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Abstract – The aims demonstrated in this article are to effectively monitor the complex road environment 
in smart city transportation using the sixth generation mobile communication technology (6G) Digital 
Twins (DTs), to perceive the complex road environment of smart city traffic. Vehicular Networks (VN) in the 
smart transportation system have been selected as the research object, and the multi-sensor collaboration 
and fusion technology in the network is explored, so as to meet the active control requirements of intelligent 
vehicles. A lidar and camera fusion-based segmentation network C-LNet is proposed. The structure of a 
C-LNet multi-sensing data fusion segmentation network is double encoder-single decoder. Two encoders are
used to extract image features and lidar features respectively. The same heterogeneous data is realized
through the synchronization of lidar point cloud data and image data in sensor space. For multimodal
information, a multiscale feature fusion-based vehicle collaboration method is designed. In the simulation
experiment part, the C-LNet multi-sensing data fusion segmentation network is verified on the KITTI data
set. The accuracy, F1 value, and MIoU of C-LNet are 98.4%, 96.7%, and 94.51%, respectively, which are
better than those of an RGB network and lidar network. In summary, the smart transportation system
supported by DTs in a 6G environment is explored. The proposed VN sensing fusion method can effectively
realize the collaborative positioning perception of multiple vehicles, which lays the foundation for the
realization of complex collaborative decision-making and control in smart transportation.
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1. INTRODUCTION

The ability of mobile communications have evolved 
from focusing on person-to-person connection to 
fully utilizing object-to-object connection and 
further to comprehensively address object-to-object 
connection [1-3]. Since the rise of mobile 
communications, a new generation of mobile 
communications will begin large-scale commercial 
deployment to provide users with more powerful 
connectivity and new functions every ten years. 6G 
will adopt the latest technology to meet application 
needs from 2030 to 2040 or for even longer, and 
adapt and rely on each other with social and 
economic development. 6G adds a wide coverage 
and high delay communication scenario based on 
the three existing services of 5G to build a unified 
network with full coverage and connection [4]. The 
development of mobile communications is 
considered from the application demand of future 
intelligent urban agglomeration. Lv et al. (2018) [5] 
raised that the most important vision of 
communication technology is to enable smart urban 
agglomeration. 6G means faster speed, lower latency, 
and a lot of bandwidth. 6G goes beyond the “wired” 
network and uses equipment as an antenna, 
adopting a decentralized network that is not 

controlled by a single network operator. If all 
connections are 6G, the connected devices will be 
more free. The main reason is that faster data 
transmission speed and less delay make the instant 
connection from device to device possible. As one of 
the infrastructures of the urban agglomeration, 6G 
will adopt a unified network architecture and 
introduce new business scenarios to build a more 
efficient and complete network [6, 7]. In the future, 
6G networks can be invested in by multiple 
operators to separate physical and logical networks 
through network virtualization technology, 
software-defined networks, and network slicing 
technology. 

The smart city 3D visualization management 
platform realizes the scene display of various objects 
and data under the jurisdiction of government 
departments via 3D geographic information fusion 
technology [8]. Digital Twin (DT) technology is 
utilized to build a smart city digital space, supported 
by vivid visual effects, comprehensive data 
integration, and scene business display, effectively 
improving the monitoring and management 
efficiency of smart city Intelligent Operations Center 
(IOC) managers on urban operation, public security, 
transportation, government affairs, and other 
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businesses, and support the auxiliary decision-
making of a smart city and smart parks [9-11]. The 
spatial distribution and density of each facility 
component is displayed in the urban three-
dimensional scene, and the status data and 
operational data of equipment and facilities are 
intelligently monitored, analyzed, and mined in 
combination with big data, so as to realize intelligent 
perception and decision support. The Internet of 
Things (IoT) perception channels are 
comprehensively integrated to construct a network 
logic structure of the IoT system, scene, event-based 
Unicom IoT perception status and business 
indicators. The logical relationship between the 
physical devices of each node and the operation of 
the service system is established to monitor the 
whole process of service operation, analyze the 
impact scope of events, and locate and remove 
obstacles for the root cause [12]. It realizes urban 
event convergence perception, monitors the whole 
process state of the event, integrates alarm, work 
order, personnel, vehicles, and other event 
monitoring and processing elements, completes 
early warning monitoring and event analysis via 
business scenarios and workflow, and helps to 
realize urban life cycle management.  

With the acceleration of the vehicles towards 
intelligent, networking, and other directions, on the 
one hand, for urban buildings, roads, facilities, 
intelligent requirements are also getting higher and 
higher, vehicles need more support and protection 
of new urban infrastructure. On the other hand, the 
construction and development of smart cities also 
need to take the development of a smart Vehicular 
Network (VN)  as the starting point and driving force, 
improving travel services and operational efficiency 
of cities through rational planning and optimization 
of urban infrastructure. The development of smart 
VNs requires smart cities as the foundation, and the 
development of smart cities requires smart VNs to 
provide an entry point. The two complement each 
other, so the coordinated development of smart city 
and smart VN needs to be accelerated. The 
development of a smart city is inseparable from the 
optimization and development of an intelligent 
transportation system [13, 14]. A VN is a local 
communication network composed of an Electronic 
Control Unit (ECU). On the whole, in the VN, the 
vehicle sensor is the input device of the vehicle 
computer system. It converts the various working 
conditions of the vehicle, such as the vehicle speed, 
the temperature of various media, and the operating 
conditions of the engine, into electrical signals to the 

computer so that the engine is in a good working 
state. It is obvious that the wheel rotation speed 
sensors are used to measure the speed [15-17]. At 
present, most of the speed meters on electric 
vehicles in China are converted into vehicle speed by 
the rotational speed of the automobile tire. Among 
vehicle sensors, ultrasonic radar is a common 
variety. For the short-distance measurement, an 
ultrasonic distance measurement sensor has great 
advantages and is often applied in reversing radar 
[18]. Ultrasonic radar is usually classified into two 
types, the first is installed on the front and rear 
bumper of the vehicle, which is the reversing radar 
used to measure obstacles. The other is an ultrasonic 
radar installed on the side of the vehicle to measure 
the distance of the obstacle on the side.  

In the DTs-based smart city, the development of 
smart transportation should not only perceive the 
complex road environment, but also perceive the 
accurate and reliable location information of 
vehicles. The VN in the intelligent transportation 
system is selected as the research object to discuss 
the multi-sensor collaboration and fusion 
technology in the network, so as to meet the 
requirements of active control of intelligent vehicles. 
The innovation lies in the analysis of the smart city 
system supported by DTs technology in the 6G 
environment, especially the design principle of the 
existing VN mobile model. In addition, the vehicle-
vehicle communication-based multi-vehicle 
cooperative positioning sensing method is improved 
and verified, which lays a foundation for the 
realization of complex cooperative decision-making 
and control in VNs.  

2. RECENT RESEARCH DEVELOPMENT

2.1 Construction of smart city supported by 
6G technology 

6G has become one of the focuses of science and 
technology strategy competition among countries. 
However, there are many scattered technical points 
that need to be paid attention to in 6G, which is still 
at the level of academic research, and the concept of 
6G has not yet formed a clear and consistent 
definition. 6G will utilize connected low earth orbit 
satellites and other non-ground network nodes and 
platforms to build a space-ground integration 
network, so as to achieve seamless coverage of sea, 
land, and air, including the sea, desert, mountainous 
areas, remote villages, and mobile platforms such as 
ships, aircrafts, and spacecrafts [19]. Moreover, 
it has intelligent decision-making and adaptive 
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networking, deep integration of International 
Conference on Display Technology (ICDT), credible 
endogeneity, and the network performance is higher 
than that of 5G.  

However, it is obvious that 6G technology, with 
its characteristics of high speed, low delay, and 
large capacity, meets the requirements of real-
time, high efficiency, and stability of smart city 
system. Zheng et al. (2021) [20] pointed out that 
6G expanded the reachable range of advanced 
medical technology, making telemedicine 
possible. Combining miniaturization and 
precision wearable devices with 6G technology 
provides a new idea for the management of 
chronic diseases. In addition, remote health data 
monitoring can monitor vital signs and capture 
various physiological parameters of the human 
body. Liu et al. (2020) [21] can realize the 
scientific and technological and refined 
management of agriculture and carry out all-
round control from the aspects of crop 
production, distribution, and sales using the 
advantages of real-time, shared, remote, and fast 
6G technology. High-precision soil moisture and 
temperature sensors are like small crop weather 
stations. Through 6G technology, information 
such as soil moisture, pH, nutrients, and 
meteorology are collected online, and functions 
such as automatic drought prediction and 
intelligent decisions of irrigation water 
consumption are realized. Therefore, 6G 
technology plays an important role in all aspects 
of a smart city, but its application in smart VN 
has not been reported yet. Thus, the intelligent 
VN in a smart city is discussed.  

2.2 Intelligent perception of urban traffic 

With the implementation of intelligent 
transportation system construction, continuous 
upgrading of travel services, and continuous 
development of intelligent computing 
technology, digital brings the means of 
innovation and technical upgrading of traffic 
planning. Urban traffic cognitive ability from 
road facilities to personal travel experience has 
been unprecedented improvement [22]. Zhang 
et al. (2021) [23] mentioned in their research 
that traffic sensor networks can select different 
sensing models and structures for different 
sensing objects such as fixed facilities and 
mobile devices, and adopt a fixed structure 
system to fuse all information. An intelligent 
sensing system has a strong adaptive ability, and 

the specific sensing process can be adjusted 
appropriately according to the changes of the 
environment. Kasture and Nishimura (2021) [24] 
realized the simulation of an ant transportation 
system model to analyze the cooperative 
perception and communication in the system. 
The intelligent sensing system conveys the 
traffic situation to a single ant, which uses this 
information for self-organization, so as to avoid 
traffic congestion. Due to the complex 
characteristics of an urban intelligent 
transportation system, a large amount of useless 
information in a sensing system and sensor 
network consumes limited computing and 
communication resources, resulting in the 
ineffective use of valuable information. 
Therefore, it is necessary to adopt a practical 
intelligent sensing method to obtain accurate 
traffic information in different cities. 

2.3 Vehicular sensor network (VSN) 

A VSN is a mobile self-organizing network formed by 
a large number of wireless sensor nodes loaded on 
the vehicle, which involves communication, 
computer, and wireless sensing. To meet people’s 
requirements for vehicle safety, handling, and 
comfort, more and more electronic systems are 
integrated on the vehicle. The life cycle of vehicle 
sensor nodes consists of active and dormant periods. 
The node completes data collection in the active 
period, sends data to the gateway, receives and 
executes gateway commands; it turns off the radio 
frequency module during the dormant period to 
save energy until the next active period comes [25]. 
Zhang et al. (2021) [26] reported a lightweight, high 
sensitivity, low cost, and self powered 3D 
acceleration sensor based on liquid metal friction 
nano-generator, which retains the minimum size, 
minimum weight, and maximum integration. The 
sensor can find the collision position and collision 
force of the vehicle. Li and Liu (2021) [27] pointed 
out that the network coverage is limited by the 
movement of nodes, which will lead to frequent 
changes in network topology, and the movement of 
nodes is affected by many factors such as complexity, 
fuzziness, and randomness. The traditional sensor 
senses the specified physical quantity, converts it 
into an available input signal according to a certain 
law, and converts a non-electric quantity into an 
electric quantity. The collected information is 
processed by an electronic control unit to form 
execution instructions and complete the electronic 
control. 
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Considering that an intelligent vehicle is based on 
vehicle sensors, they are of great significance for the 
construction of intelligent transportation systems. 
However, the analysis on multi-sensor fusion in VN 
has not been reported. Therefore, a more in-depth 
discussion will be carried out. 

2.4 Research review 

Vehicle-mounted sensors have their own 
advantages and are difficult to replace each 
other, but there is a lack of overall consideration 
in the selection of sensor types and the number 
of sensors. The optimization of a fusion 
algorithm and the selection of fusion level lacks 
matching with the actual application, resulting 
in poor redundancy and fault tolerance of the 
system, and ultimately resulting in low accuracy 
of environment perception. Since the intelligent 
vehicles are based on on-board sensors, it is of 
great significance to the construction of 
intelligent transportation systems. However, the 
research on multi-sensor fusion in vehicle 
networks has not been reported. Therefore, 
further research should be carried out to 
address this research gap. The construction of 
multi-source information fusion-based 
intelligent vehicle environment perception 
systems aims to solve the problems of low 
precision and poor efficiency of traditional 
vehicle environment perception.  

3. SENSING FUSION SCHEME FOR VN IN
6G SMART CITIES

3.1 Intelligent transportation system based on 
DT city 

A smart city is the extension and upgrading of 
traditional cities. It makes full use of 
communication and information technology 
means such as IoT, cloud computing, optical 
networks, mobile communications and mobile 
Internet to comprehensively perceive, transmit, 
integrate, and analyze various key information 
among people, things, enterprises, and products, 
so as to make an intelligent response to citizens’ 
various needs such as “medicine, food, housing, 
and transportation”, It builds a new form of 
efficient urban management and intelligent 
urban development. In the context of a smart 
city, DTs are created to support the 
determination of smart city parameters and 
scene testing. With a land mobile 
communication network as the core, 6G deeply 

integrates a space-based network dominated by 
geosynchronous orbit and medium and low orbit 
satellite communications, a space-based 
network dominated by aircraft and UAV 
communications, a sea-based network 
dominated by underwater acoustic 
communications, and cable access dominated by 
optical fiber, twisted-pair, and coaxial lines. 6G 
connects wireless and wired media in a unified 
manner, enabling user data to be exchanged at 
the bottom as much as possible, thereby greatly 
shortening the time required for route selection 
and exchange, and thus reducing end-to-end 
delay for users of different access networks. As 
one of the infrastructures of urban 
agglomeration, 6G networks can be invested in 
and co-built by multiple operators. It separates 
a physical network from an operational network 
by network virtualization technology, software-
defined networks, and network slicing 
technology. Artificial intelligence is deeply 
integrated into 6G systems, which will be 
applied in many aspects such as efficient 
transmission, seamless networking, endogenous 
security, large-scale deployment, and automatic 
maintenance. 

Through 3D simulation technology + IoT access, 
it builds a platform for remote control and 
equipment linkage, which will reproduce the 
urban architectural geographical structure as it 
is, including the height, coordinates, and other 
geographical data of important facilities such as 
roads and buildings [28-30]. In addition, object-
oriented facility information such as the internal 
structure, room layout, and pipe laying of 
important buildings such as committees and 
subway stations will be included. The DTs 
platform can sense the urban population heat 
map in real time, monitor the urban operation 
situation in real time through traffic flow, 
parking garage status, and video, or 
automatically collect the data returned to the 
center for image automatic identification and 
analysis, so as to intelligently find and identify 
abnormal problems such as garbage dumping, 
illegal buildings, and high-density traffic flows. 
It can deduce and predict future development. 
The key technologies in the construction of DT 
cities are shown in Fig. 1.  
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Fig. 1 – Key technologies of DT city construction 

To build smart cities, useful data services will rely on 
data in the real environment, especially real-time 
data. The sensor or gateway product will send the 
selected data points from the building automation 
system to the open data platform. The smart city 
platform must utilize all available sensors in the 
building automation system instead of building 
overlapping sensor networks [31]. Most information 
in a smart city environment is location-related. This 
information is direct location information or 
reference information to location. Therefore, it 
requires sensors and automation Application 
Programming Interfaces (APIs) to associate location 
with data. For existing buildings, due to demolition 
or abandonment, the comprehensive living area will 
decrease linearly every year with the passage of time. 
For new buildings, it is assumed that the number of 
each specific building type increases linearly over 
time until it is replaced by newer buildings.  

Traditional smart cities tend to pay more attention 
to the intellectualization of a certain industry or field 
such as construction, transportation, water affairs, 
and gardens, while DT cities are the 
intellectualization of the whole city based on the 
urban information model [32, 33]. On this platform, 
the professional data of the city can be integrated, so 
as to achieve a new pattern of planning a map, 
building a network of supervision, and urban 
governance. Taking the high-speed railway station 
in the DT city as an example, the biggest difference is 
that DT stations replace the traditional naked eye 
observation with scientific and technological means. 
For example, staff can easily access and enter 
equipment data through communication technology, 
panoramic images, and other technologies in daily 
operation and maintenance.   

3.2 Intelligent perception and sensing 
network of urban traffic 

A traffic intelligent environment mainly 
includes environment perception technology, 
modern communication technology, etc. Among 
them, environment perception technology 
mainly contains two solutions: independent 
vehicle perception (bicycle intelligence) and 
network collaborative perception (collaborative 
intelligence). Traffic information perception is a 
multilevel data conversion process including 
material, data, and feature layers. The material 
layer contains the sensitive phenomena and 
processes of the perceived traffic object; the 
data layer contains the conversion results of 
different sensors to the corresponding sensitive 
information; the feature layer is responsible for 
transmission, feature extraction, and fusion of 
data collected by the sensor, and finally obtains 
the perception information and transmits it to 
the perception subject [34]. Different from 
traditional perception, urban traffic intelligence 
can be adjusted to adapt to environmental 
changes while actively responding to changes in 
the surrounding environment [35, 36]. 
Moreover, the knowledge accumulation and 
reasoning rules of the perceived object can also 
be obtained through intelligent perception. The 
hierarchical relationship of urban traffic 
information intelligent perception is given in 
Fig. 2.  
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Fig. 2 – Hierarchical relationship of urban traffic 
information intelligent perception 
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In the simulation of intelligent transportation, if 
the collision avoidance between vehicles is 
considered, the exploration range of sensing 
equipment and the communication distance of 
communication technology are very important. 
Lidar is a kind of optical remote sensing 
technology to obtain target related information 
by detecting the scattered light characteristics 
of long-distance targets. The maximum 
detection distance of the existing lidar used in 
intelligent transportation is 300 m. Millimeter 
wave radar refers to a radar operating in the 
frequency band of 30 ~ 300 GHz with a 
wavelength of 1 ~ 10 mm. The mainstream 
available frequency bands are 24 GHz and 
77 GHz. 24 GHz is applied for medium and short-
range detection, and 77 GHz can realize long-
range detection [37]. Since it is difficult for a 
single sensor to provide a comprehensive 
description of road conditions and environment 
under various weather conditions, multi-sensor 
fusion technologies such as radar-vision fusion 
have been gradually developed. The radar-
vision integration refers to the integration of 
camera, millimeter wave radar, and high-
performance processor to realize integrated 
perception and accurate prediction. Intelligent 
vehicles can obtain different information of the 
surrounding environment by configuring 
different sensing means and sensing the driving 
environment through multi-information fusion, 
so that intelligent vehicles have good 
environmental adaptability and provide safe, 
fast, and a reliable guarantee for autonomous 
navigation.  

Autonomous vehicle environment perception 
technology in intelligent traffic environment is 
mainly realized through general vehicle sensors, 
perception sensors, high-precision maps, and 
other technical means [38]. General on-board 
sensor general vehicle sensor refers to the 
sensor installed on the vehicle in the vehicle 
manufacturing stage, which is classified into 
engine control sensor, chassis control sensor, 
and body control sensor. The basic structure of 
a traffic perception sensor network is illustrated 
in Fig. 3. The basic function is to perceive 
information, and then transmit the perception 
results to the information processing center 
through appropriate transmission methods.  

Application 

layer

Transport 

layer

Perception 

layer

Hardware and 

software equipment

Access node, 

composite node, etc

Intelligent sensor 

network

Fig. 3 – Basic structure of traffic perception 
sensor network 

All nodes are connected wirelessly in wireless 
sensor networks and adopt different 
communication protocols. Since an 
electromagnetic wave is exposed in the air, it is 
more susceptible to interference and attack in 
wireless communication mode than wired 
communication mode, which affects the stability 
of communication connection. In terms of 
bandwidth, because the communication 
connection of nodes is relatively static, the 
complexity of system design can be reduced 
based on Wireless Local Area Network (WLAN) 
standards. As a hierarchical network, a hybrid 
traffic perception sensor network plays 
different roles at different levels. Usually, the 
underlying traffic detection sensor is 
responsible for converting the basic physical 
traffic information into electrical signals and 
sending them to the upper transmission 
network. At the transport layer, the access node 
is responsible for collecting the transmission 
information of the underlying sensors and 
managing different sensors uniformly. The 
composite node integrates the related functions 
of the network relay equipment in the 
communication system. Generally, an access 
node accesses and manages several sensors, 
while a composite node is mainly responsible for 
the link between multiple access nodes.  

3.3 Mobile model of VSN 

Internet of Things is the most core application in 
many scenarios of 6G mobile communications. 
The future Internet of Things will put more 
emphasis on the intelligence of connected 
devices based on its connectivity, which will 
realize the evolution from the traditional 
Internet of Things to the intelligent Internet of 
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Things, and greatly expand the application range 
of the Internet of Things. The Internet of Things-
based intelligent vehicle-mounted system, 
combined with RFID, GPS positioning, GPRS 
communications, and image acquisition 
technologies, enables the logistics vehicles to 
communicate with the monitoring terminal in 
real time without manual operation, realizing 
the real-time monitoring of the whole process of 
the logistics vehicles. The VSN has a wide 
distribution range and complex and changeable 
network topology. Its main characteristics 
include fast node movement speed and vehicle 
movement will affect network coverage, which 
puts forward higher requirements for the 
routing protocol of VSN [39, 40]. Therefore, the 
analysis on network routing and data 
transmission can be realized by establishing an 
accurate node mobility model based on 
simulation. For a self-driving car to truly 
navigate autonomously, the vehicle must know 
its location, its surroundings, and nearby 
vehicles. In addition, these vehicles may be very 
close to each other and drive autonomously at 
higher speeds. 

There are two main methods of Vehicle to 
Everything (V2X) communication: Dedicated Short-
Range Communication (DSRC) and Cellular Vehicle-
to-Everything (C-V2X). DSRC is supported by a 
series of standards, including IEEE 802.11p 
amendment for wireless access in vehicle 
environment and IEEE 1609.1-4 standard for 
resource management, security, network service, 
and multichannel operation [41, 42]. In addition, the 
carrier sense multiple access with collision 
avoidance used in IEEE 802.11p is not suitable for 
key communication scenarios, that is, QoS in VN 
applications can’t guarantee security critical 
messages and other real-time transmission. On the 
other hand, 3rd Generation Partnership Project 
(3GPP) has been developing cellular vehicle 
communication to operate on cellular networks, 
which can provide high data rate services and wide 
coverage. The overview of VSN is shown in Fig. 4. 
Both V2X technologies have their own advantages 
and limitations. 

Cellular V2I

Cellular V2V

BS

RSU

BS

DSRC V2V

DSRC V2I

Fig. 4 – Overview of VSNs 

In mobility management, Random Waypoint Model 
(RWP) is a random model that simulates the 
movement of mobile users and how their position, 
speed, and acceleration change with time. In the 
random mobility simulation model, mobile nodes 
move randomly and freely without restrictions. 
More specifically, the destination, speed, and 
direction are randomly selected and independent of 
other nodes. Mobility models are used for simulation 
purposes when evaluating new network protocols. 
Because of its simplicity and wide availability, it is 
one of the most popular mobile models for 
evaluating mobile ad hoc network routing 
protocols [43, 44].  

Road simulation is based on the open source 
software Simulation of Urban Mobility (SUMO). 
The SUMO road network can be generated using 
its own program or by importing a digital road 
map. The road network importer allows it to 
read the network from other traffic simulators 
such as Vissim or MATsim. SUMO is a purely 
microscopic traffic simulation, and Fig. 4 is a 
map of its GUI. Each vehicle is given an identifier, 
departure time, and the route the vehicle takes 
in the road network. A macro-traffic simulator 
treats the entire traffic flow as a unit. SUMO can 
also define departure and arrival properties, 
such as lanes, speed, or location. Each vehicle is 
assigned a type that describes the physical 
characteristics of the vehicle and the variables 
of the motion model. The simulation is both 
time-discrete and spatially continuous, and 
internally describes the position of each vehicle, 
i.e. the lane it is in and the distance from the
starting point. When the vehicle is moving, the
following model is employed to calculate the
speed. In addition to traditional transportation
measures, SUMO has expanded to include noise
emission and pollutant emission/fuel
consumption models. SUMO traffic modeling
defines the total number of traffic groups in a
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given area and calculates the mobility desires of 
that group as input to a traffic simulator. Some 
software can also take into account 
environmental features, such as weather 
conditions. The module SUMO-ROUTER reads 
the departure time, starting point, and 
destination of a group of virtual groups to be 
simulated, and then calculates the route in the 
traffic network using the Dijkstra routing 
algorithm. 

In general, cellular-based telematics is a paid 
service based on subscriber subscription. It is 
believed that vehicle communication will be 
built on a hybrid architecture in the near future. 
In this hybrid architecture, long-distance 
communication technologies, such as cellular 
networks and WiMAX, can provide instant 
Internet access. However, short-range 
communication technologies, such as Dedicated 
Short-Range Communication (DSRC) and Wi-Fi 
(802.11a/b/g), can provide a real-time response 
guarantee for security systems and provide 
effective support for location-based information 
services. 

In RWP, in the initial state, the nodes are uniformly 
distributed in the whole simulation area. Firstly, the 
nodes randomly select a node from the two-
dimensional simulation area as the destination, and 
then randomly select a speed from [Vmin, Vmax], 
and the nodes move to the destination at this speed. 
After reaching the destination, the node randomly 
selects a residence time T in [0, Pmax], and then 
selects the next destination. The vehicle trajectory 
and speed change of the RWP motion model are 
given in Fig. 5.  

0 100 200 300 400 500

100

200

300

400

500

y

x

A B

0 10 20 30 40 50
0

2

4

6

8

10

12

14

v
 (

m
/s

)

t (s)

Fig. 5 – Vehicle trajectory and speed change of RWP 
motion model (A. Vehicle trajectory; B. Vehicle speed) 

The RWP model defines a mobile station moving in a 
finite region A. Usually, A is a rectangle or a circle. 
The mobile platform moves from one "road point" 

nM to the next point 1nM + according to the 

following rules. The phenomenon of density wave 

exists in RWP, that is, the nodes will show non-
uniform distribution over time, reaching the 
maximum at the center of the simulation region, 
while the density tends to be 0 at the boundary. 

In the Fluid Traffic Model (FTM), speed v, traffic 
density k, and traffic flow q are used as parameters 
to describe the overall characteristics of traffic flow. 
When the traffic flow q is constant, the relationship 
between the speed and density of the mobile node is 
as follows. 

2 ndv k
c k

dt x


= −


(1) 

c represents the non-negative constant coefficient, n 
is a variable parameter, and Equation (2) can be 
obtained. 

( ) ( )1 /21 /2

1 ... 1
1

log ... 1

nn

jam

jam

jam

ck k
n

n k
v

k
c n

k

++   
  −  − 

   +  =  

 = −


(2) 

jamk means blocking density. Since the vehicle speed

is a monotonically decreasing function of density, 
the vehicle speed will reach a critical state when 
blocking. 

min maxmax , 1
jam

k
v v v

k

  
= −  

 
   

(3) 

minv  and maxv  represent the minimum speed and 

maximum speed, respectively. The average speed of 
the vehicle will increase with the increase of jamk . 

The Intelligent Driver Model (IDM) in VSNs is a 
stimulus response model, and environmental 
changes will stimulate drivers to make appropriate 
responses. The current instantaneous acceleration 
of the vehicle can be expressed as Equation (4). 

( )
( )

2
*

0

,
1

s v vv
a t a

v s

   
 = − −          



(4) 

a represents the maximum acceleration of the 

vehicle, 0v represents the expected speed of the 

vehicle under free flow, v means the current speed 
of the vehicle, v  means the speed difference 

between the front and rear vehicles, and ( )* ,s v v is 

the safety distance between the rear and the front 
vehicles. The role of   is to adjust acceleration 
behavior.  
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The calculation of acceleration is mainly divided into 
two parts based on the driving state, namely the free 
acceleration of the vehicle when it is not affected by 
other vehicles, and the acceleration of the vehicle 
when it is affected by the front vehicle. The expected 
safety spacing of nodes can be expressed as below. 

( )*

0,
2

v v
s v v s v T

ab

 
 = +  + (5) 

0s denotes the minimum distance between the front 

and rear vehicles in the state of traffic congestion; 
T represents the safe time headway; a and b mean 
the maximum driving acceleration and maximum 
driving deceleration of the vehicle. 

To further simulate the continuous speed and 
position changes of nodes, it sets the simulation time 
interval t  of the model. The new speed, new 
position, and new inter-vehicle distance of the 
vehicle are expressed as follows. 

( ) ( )
dv

v t t v t t
dt

 
+  = +  

 
(6) 

( ) ( ) ( ) ( )
21

2

dv
x t t x t v t t t

dt

 
+  = +  +   

 
(7) 

( ) ( ) ( )1 1s t t x t t x t t L+  = +  − +  − (8) 

x1 and x are the positions of the leading vehicle and 
the current vehicle, respectively; L1 indicates the 
body length of the leading vehicle.  

In the IDM model, the following state of the two 
vehicles is not judged. Therefore, when the distance 
between the two vehicles increases to a certain value, 
the vehicle may not be in the following state. 
Therefore, based on the judgment of the following 
state in IDM, the optimized acceleration equation is 
expressed as below. 

( )
( )

*
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*

*

0

1 , 0  

,
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T

T

v
a s and s s

v

a t

s v tv
a s or s s

v s

   
  −   
    

= 
    
 − −             





 (9) 

Ts represents the threshold for judging the 

following behavior. 

Furthermore, a cloud model is introduced into IDM 
to correct relevant parameters, and then the 
differences reflected by different drivers in different 
situations are described, so that the movement 
model is more consistent with the actual movement 
law of the vehicle. The corrected acceleration and 
expected spacing are shown in Equations (10) and (11). 

( )
( )

2
*

0

,
1

s v tv
a t a

v s

   
 = − −          



(10) 

( )*

0,
2

v v
s v t s v T

ab

 
 = +  +  (11) 

Time dependence   is introduced into the 

intelligent driver model, which is corrected by the 
cloud model, reflecting the correction of 
acceleration value. 

( )
( )

2
*

0

,
1

s v tv
a t a

v s

   
 + = − −          



 (12) 

The spatial dependence k is introduced in the 
process of correcting the expected speed of the 
vehicle, and the road dependence l is introduced in 
the process of correcting the safety following vehicle 
headway. 

0kv k v=  (13) 

/lT T l= (14) 

For the reliability problem of the communication 
network, it is assumed that the reliability of nodes 
and links is random and independent, intelligent 

sensor network ( ), ,G N L A=  is a network without 

isolated points and parallel links. Under the 
constraint of cost, the reliability optimization 
problem of intelligent sensor networks can be 
expressed as follows. 

( ) ( )
( )

( )( ) ( )
1/ '

max 1
j

N

j j i
il L l L L

R x P l P l P n
= 



     =    −            


( ) ( ) ( )
1 1

. .
N N

j j j i
j i

s t c l d u c n C x
= =

 +    (15) 

( ) ( )ij ijP l F c l =
  (16)

( ) ( )j jP n G c n =
  (17)

( )R x represents the overall reliability of the network. 

( )jP l  and ( )iP n  denote the reliability of link jl  and 

node in ;  means the set of all available states of 

the network. jd  represents the link length, L is the 

number of links, and N is the number of nodes. ( )C x

is the maximum usable cost, and ( )jc l is cost of link j 

at each unit distance, ( )ic n  is the node cost. F 

denotes the functional relationship between link 
reliability and unit price, and G means the functional 
relationship between node reliability and cost. 
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3.4 Multi-source information fusion and 
multi-sensor cooperative perception 
method 

In a smart city traffic system, multi-source 
information fusion intends to combine and optimize 
the perception results of each single signal source, so 
as to output more effective road safety information. 
Common signal sources are: millimeter wave radar, 
ultrasonic, camera, laser, Global Positioning System 
(GPS), odometer, and inertial navigation. These 
sensors can perceive the safety information around 
the body and the environmental information of the 
driving road, and can also be used for positioning 
[45, 46]. The hardware architecture of the multi-
information fusion system includes two modules, 
namely millimeter wave radar and camera. The 
camera module first detects the target, and then 
transmits the information to the radar. The radar 
module completes the information fusion.  

The multi-sensor fusion strategy can be divided into 
different levels according to different classification 
conditions. Under the definition of the classification 
index of information abstraction level, the strategy is 
divided into data level, feature level, and decision 
level. The three types of sensor information are 
presented in different ways, and the processing 
methods selected for them are also differentiated. 
Data-level fusion is at the lowest level of fusion, 
directly targeting data sensed by sensors. It retains 
the amount of information contained in the original 
data to the greatest extent, and the fusion accuracy 
is high. However, the calculation amount is huge, the 
real-time performance is poor, and the 
requirements for the algorithm are relatively high, 
and a fault-tolerant mechanism for sensor errors 
and noise is required. Feature-level sensor 
information fusion acts on the representative 
feature values extracted from sensor data, and the 
feature information is input into the fusion center 
for fusion. Its characteristics in all aspects are 
relatively balanced. Decision-level fusion is located 
at the highest level of fusion. Each sensor detects 
independently, performs feature extraction, and 
outputs certain detection results. The fusion process 
is the judgment, association, and processing of the 
detection results.  

The world coordinate system is a three-dimensional 
space coordinate, and the image captured by the 
camera is a two-dimensional pixel coordinate. The Z 
axis in the camera coordinate system means the 
optical axis, and M is a point in the world coordinate 
system. The imaging position on the optical 

prototype is m point by visual sensing equipment. 
The relationship between M and its projection point 
m is as below. 

 
~ ~

sm A Rt M= (18) 

s is size scaling factor,  Rt  is external parameter of

camera, A is internal parameter matrix. 

0

0

       

0        

0    0     1

u

A v

 



 
 

=  
  

(19) 

0u and 0v are the projection center;   and  are 

the size scaling factor of the u axis and the v axis on 
the image, respectively;   describes the skewness 

of the two coordinate axes.  

It is assumed that the Z axis is always 0, and Equation (18) 
can be expanded to obtain Equation (20). 

 1 2 3  

1
1

w

w

w

X
u

Y
s v A r r r

Z

 
   
   =
   
    

 

(20) 

The pinhole model can be represented as below. 

 

~ ~

1 2 3  

s m H M

H A r r r


 =


=

(21) 

H is a 3 × 3 matrix. 

It is supposed iM and im are points on world 

coordinate and image coordinate. If im exists, the 

covariance matrix is iC . The maximum likelihood 

estimation of the H matrix can be obtained by the 
following objective function. 

( ) ( )1T

i i i i ii
m m C m m−− − (22) 

The parameters in the above are defined as follows. 

1

3 2

1
T

i

i T T
i i

h M
m

h M h M

 
=  

  

(23) 

The camera calibration problem can be transformed 
into a non-linear quadratic programming problem. 

2
min i ii

m m− (24) 

For the sensing fusion of forward-field millimeter 
wave radar and camera in a VN environment, it is 
realized based on Kalman filtering theory and a 
global nearest neighbor data association algorithm. 
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Firstly, the multi-target tracker and the state of the 
target at the previous time are established based on 
the Kalman filter to predict the current position of 
the target. Next, through the global nearest neighbor 
algorithm, the cost matrix is applied to assign the 
observed values detected by radar and camera to the 
tracked target. Through the above fusion calculation, 
the current target position is finally obtained and the 
state update is completed.  

The Kalman filter is suitable for estimating the 
optimal state of a dynamic system composed of 
random variables. Even if the observed system state 
parameters contain noise and the observed values 
are inaccurate, the Kalman filter can complete the 
optimal estimation of the true state values. For an 
object moving along the X axis with constant 
acceleration, based on Newton’s law of motion and 
taking into account the noise term of uncertainty in 
the process of motion, Equation (25) can be obtained. 

1 1

2 2

0  1 0 0

0  0 1 1
k

x xd
a v

x xdt

        
= + +        
        

(25) 

kv refers to the disturbance of noise, which is 

Gaussian white noise with mean as zero. 
Equation (25) is extended to two dimensions. 
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      
             

        

 (26) 

After discretization of Equation (26), the motion 
equation is integrated within any time interval T to 
obtain Equation (27). 

1, 1 1,
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x xT
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      
= +         
      

(27) 

v refers to the integral of noise in the sampling time 
domain. Equation (27) can be further converted. 

1k k k k k kx F x G u v+ = + + (28) 

kF represents the state transition matrix, kG is the 

control matrix, and kv  is the random disturbance of 

noise in the model. The measurement model is set as 
the actual measurement value associated with the 
current state at any time. 

k k k kz H x w= + (29) 

kw means the noise generated by the measurement 

process at the current time step. 

When the object follows the nonlinear equation, the 
linear Kalman can be expanded to obtain the 
extended Kalman filter. The state Jacobian matrix is 
adopted to replace the state transition matrix. 

( ) ( ) ( )
1 , , , , ,

x w

k k k k

i

f f
x f x u w t F F

x w
+
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= = =
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 (30) 

( ) ( ) ( )
, , , ,

x v

k k k

h h
z h x v t H H

x v

 
= = =

 
(31) 

kw and kv respectively refer to the noise factors in 

the prediction model and the measurement model. 

Common development tools for multi-sensor fusion 
mainly include the Automated Driving System 
Toolbox (ADST) in a MATLAB environment. Firstly, 
the data collected by each sensor and the 
corresponding configuration parameters are loaded, 
and the image coordinate system is drawn after the 
video frame to be detected is specified. The vehicle 
coordinate system is drawn in the aerial view, and 
the lane detection results are created and updated in 
the aerial view and the image to display the results 
of visual detection and radar detection. 

4. EXPERIMENTAL DESIGN AND SIMULATION
RESULTS

4.1 Experimental design 

Visual sensors can sense the color and texture 
information of the surrounding environment and 
complete a series of environmental perception tasks. 
However, when the light is insufficient, the 
performance of visual sensors is poor. Because lidar 
can provide accurate distance and speed 
information, in the field of automatic driving, the 
combination of two-dimensional image data and the 
lidar point cloud can realize the accurate estimation 
of vehicle position and direction. Simulation of 
Urban Mobility (SUMO) is used in MATLAB to realize 
the simulation of micro-traffic in the experimental 
part of this study. A road network file, routing file 
and configuration file are required. After extracting 
SUMO, four folders (bin, data, docs, and tools) are 
obtained. Most of the files under the bin folder are 
executable. The difference is that some executable 
files are not encapsulated, so it needs to open them 
with the command line. The docs folder mainly 
contains examples and help documents such as Java 
and Python. Tools are mostly written in Python. 

During the experiment, the radar sensor is installed 
15 cm to the left of the middle of the vehicle’s front 
bumper. Firstly, data fusion and status update of 
existing targets are carried out. Secondly, 
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the parameters of the fused target are integrated to 
obtain the target information provided by radar and 
camera. The final experimental data includes the 
original video data and the read radar signal. In the 
network encoder module, multiscale feature fusion 
is carried out for the two sensors. Learning from Full 
Convolutional Networks’ (FCNs) network structure 
is to make full use of the information characteristics 
obtained by sensors. Only three down-sampling 
layers are used, and 3 × 3 convolution kernel is used 
in each layer, and then it is connected to the Relu 
non-linear activation unit. At the end of the network, 
the results are convoluted to Tensor with the same 
dimension as the label and sent to the softmax layer. 
After the secondary classification, the classification 
probability that each pixel belongs to the road is 
obtained. The structure of a C-LNet multi-sensing 
data fusion and segmentation network is double 
encoder-single decoder. Two encoders are used to 
extract image features and lidar features. The 
network structure of C-LNet is shown in Fig. 6.  

Fusion 

structure

Fig. 6 – Network structure of C-LNet 

The automatic driving KITTI data set is selected to 
test the performance of a C-LNet multi-sensing data 
fusion segmentation network. 50 images from the 
289 images in training are used as the validation set, 
the training data pictures are expanded to 863 by 
random turning and random rotation. All KITTI 
image data is normalize to a size of 1248 × 384. The 
initial learning rate is set to 0.0001 and the Adam 
optimizer is adopted. Accuracy (ACC), F value, and 
MIoU are used to comprehensively evaluate the 
performance of data fusion networks. 

4.2 Multi-sensor data fusion results 

To verify the effect of the multi-sensing data fusion 
method, a target vehicle (target 1) that appears in 
the field of vision for about 10 seconds at the 
beginning of the video is selected, and the lateral and 
longitudinal distance tracking results of the vehicle 
are obtained (Fig. 7). Another target vehicle 
(target 2) that appears in the field of vision for about 

15 seconds near the end of the video is selected, and 
the corresponding lateral and longitudinal distance 
tracking results are obtained (Fig. 8). The 
longitudinal distance of the target provided by the 
radar is relatively stable compared with the 
longitudinal distance observed by the camera. The 
lateral distance of the target provided by the camera 
is relatively stable, and the fluctuation of the radar is 
particularly intense in the initial stage. From the 
final fusion results, the estimation of longitudinal 
distance is mainly dominated by radar, while the 
estimation of transverse distance is mainly 
dominated by camera.  
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Fig. 7 – Tracking results of lateral and longitudinal 
distances to target 1 (A. longitudinal; B. lateral) 

0 50 100 150 200 250 300 350 400 450
800

900

1000

1100

1200

1300

L
o
n

g
it

u
d
in

al
 r

el
at

iv
e 

d
is

ta
n

ce
 (

cm
)

Number of frames

 Radar data

 Visual data

 Fusion results

0 50 100 150 200 250 300 350 400 450
-100

-80

-60

-40

-20

0

20

40

60

80

100

L
a
te

ra
l 

re
la

ti
v
e
 d

is
ta

n
c
e 

(c
m

)

Number of frames

 Radar data

 Visual data

 Fusion results

A B

Fig. 8 – Tracking results of lateral and longitudinal 
distances to target 2 (A. longitudinal; B. lateral) 

The C-LNet multi-sensing data fusion segmentation 
network is verified on the KITTI data set, and the 
specific results are shown in Fig. 9. The Acc, F1, and 
MIoU of C-LNet are 98.4%, 96.7%, and 94.51%, 
respectively. An RGB network and lidar network are 
selected for comparison. The Acc, F1, and MIoU of 
the RGB network are 97.2%, 95.9%, and 92.5%, 
respectively; the Acc, F1, and MIoU of the lidar 
network are 95.4%, 89.5%, and 81.6%, respectively. 
In conclusion, C-LNet is superior to the RGB network 
and lidar network in all aspects. The first mock exam 
is that the combination of optical radar with 
multiscale image can effectively extract features 
from different sensors, and the utilization rate of 
features is higher. The fault tolerance of multi-
sensor fusion networks is much higher than that of 
single mode sensors. 
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Fig. 9 – C-LNet performance evaluation results 
(A. loss; B. Acc; C. F1; D. MIoU) 

4.3 Multi-vehicle cooperative positioning 
effect of multi-sensing fusion network 

To further verify the effectiveness of a multi-sensing 
fusion network for multi-vehicle cooperative 
positioning in an actual situation, two multi-vehicle 
motion scenes of straight line and lane change are 
established in MATLAB. The problem of multi-
vehicle cooperative localization in three cases in 
multi-sensing fusion networks is explored. The 
average value of 100 simulation results is used for 
comprehensive analysis, obtaining the expansion 
results of root mean square positioning error in a 
time domain under different conditions 
(Figures 10-12). Regarding the historical 
information, the multi-vehicle cooperative 
positioning method has little difference in error 
level compared with the cooperative positioning 
method based on single frame data. However, when 
the communication fails, the error of the cooperative 
positioning method based on single frame data will 
directly rise to the error level of single vehicle 
positioning. The error fluctuation of fusion 
positioning of historical information is smaller than 
that of single frame optimal fusion positioning, and 
the error level of the two multi-vehicle cooperative 
positioning methods is better than that of a single 
vehicle positioning method.  
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Fig. 10 – Multi-vehicle cooperative positioning method 
based on historical information (A. Lane changing scene; 

B. Straight driving scene)
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Fig. 11 – Multi-vehicle cooperative positioning method 
based on single frame optimal fusion 
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Fig. 12 – Multi-vehicle collaborative positioning method 
based on single vehicle positioning 

5. CONCLUSION

With the continuous development of 6G 
communication systems, a V2X network aims to 
combine ground and non-ground communication 
networks. This will significantly improve the 
reliability and safety of the intelligent transportation 
system in a real smart city. Moreover, in the 
intelligent transportation system based on DTs, the 
transmission rate of traffic data is improved, so that 
three-dimensional communications can assist the 
local control of vehicles. 
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Urban traffic information intelligent perception 
technology provides source data for the coordinated 
development of vehicles and roads, and is the basis 
of realizing intelligent network transportation. At 
present, in the application field of intelligent vehicle 
engineering, single sensors cannot effectively 
identify the vehicle ahead. Therefore, in terms of the 
performance and other characteristic information of 
common vehicle surrounding environment 
perception sensors, a multimodal data fusion 
network based on sensors is proposed. In the VN, it 
cannot only make good use of the color and texture 
information of the image, but also combine with the 
three-dimensional distance information of the lidar 
data to enhance the robustness of traffic information 
recognition. Moreover, the application effect of the 
fusion network is verified on a KITTI road data set. 
It confirms that the multiscale combination of 
optical radar and image can effectively extract 
features from different sensors, and the utilization 
rate of features is higher. The fault tolerance of 
multi-sensing fusion networks is much higher than 
that of single modal sensors. However, there are still 
some deficiencies. For example, human error will be 
generated when synchronizing the two sensor data. 
In the future, the accuracy loss caused by lidar 
projection to two-dimensional space can be reduced 
by changing the projection mode.  
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