐵512 (𝑘) = 0; ∀𝑘 ≠ 0, (1)
where 𝜓𝐴512,𝐴512 (𝑘) and 𝜓𝐵512,𝐵512 (𝑘) are 𝑘 − 𝑡ℎ element 
of an autocorrelation sequence 𝐴512 and 𝐵512 

respectively. Note that, in Fig. 1, the Golay sequence of 
length 1024 is re‑ peated twice and padded with smaller 
length complemen‑ tary sequences for better channel 
estimation in presence of inter‑symbol interference and 
thus the CEF length is 𝑁𝑠.  𝐴512 and 𝐵512 also follow the 
following property and said to be orthogonal to each 
other [13]:

𝜓𝐴512,𝐵512(𝑘) = 0; ∀𝑘, (2)

where 𝜓𝐴512,𝐵512(𝑘) is 𝑘 − 𝑡ℎ element of the cross‑
correlation function of sequence 𝐴512 and 𝐵512.

802.11ay packet
A512 B512    A128 

B128   A512 B512   A128

Channel 
estimation field

Golay sequence

802.11ay packet
A512 B512    A128 

B128   A512 B512   A128

Tp ms

Time#1 Time#2

Signal 
transmitted NsxNtx No. of Tx antenna

Fig. 1 – Transmitted signal structure of an 802.11ay system: Packets are
transmitted with a period 𝑇𝑝 seconds over 𝑁𝑡𝑥 antennas. The signal of
interest is Channel Estimation Field (CEF) which consists of a Golay se‑
quence of length 1024 containing two complementary sequences 𝐴512

and 𝐵512 .

Without Loss of Generality (WLOG), the surrounding envi‑
ronment is assumed to be static and only persons are as‑
sumed to be moving with a velocity of 𝑣 m/s. The trans‑
mitted signal gets reϐlected from the moving persons and
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environment and the resultant signal is received at𝑁𝑟𝑥 re‑
ceiver antennas. We consider an 𝐿 + 1 tap channel (𝐻)
and it can be shown as 𝐻 = [𝐻0, 𝐻1, 𝐻2, ..., 𝐻𝐿] where
the channel for each tap (𝐻𝑖) can be represented as [14]:

𝐻𝑖 = ⎡⎢
⎣

ℎ1,1(𝑖) ⋯ ℎ1,𝑁𝑡𝑥
(𝑖)

⋮ ⋱ ⋮
ℎ𝑁𝑟𝑥,1(𝑖) ⋯ ℎ𝑁𝑟𝑥,𝑁𝑡𝑥

(𝑖)
⎤⎥
⎦

, (3)

where ℎ𝑚,𝑛(𝑖) is the channel coefϐicient for 𝑖𝑡ℎ tap be‑
tween 𝑚𝑡ℎ receiver antenna and 𝑛𝑡ℎ transmitter antenna.
The received signal on 𝑁𝑟𝑥 antennas can be represented
as follows:

𝑌 = 𝐻𝑋 + 𝑁, (4)

where 𝑌 = [y(0), ..., y(𝑁𝑠 + 𝐿 − 1)], where y(𝑘) =
[𝑦1(𝑘), .., 𝑦𝑁𝑟𝑥

(𝑘)]𝑇 and 𝑁 is the noise vector. Transmit‑
ted signal matrix(𝑋) is ϐilled with shifted CEF in the rows
as follows:

𝑋 = ⎡
⎢⎢
⎣

x(0) ⋯ ⋯ x(𝑁𝑠 − 1) 0𝑁𝑡𝑥,1 ⋯ 0𝑁𝑡𝑥,1
0𝑁𝑡𝑥,1 x(0) ⋯ x(𝑁𝑠 − 1) 0𝑁𝑡𝑥,1 ⋯ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ 0𝑁𝑡𝑥,1
0𝑁𝑡𝑥,1 ⋯ 0𝑁𝑡𝑥,1 x(0) ⋯ ⋯ x(𝑁𝑠 − 1)

⎤
⎥⎥
⎦

,

(5)

where x(𝑖) = [𝑥1(𝑖), ..., 𝑥𝑁𝑡𝑥
(𝑖)]𝑇 is a vector comprising of

all the 𝑖𝑡ℎ elements of the CEF sequence transmitted from
all the transmitter antennas.
As shown in Fig. 2, at the receiver, the channel is esti‑
mated in the tap domain. Channel taps can be perceived
as a differentiator for the arrival rays at the receiver being
reϐlected from the persons in the surroundings based on
time of arrival and thus captures the information to dis‑
tinguish the persons located in different parts of the sur‑
roundings. Further, we convert the channel in the Doppler
domain, which further distinguishes the persons based on
their movement speed. Then, the channel is converted
in an angular domain, which then separates the persons
based on their angular separation. The channel in the
angular domain provides the sensible features compared
with the raw data at the receiver. These sensible features
are then fed to a deep learning‑based detector. It consists
of feed‑forward layers and a softmax layer at the output,
which predicts the number of persons in all parts of the
surrounding area.

3. ALGORITHM DESCRIPTION
In this section, we describe the algorithm to extract sen‑
sible features in sections 3.1‑3.3 which are channel esti‑
mation and conversion to a Doppler and angular domain.
And ϐinally, deep learning‑based detector is explained in
Section 3.4.

3.1 Channel estimation
In this section, we describe the method for the channel
estimation for IEEE 802.11ay signal which is explained in

Presence detection 
and people counting 

Waveform generator  
and Tx

Receiver

Channel estimation 

Doppler domain channel

ML based Detector 

Receiver Signal processing

Angular domain channel

Fig. 2 – Systemmodel: Signal processing on the raw inputs followed by a
machine learning model‑based detector for localization

Section 2. Using (4), the channel can be estimated as least
square estimate [15] as follows:

𝐻 = 𝑌 𝑋𝑇 (𝑋𝑋𝑇 )−1. (6)

Note that using (6), we get an L‑tap channel for every
transmitter and receiver antenna pair and dimension of
𝐻 is 𝑁𝑟𝑥 × 𝑁𝑡𝑥 × 𝐿 for each and every received packet.
Channel taps can be seen as a discriminator for arrival rays
at the receiver after reϐlecting off the objects, which are
present in the surroundings. Channel taps depict the Time
Difference of Arrival (TDoA) of reϐlected rays from the var‑
ious objects in the surroundings, and TDoA of various rays
depend on the location of the objects. There can be a sce‑
nario where reϐlected rays from the two objects fall under
the same tap of the channel. In this scenario, the two ob‑
jects cannot be distinguished solely based on the channel
taps. We exploit the velocity of the objects to distinguish
them further, which is explained in the next section.

3.2 Channel in delay‑Doppler domain
If there is only one object that falls under a channel tap,
the phasor corresponding to the channel tap rotates with
a speed (let us assume𝜔 radian per samples) that is equiv‑
alent to the Doppler or velocity of that object. Fourier
Transform (FT) of the discrete time signal corresponding
to this tap, results in a peak at 𝜔 in the frequency domain.
Let us consider a scenariowhere two objects fall under the
same tap of channel. If there are two objects that fall un‑
der a channel tap, then the signal corresponding to the tap
is the sum of the two phasors corresponding to these two
objects and the FT of this signal result in two peaks in fre‑
quency domain. The two peaks will be at the frequencies
corresponding to the speed of the objects. As we know,
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Time  Avg # p

Fig. 3 – Channel conversion to Doppler domain: There are total 𝑁𝑐 packets and channel of 𝐾 consecutive packets are grouped together for averaging.
An 𝑁𝑐/𝐾‑point DFT is performed for each channel tap.

Fourier transform resolves any signal in its constituent
components, thus Fourier transform performed on a tap
in the time domain will resolve the Doppler of the objects,
which fall under the same tap.

We consider 𝑁𝑐 consecutive packets in the time domain
for Doppler domain channel processing. The duration of
a packet is 𝑇𝑐 seconds. The channel is estimated ϐirst for
all these 𝑁𝑐 packets as explained in Section 3.1 and can be
represented as follows:

𝐻𝑡 = [𝐻(1), ......, 𝐻(𝐾), ...., 𝐻(𝑁𝑐)]. (7)

For coverage enhancement or to gain in the Signal to Noise
Ratio (SNR), the averaging of 𝐾 consecutive channel es‑
timates is done which results in 𝑁𝑐/𝐾 size time domain
vector of averaged channel estimates (𝐻𝑡𝑎𝑣𝑔).

𝐻𝑡𝑎𝑣𝑔 =[mean(𝐻(1), .., 𝐻(𝐾)), ..

..,mean(𝐻(𝐾(𝑁𝑐
𝐾 − 1)), .., 𝐻(𝑁𝑐)].

(8)

Then 𝑁𝑐/𝐾‑point Discrete Fourier Transform (DFT) is
performed on each channel tap of𝐻𝑡𝑎𝑣𝑔 for every tx‑rx an‑
tenna pair to get the channel in the Doppler domain as fol‑
lows:

𝐻𝐷𝑜𝑝𝑝
𝑙 (𝑑)[𝑚, 𝑛] = DFT(𝐻𝑡𝑎𝑣𝑔

𝑙 [𝑚, 𝑛])(𝑑), (9)

where 𝑙 ∈ {0 ⋯ 𝐿} is the tap index of the channel, 𝑚 ∈
{1 ⋯ 𝑁𝑟𝑥} and 𝑛 ∈ {1 ⋯ 𝑁𝑡𝑥} are the receiver and trans‑
mitter antenna index and 𝑑 ∈ {1 ⋯ 𝑁𝑐

𝐾 } is the Doppler in‑
dex or 𝑑𝑡ℎ bin of DFT.Multiple objects, which fall under the
same tap index, can be distinguished now in the Doppler
domain. Note that if the two objects which are in same
channel tap, have a similar velocity then there is a possi‑
bility that these two objects fall under the same tap and
Doppler bin and then they can’t be distinguished with the
Doppler domain channel.

Let us consider a scenario where there are two persons
moving with velocity 𝑣ℎ1 and 𝑣ℎ2 respectively and they fall
under the same channel tap. Phasors corresponding to
both the persons rotate with the speed 𝜔ℎ1 and 𝜔ℎ2 radian

per samples respectively. A sampling period of the signal
𝐻𝑡𝑎𝑣𝑔 is 𝐾𝑇𝑐, 𝜔ℎ1 and 𝜔ℎ2 can be represented as follows:

𝜔ℎ1 = 2𝜋𝐹Δ𝜏1,
𝜔ℎ2 = 2𝜋𝐹Δ𝜏2, (10)

where 𝐹 is the carrier frequency. Δ𝜏1 is the time differ‑
ence of the rays which are arriving at the receiver, asso‑
ciated with the phase change during the sampling period
and can be further simpliϐied and written in terms of ve‑
locity as: 𝑣ℎ1𝐾𝑇𝑐

𝑐 . Similarly, Δ𝜏2 can be written as 𝑣ℎ2𝐾𝑇𝑐
𝑐 .

A property of Fourier Transform (FT) states that the dif‑
ference between two consecutive constituent components
should be larger than the inverse of number of resolvable
bins. Velocity resolution (𝑉𝑟𝑒𝑠) i.e. minimum velocity dif‑
ference between two objects, which is needed for them to
distinguish, can be estimated using the FT property as fol‑
lows:

𝜔ℎ2 − 𝜔ℎ1 > 2𝜋
𝑁𝑐/𝐾

⟹ 2𝜋𝐹𝐾𝑇𝑐(𝑣ℎ2 − 𝑣ℎ1)
𝑐 > 2𝜋

𝑁𝑐/𝐾
putting 𝐹 = 𝑐/𝜆,

⟹ 𝐾𝑇𝑐(𝑣ℎ2 − 𝑣ℎ1)
𝜆 > 1

𝑁𝑐/𝐾

⟹ 𝑣ℎ2 − 𝑣ℎ1 > 𝜆
𝑁𝑐𝑇𝑐

⟹ 𝑉𝑟𝑒𝑠 = 𝜆
𝑁𝑐𝑇𝑐

.

(11)

As shown in (11), velocity resolution depends on the num‑
ber of the samples used for Doppler domain processing
and the time duration of a packet.

3.3 Channel in delay‑Doppler‑angular domain
Let us consider a scenariowhere two objects fall under the
same channel tap and Doppler bin (i.e. Δ𝑣 < 𝜆

𝑁𝑐𝑇𝑐
) as

shown in (11), they cannot be distinguished solely based
on the Doppler domain channel, so we further explore the
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spatial dimension to make them differentiable. The objec‑
tive of the conversionof theDoppler domain channel to an‑
gular domain, is to resolve the transmit and arrival paths
of rays into angular bins. A channel is said to be the sum
of multiple paths that originate from the transmitter and
arrive at the receiver as follows [16]:

𝐻 = ∑
𝑖

𝑎𝑖𝑒𝑟(Ω𝑟𝑖)𝑒𝑡(Ω𝑡𝑖), (12)

where 𝑎𝑖 is the attenuation associated with the 𝑖𝑡ℎ path.
The 𝑖𝑡ℎ pathmakes the angle 𝜙𝑟𝑖 with the receiver antenna
array and 𝜙𝑡𝑖 with the transmitter antenna array and Ω𝑟𝑖
and Ω𝑡𝑖 are the respective direction cosines. 𝑒𝑡(Ω) and
𝑒𝑟(Ω) are the transmitted and received unit spatial signa‑
ture, respectively, along the direction Ω and is calculated
as follows [16]:

𝑒𝑟(Ω) = 1
√(𝑁𝑟𝑥)

⎡
⎢⎢
⎣

1
𝑒𝑥𝑝(−𝑗2𝜋Δ𝑟Ω)

⋮
𝑒𝑥𝑝(−𝑗2𝜋(𝑁𝑟𝑥 − 1)Δ𝑟Ω)

⎤
⎥⎥
⎦

, (13)

𝑒𝑡(Ω) = 1
√(𝑁𝑡𝑥)

⎡
⎢⎢
⎣

1
𝑒𝑥𝑝(−𝑗2𝜋Δ𝑡Ω)

⋮
𝑒𝑥𝑝(−𝑗2𝜋(𝑁𝑡𝑥 − 1)Δ𝑡Ω)

⎤
⎥⎥
⎦

, (14)

where Δ𝑟 and Δ𝑡 are the separation between consecutive
antennas normalized by wavelength in the receiver and
transmitter antenna arrays. For received signal space, an
orthonormal basis can be written as follows [16]:

𝜎𝑟 = {𝑒𝑟(0), 𝑒𝑟( 1
𝐿𝑟

), ...., 𝑒𝑟(𝑁𝑟𝑥 − 1
𝐿𝑟

)}, (15)

where 𝐿𝑟 is length of the receiver antenna array normal‑
ized by wavelength. Similarly, the basis for transmit signal
space can also be constructed as 𝜎𝑡. Receive and transmit
signals can be represented in the angular domain using ba‑
sis 𝜎𝑟 and 𝜎𝑡. Transmitted signal (𝑋) and received signal
(𝑌 ) can be represented in the angular domain as follows
[16]:

𝑋𝑎 = 𝑈 ∗
𝑡 𝑋,

𝑌 𝑎 = 𝑈 ∗
𝑟 𝑌 , (16)

where 𝑈𝑡 and 𝑈𝑟 are the unitary matrices in the signal
spaces 𝜎𝑡 and 𝜎𝑟 respectively and can be calculated as fol‑
lows [16]:

𝑈𝑡(𝑘, 𝑙) = 1
√𝑁𝑡𝑥

𝑒𝑥𝑝(−𝑗2𝜋𝑘𝑙
𝑁𝑡𝑥

),

𝑈𝑟(𝑘, 𝑙) = 1
√𝑁𝑟𝑥

𝑒𝑥𝑝(−𝑗2𝜋𝑘𝑙
𝑁𝑟𝑥

),
(17)

where 𝑘, 𝑙 ∈ {0 ⋯ 𝑁𝑡𝑥 − 1} for 𝑈𝑡 and 𝑘, 𝑙 ∈ {0 ⋯ 𝑁𝑟𝑥 − 1}
for 𝑈𝑟. The angular domain channel can be calculated by
putting (16) into (4) as follows:

𝐻𝑎 = 𝑈 ∗
𝑟 𝐻𝐷𝑜𝑝𝑝𝑈𝑡. (18)

The dimension of 𝐻𝑎 are 𝑁𝑟𝑥 × 𝑁𝑡𝑥 × 𝐿 × 𝑁𝑐
𝐾 , where the

ϐirst two dimensions are for angular bins for receiver and
transmitter, third dimension is for channel taps and the
last dimension is for Doppler bins. This angular domain
channel helps in distinguishing the objects further based
on angular separation and is used as the input for a deep
learning model.

3.4 Deep learning model for localization
In this section, the architecture of a Deep Learning (DL)
model is described. WLOG, let us assume the surrounding
environment is divided into multiple sectors (a total of 𝑁
sectors). There are amaximumof𝑋 personspresent in the
surroundings with a maximum of 𝑀 persons in each sec‑
tor. The DLmodel predicts howmany persons are present
in each sector, which is referred to as a localization model.
We train anotherDLmodel, which is referred to as a count‑
ing model and it is trained to predict the total number
of persons which are present in the surrounding environ‑
ment (a maximum of 𝑋 persons). Absolute value of the
channel in the angular domain is used as the input.
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Fig. 4 – Deep learning model: Channel in range Doppler angular domain
is the input and at output layer, two models are proposed. A counting
model which predict the count, the total number of persons in the sur‑
roundings (maximum is 𝑋) and a localization model which predicts the
number of persons in each area of surroundings (a total of𝑁 sectors and
a maximum of 𝑀 persons in each sector). Note that, we are using two
different neural networks with the same structure for localization and
counting activities.

As shown in Fig. 4, absolute values of the angular channel
is fed to a couple of 𝑑𝑒𝑛𝑠𝑒 layers and followed by a softmax
layer. For the localization model, the output layer consists
of𝑀 softmax neurons for each of the𝑁 sectors and for the
counting model, the output layer is a softmax layer of 𝑋
neurons. The counting model is used for post‑processing
of the prediction of the localization model for improving
the accuracy.
Fig. 5 describes the algorithm for post‑processing of the
localizationmodel predictionbasedon the countingmodel
prediction. Let us consider a scenario where the counting
model predicts the total number of persons in the envi‑
ronment is 𝑃𝑐. The localization model predicts the total
number of persons for each sector as {𝑃 1

𝐿, ⋯ 𝑃 𝑁
𝐿 }, so the

total number of persons in the surroundings predicted by
the localization model is 𝑃𝐿 = ∑𝑁

𝑖 𝑃 𝑖
𝐿. If 𝑃𝑐 and 𝑃𝐿 are

different, then the results of the localizationmodel are up‑
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dated based on the counting model prediction and this is
because, we found during the experiment that the count‑
ing model provides better accuracy than the localization
model in all the scenarios. The localization model pro‑
vides the softmax probabilities for the number of persons
present in each sector. We sort the sectors based on the
difference between softmax probabilities of the top‑2 neu‑
rons. In Fig. 5, 𝐵1𝑠𝑖 is the best neuron and 𝐵2𝑠𝑖 is the sec‑
ond best neuron for a sector 𝑖 and 𝐴 is a list of sorted sec‑
tors based on the difference between softmaxprobabilities
of the 𝐵1𝑠𝑖 and 𝐵2𝑠𝑖). Until the 𝑃𝐿 matches with the 𝑃𝑐,
sectors are chosen from the top of the sorted array 𝐴 and
thepredictionof the localizationmodel is updatedwith the
second best softmax neuron if it helps in minimizing the
gap between 𝑃𝐿 and 𝑃𝑐 . Updates are stopped when 𝑃𝐿
matches with the 𝑃𝑐.

 Total number of 
persons: PC

 Total number of persons: PL 
=sum( PSi ) ; i=1..N

B1Si  : Best prediction for i
B2Si  : 2-nd best prediction

Counting Model 
Prediction:

Localization Model 
Prediction:

Compare 
PC and PL

A = Sort  (Pr(B1Si )-
Pr(B2Si )

Pr is softmax probability

Choose an entry of A 
from top

Choose an entry of A 
from top

PC < PL PC > PL

If B1Si   >  B2Si  If B1Si   <  B2Si  

Choose next 
entry untill

 PC = PL

Replace the prediction with  B1S2    from B1Si  

Yes

No No

Yes

Fig. 5 – Post‑processing for the localization model predictions: Total
number of persons predicted by the counting model is 𝑃𝐶 and by the lo‑
calization model is 𝑃𝐿 . Result of the localization model is updated with
this algorithm until 𝑃𝐿 matches with 𝑃𝑐 .

4. EXPERIMENTAL SETUP AND PERFOR‑
MANCE EVALUATION

For the experimental setup, we have considered a dataset
provided by National Institute of Technology and Science,
USA. The dataset is generated using an IEEE 802.11Aay
WLAN simulator [17],[18] and it considers an indoor sce‑
nario, speciϐically a room of dimension (7.8m ×7m ×3m),
which is divided into a total of 9 sectors (sector 𝐴 to 𝐼) as
shown in Fig. 6. There are two access points which com‑
municate using IEEE 802.11ay packets, one of which is the
transmitter and located at (−3.9, 0, 2.8) and the other is
the receiver located at (3.9, 0, 2.8). There can be a max‑
imum of four persons in any sector and maximum eight
persons in the room. In this simulator, persons are mod‑

elled as 17 joints for scattering of rays and velocity of per‑
sons is around ≈ 1 m/s. The aim is to ϐind the number of
persons in each sector using the received signal. For ex‑
ample, in Fig. 6, there is one person each in sector 𝐺 and
𝐶 and the rest of the sectors have 0 persons.

7.8 m

7
m

3m

Tx
: 

(-
3

.9
,0

,2
.8

) R
x: (3

.9
,0

,2
.8

)

17 joints for scattering
Speed: ~ 1m/s 

Fig. 6 – Experimental setup: A room is considered for dataset generation
and it is divided into nine sectors. Samples are generated with differ‑
ent arrangements of the persons in the room. For example, in this ϐigure,
there is a person in sector 𝐶 and 𝐺 and the rest of the sectors are empty.

In this dataset, a training sample corresponds to the trans‑
mission of an IEEE 802.11ay packet repeating 𝑁𝑐 = 128
times using 𝑁𝑡𝑥 = 4 antennas. We take only the CEF
part of the packets for sensing or localization. The dimen‑
sion of the signal transmitted is 2432 × 4 × 128 which is
(𝑁𝑠 × 𝑁𝑡𝑥 × 𝑁𝑐). The carrier frequency is 60 GHz, sam‑
pling frequency is 1.76 GHz and the number of channel
taps are 𝐿 = 45 . At the receiver, the signal is received
at 𝑁𝑟𝑥 = 4 antennas and its dimension is 2476 × 4 × 128
(𝑁𝑠 + 𝐿 − 1 × 𝑁𝑟𝑥 × 𝑁𝑐).

For training of the DL model, a total of 15578 different ar‑
rangements of persons in the room are considered. Data is
generated for multiple Signal to Noise Ratio (SNR) points
ranging from −18dB to 18dB. In the DL model, there are
two dense layers of 3000 and 500 neurons respectively.
We have used the Rectiϐied Linear unit (𝑅𝑒𝐿𝑢) for activa‑
tion with L2 regularization. For the localization model, 5
𝑠𝑜𝑓𝑡𝑚𝑎𝑥 neurons are used for each sectors summing up
to a total of 45 neurons. For the counting model, total 9
𝑠𝑜𝑓𝑡𝑚𝑎𝑥 neurons are used. To avoid overϐitting, we have
used an ADAM optimizer with learning rate 0.0005 and ex‑
ponential decay every10000 stepswhere1 step training in‑
volves 32 samples and themodel is trained for 200 epochs.
The dataset is imbalanced and there are more samples for
less number of persons in any sector, so a weighted learn‑
ing has been used for different labels. For testing, samples
are generated with different noise vectors using the simu‑
lator.

The channel is estimated as mentioned in Section 3.1 and
its dimensions are 4×4×45×128, where the 4𝑡ℎ dimension
represents the number of packets (𝑁𝑐) and the other three
represent the same information as mentioned in Section
3.1. Then the channel is averaged for 𝐾 = 8 consecutive
times and processed for Doppler domain conversion (Sec‑
tion 3.2) and the dimensions of this channel come out to
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be 4 × 4 × 45 × 16. Then, they are converted to the angular
domain (Section 3.3) and absolute value of this channel is
then fed to the DL model (Section 3.4).

We have drawn the results for both countingmodel and lo‑
calization model. For performance evaluation, accuracy of
the counting model is drawn and shown in Table 1 which
is number of times the total number of persons in the
room are predicted correctly. As shown in Table 1, for the
datasetwith good signal condition, themodel predicts cor‑
rectly for almost all the samples.

Table 1 – Counting model accuracy: % Number of samples for which the
model predicts correctly the total number of persons in the room.

SNR (dB) Accuracy%
18 99.90
10 99.82
5 99.76
0 99.60

−5 97.23
−10 74.34
−18 39.01

We have also drawn the counting model results for dif‑
ferent numbers of persons present in the room. In the
dataset, there are upto eight persons present in the room.
We plot the accuracy of the countingmodelw.r.t number of
persons (total 8plots correspond to thenumber of persons
present in the room) for various SNR points and is shown
in Fig. 7.
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Fig. 7 – Counting model accuracy plot w.r.t different number of persons
in the room vs SNR.

The localization model is also evaluated and its accuracy
drawn and shown in Table 2 which is the number of times
the total number of persons in each sector is predicted cor‑
rectly. Here, even if prediction of one sector mismatches
from the true label out of nine sectors, wemark it a failure
case for the sample. Only if the prediction of all the sectors
matches with the true labels, the sample is marked as a
success case. Hence, the accuracy of the localizationmodel
is less than the countingmodel. For poor signal conditions,
such as SNR ‑18dB, there is not enough signal information
for the DL model to make an accurate prediction.
As we explained earlier that if the localization model fails
to predict only one sector out of the total nine sectors,

Table 2 – Localization model accuracy: % Number of samples in which
model predicts correctly the number of persons in each sector.

SNR (dB) Accuracy%
18 99.00
10 96.09
5 93.68
0 83.13

−5 44.74
−10 5.97
−18 2.00

we mark that sample as a failure for localization model
accuracy. In Fig. 8, we compare the accuracy of sector‑
speciϐic prediction for different numbers of persons with
SNR. Here, we consider the prediction of each sector as
an independent prediction and show that the accuracy of
sector‑wise prediction degrades with the increment in the
number of the persons in the sectors. At an SNR greater
than 0 dB, accuracy of the sector‑wise prediction is greater
than 95% for any number of persons in the sector. At a
lower SNR i .e. SNR lower than −10 dB, accuracy of the
sector‑wisepredictiondecreaseswith the increment in the
number of persons as shown in Fig. 8.
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Fig. 8 – Accuracy plot based on number of persons in a sector: Localiza‑
tion model prediction accuracy when the sectors are considered as inde‑
pendent samples and the plot shows the accuracy vs SNR performance
with different numbers of persons in the sectors.

Finally, we discuss the resolutions in the range, velocity
and angular domain. In this paper, ϐirst we have tried
to distinguish the persons as far as possible using chan‑
nel estimation and signal processing. We have used ma‑
chine learning to analyse the extracted features for local‑
ization. Two persons can be distinguished if they fall un‑
der different tapswhichmeans delay in arrival of rays scat‑
tered from the two persons should be greater than 0.56 ns
(=1/1.76GHz). This information suggests if the separation
of persons is more than 17 cm, they can be distinguished.
Similarly, using (11), velocity resolution is 4 cm/sec where
𝜆 is 5mm as the carrier frequency is 60GHz, 𝑁𝑐 is 128 and
𝑇𝑐 is 1ms. Considering 16 Doppler domain bins, two per‑
sons with a velocity difference up to 64 cm/sec can be dis‑
tinguished if they are at least 4 cm/sec apart in velocity.
For angular resolution [16], it can be calculated using a
normalized length of antenna array (𝐿𝑟 and 𝐿𝑡) which is
2 with 𝑁𝑟𝑥 and 𝑁𝑡𝑥 being 4 and resolvable angular bins
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are of size 1/𝐿𝑟 and 1/𝐿𝑡 for the receiver and transmitter
respectively i.e. 0.5 and 0.5 radian which is 28𝑜 for both
transmitter and receiver.

5. CONCLUSION
In this paper, we proposed an indoor localization method,
which can assist the research of Integrated Sensing And
Communication (ISAC). We observed near‑perfect local‑
ization accuracy with the collected data. The proposed al‑
gorithm contributes to the emerging ISAC technology and
is easy to implement. We used both signal processing and
machine learning to separate out multiple persons and lo‑
calize them, which is a novel method. Our future work
involves person identiϐication along with localization and
contribution towards simultaneous location andmapping.
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