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Abstract – The Internet of Things (IoT) has shown signiϔicant growth in the past decades. Recently, IoT networks have
been subject to cybersecurity threats on multiple fronts. A lack of improvement in IoT infrastructures’ cybersecurity may
result in challenges with a broad impact, such as DDoS attacks that target global DNS services. This paper reviews existing
solutions to mitigate attacks on and from IoT networks. As a speciϔic mitigation approach, we propose the use of a stan‑
dardized whitelisting method, namely Manufacturer Usage Description (MUD), which provides enhanced explainability over
machine learning‑based approaches and is complementary to them. For evaluating the use ofMUD in IoT networks, we report
a case study, which we conducted through trafϔic analysis of two IoT devices by detecting recognizable and distinctive trafϔic
patterns, which demonstrate the feasibility of MUD‑based intrusion prevention.
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1. INTRODUCTION

Internet of Things (IoT) is a term coined by Kevin Ash‑
ton in 1999, to refer to the connection between the In‑
ternet and the physical world through ubiquitous sen‑
sors [1] . Recently, the term has mainly been used for
embedded devices in various computation‑enabled envi‑
ronments that sense, communicate, and provide services
to human users or other devices. The IoT market size
has been growing fast over the past decade due to the in‑
creasing use of IoT devices in daily settings. For instance,
Cisco Systems Inc. predicts that 48percent ofMachine‑to‑
Machine (M2M) trafϐic will be generated by smart home
networks by the end of 2023 [2] . According to IoT An‑
alytics, a provider of market insights for IoT, the number
of connected devices increased from 3.8 billion in 2015 to
8.3 billion devices in 2019, accompanied by a projection
reaching nearly 16 billion devices by the end of 2023 [3] .
A signiϐicant challenge in using IoT devices in daily set‑
tings is the presence of cybersecurity threats. Due to the
broadening use in smart home technologies, IoT devices
have been subject to advanced security threats. Numer‑
ous IoT supply chain stakeholders, including IoT hard‑
ware manufacturers and end‑user consumers, have faced
threats at various fronts. These cover a broad spectrum
of issues, such as hardware‑embedded malware, operat‑
ing system‑level vulnerabilities, and application‑level ex‑
posures. Furthermore, the limited grasp of the technol‑
ogy by the end users, in particular their lack of knowledge
about the conϐiguration of the devices for better cyberse‑
curity, contributes to the adverse effects of attacks on IoT
devices [4] . In smart home networks, device misconϐigu‑
ration has been one of the top OWASP vulnerability cat‑
egories [5] . Consequently, IoT networks constitute a pri‑

mary target domain of attack for adversaries. As a result,
the growth of the smart homemarket has been accompa‑
nied by growing security threats.
A signiϐicant characteristic of IoT devices is that their vul‑
nerabilities threaten the security of the local networks
they reside in, allowing the execution of attacks such as
Distributed Denial of Service (DDoS) attacks. The adver‑
saries aim at gaining unauthorized access to IoT devices
primarily for enslaving them as part of botnets. An IoT
end user in most cases is unaware of being part of a bot‑
net. Nevertheless, they unwillingly take part in an at‑
tack targeting a third‑party service provider, which some‑
times results in loss of reputation, or ϐinancial losses [6]
for that provider . Therefore, the intrusion detection and
prevention solutions for IoT devices need to aim at ensur‑
ing security not only for IoT endusers but also third‑party
service providers. Moreover, today’s cybersecurity solu‑
tions have to address multiple facets of IoT security, such
as the richness in the variety of IoT infrastructure compo‑
nents in smart homes.
IoT devices are produced for speciϐic tasks. Therefore,
they are expected to exhibit predictable network trafϐic
patterns. Identifying trafϐic patterns in a network facil‑
itates anomaly detection by comparison with the stan‑
dard, expected behavior in the network. In this paper, we
aim to answer the following questions to guide the design
of robust Intrusion Detection Systems (IDSs) and Intru‑
sion Prevention Systems (IPSs) for IoT networks: (1) Is it
possible to extract distinctive and recognizable trafϐic pat‑
terns from IoT devices, which allow the creation of rules
to be used in the network gateways? (2) Can we achieve
this type of IoT network trafϐic proϐiling with lightweight,
explainable and easy‑to‑integrate methods applicable to
a variety of IoT device types and brands?
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If we are able to extract trafϐic patterns for speciϐic IoT de‑
vices in a network, we can justify usingwhitelistingmeth‑
ods for securing communication with those devices. The
ability to accurately extract the expected trafϐic patterns
for a device will enable achieving low false‑positive rates
by IDSs. This is a signiϐicant step forward in developing
secure IoT networks, given that a high rate of false pos‑
itives is a signiϐicant issue in anomaly‑based IDSs[8] . A
Manufacturer Usage Description (MUD), which is a stan‑
dard proposed by the Internet Engineering Task Force
(IETF) [9] and technically reviewed, documented, and im‑
plemented by NIST [10], is used by IoT device manufac‑
turers to advertise the intended communication patterns
of their devices. MUD is of great help in deϐining the trafϐic
patterns for IoT devices, hence it has signiϐicant potential
for use in whitelisting approaches.  
In this paper, we investigate network trafϐic proϐiling
and whitelisting methods and propose a MUD‑based ap‑
proach for IoT network security. The contributions of this
paper to the literature are as follows:

1. We propose a general architecture for a smart
home network, which utilizes open‑source ap‑
proaches that employ MUD‑based trafϐic proϐiling
and whitelisting. Our approach is based on the im‑
plementation of MUD in a laboratory setting, and its
evaluation for security. For this, we use the Yang
model by IETF [9]. We build aMUD‑enabled network
to test our generated MUD ϐiles.

2. We demonstrate the efϐiciency of the methodology
by analyzing IoT trafϐic on the network. For this,
we captured trafϐic ϐlow from real IoT devices while
they generated trafϐic in a local area network. In or‑
der to reach the maximum coverage of variation, we
recordedmultiple capture sets. Following initial data
analysis, we identiϐied the capture sets that included
the features needed for further analysis.

3. This study provides a Veriϐication of Concept (VOC),
aka Proof of Concept (PoC) approach to providing
cybersecurity for smart home IoT networks. The
approach presented in the study exhibits an open‑
sourcemotivated approach,which is generalizable to
a wide spectrum of IoT devices. We present two im‑
plementations to demonstrate supporting evidence
that the concept is an applicable one (i.e., MUD as an
implementable approach), therefore it is able to go
beyond architectural level descriptions and run in a
demo environment.

4. The demonstrations with MUD implementation on
two devices show that the open source version of
MUD works for small networks. In contrast to black‑
box machine learning models, such as artiϐicial neu‑
ral network approaches, the approach is also ”ex‑
plainable” in that it is possible to track the data pro‑
cesses.

The remainder of this paper is organized as follows: Sec‑
tion 2 provides background information on IoT, smart en‑
vironments, IoT security challenges and MUD. Section 3
provides an overview of related work in intrusion detec‑
tion and prevention approaches. Section 4 describes our
methodology for utilizing MUD ϐiles for intrusion preven‑
tion in a smart home network, as well as our network
setup and data collection details. Section 5 provides an
evaluation of the MUD‑based approach for two real home
IoT devices. Section 6 discusses the important ϐindings of
the study and presents conclusions. Section 7 lists future
study directions.

2. BACKGROUND
2.1 IoT deϐinition and domains of application
The term IoT was ϐirst coined by Kevin Ashton at the
MITAuto‑IDCenter[1], to refer to the connectionbetween
the Internet and the physical world through ubiquitous
sensors.  Since then, several deϐinitions have been pro‑
posed. For example, International Telecommunication
Union (ITU) used it for describing ”a global infrastruc‑
ture for the information society, enabling advanced ser‑
vices by interconnecting physical and virtual things based
on the current and evolving inter‑operable information
and communication technologies or a network which is
available anywhere, anytime, by anything and anyone”
[12] . Similarly, according to IEEE, IoT is ”a network of
items, each enabled with sensors connected to the Inter‑
net” [13] . ETSI, ofϐicially recognized by the EU as a Eu‑
ropean standards organization, uses the term ”machine‑
to‑machine (M2M)” instead of IoT. It describes M2M as
”communicationbetween twoormore entities that donot
necessarily need any human intervention” [14] . NIST also
uses ”Cyber‑Physical System” to describe IoT as a new
way for connecting objects in daily use, enhancing efϐi‑
ciency and sustainability, and improving the quality of life
[80].
According to IoT Analytics, the number of connected de‑
vices increased from 3.8 billion in 2015 to 8.3 billion de‑
vices in 2019, and it is also predicted that it will reach
nearly 16 billion by the end of 2023 [3] . Cisco reports that
by the end of 2023, 48% of the M2M trafϐic will be gener‑
ated by smart home networks [2] . These ϐigures suggest
that IoTdeviceswill have a signiϐicant role in shaping how
we live, communicate, work, and learn shortly. The po‑
tential impact of IoT on daily operations has already been
addressed by numerous studies [15] , [16]  ,[17] and [18]).
Given its major role in daily life, the security of IoT de‑
vices and their connections will also be of utmost impor‑
tance. Below, we describe IoT environments in terms of
their common context of use.

2.2 Smart environments
The term ”smart” has become a preϐix to numerous ob‑
jects and services used in daily settings, at homes, of‑
ϐices, and living environments, as well as hospitals and
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cities. The concept of smartness is related to the abil‑
ity of an object to connect and interact with other ob‑
jects and humans. Many household devices are manu‑
factured with integrated processors, sensors, and soft‑
ware that provide the necessary infrastructure. Our en‑
vironments have changed to become smarter in the past
decade, leading to revolutionary lifestyle changes. The
primary environment that has changed rapidlywith IoT is
our homes. Temperature sensors and remote door lock‑
ing mechanisms exemplify the early use of IoT in home
environments. Domestic appliances, such as refrigera‑
tors, have been the pioneers of smart home devices. More
recently, kitchen utensils, such as coffee machines have
also become smart. These changes in end‑user IoT tech‑
nologies require appropriate infrastructures to provide
interactionwith humans and provide connectivity and cy‑
bersecurity. Nevertheless, the cybersecurity of IT sys‑
tems usually lags behind their functionality. Given that
the end users are not expected to be domain experts, mis‑
conϐiguration and the lack of hardened security are fre‑
quently observed. Those issues lead to an increased in‑
terest of adversaries, thus increasing the urgency of the
need for more secure IoT networks at smart homes.
Cities are also getting smart. The term ”smart city” is
deϐined in various forms sharing some commonalities in
the description, besides the discrepancies. A common as‑
pect is the use of IoT as an embedded, integrated com‑
ponent of an urban‑wide computer network infrastruc‑
ture. Early uses of IoT technologies included transporta‑
tion systems [19] and trafϐic management [20] . Since the
scope of the IoT technology in those systems is usually the
whole city, a cybersecurity threat may have an enormous
impact. Healthcare is another domain that has been sub‑
ject to IoT inϐluence for the past decade. IoT devices are
promising candidates to facilitate health tracking, thus
supporting decision‑making in the medical context [21].
In summary, IoT has been developed as an integrated part
of ”smart” things, such as smart objects, smart environ‑
ments, and smart systems in general, having a signiϐicant
impact on our daily lives, as well as promising novel do‑
mains for living, working and learning in the future. A sig‑
niϐicant challenge, as in the development of all new tech‑
nologies, is to ensure the cybersecurity of IoT networks.
IEEE provides a simple approach for describing the layers
of the functional components of IoT devices [13] . In this
design, the bottom layer is the perception layer (or the
sensing layer), also referred to as the hardware layer. This
layer, consisting of elements such as sensors, is responsi‑
ble for physical interactionwith the environment. Theup‑
per layer is the network layer. This layer is responsible for
networking and data communications, such as appropri‑
ate data transmission through various protocols and tech‑
nologies, such as 5G, 4G, WiFi, ZigBee, and the infrared.
Finally, the topmost layer is the application layer due to
its primary responsibility of establishing connections be‑
tween services. In the following section,wepresentmajor
IoT security challenges that are at these different layers of
functionality in IoT.

2.3 IoT security challenges

Cybersecurity is usually a follow‑up concern for a novel
technology rather than an integrated part of it. This situa‑
tion also applies to today’s IoT devices in the fast‑growing
IoT market, which mostly skip integrated security in con‑
nected devices. The usability goals that provide ease
of conϐiguration for non‑technical end users also lead to
many IoT devices being used with default conϐiguration
credentials, also running with unpatched and outdated
software [22] .

A review of the literature reveals that IoT security chal‑
lenges may be categorized into four major groups [17].
The ϐirst group includes authentication‑related problems.
The second is related to the security of data transmis‑
sion in the network. Integrity and availability are cen‑
tral security issues, particularlywhen the data ismodiϐied
in transmission or interrupted due to attacks like DDoS.
The third group includes privacy challenges that have at‑
tracted signiϐicant attention recently. IoT devices may
process conϐidential data, and the use of data may lead to
privacy violations. Therefore, security and usage policies
are needed to regulate the processing and storage of data
without any violation of individual users’ privacy. Besides
those major categories, relevant security challenges exist
which are speciϐic to IoTdevices, such as a limited amount
of resources and processing capacity, especially for data
encryption, decryption and intrusion detection. Another
important challenge is the lack of common security stan‑
dards [17].

In some of the attacks on IoT, the IoT devices themselves
are not the direct target of the attack, but are used as in‑
struments in the coordination of a large‑scale attack on
another target. DDoS is one of the well‑known examples
of such attacks. A DDoS is a joint attack, where attack‑
ers aim at interrupting the expected behavior of a system,
usually a public service. Attackers expand the attack sur‑
face through distributed attacker devices, which unknow‑
ingly take part in the DDoS attack [23] . DDoS is a signiϐi‑
cant threat for IoT environments, since IoTnetworks have
the potential to provide a large attack surface. A speciϐic
example of a DDoS capable malware is Mirai, which is an
IoT malware with published source code [24]. Mirai uses
a short dictionary of default usernames and passwords
for brute‑forcing the authentication of IoT devices that
use default credentials. Mirai was used to attack Krebs on
the Security blog, OVH data centers, and also Dyn name
servers [25] . The latter caused interruption on accessing
popular websites like Twitter. AlthoughMirai was not the
only DDoS‑capablemalware, theMirai attackswere a cru‑
cial point in the history of IoT security when researchers
began to propose solutions to mitigate them [26]. Mirai
revealed the potential problems of insecure IoT devices,
leading to numerous proposals as mitigation, such as a
white worm named AntibIoTic [27].
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2.4 Manufacturer usage description
In this work, we use a MUD‑based approach for intrusion
detection and prevention in smart home networks. MUD
is a standard proposed by IETF in RFC 8520, which allows
IoT device manufacturers to advertise expected commu‑
nication patterns and device speciϐications. MUD ensures
that an IoT devicewill access the required resources after
joining a network, based on the description that its man‑
ufacturer speciϐied, and nothingmore. IoT devices are ex‑
pected to function appropriately with this insurance, and
their attack surface is signiϐicantly decreased when they
do. MUD enabled IoT device manufacturers to become
more involved in the security of their products at the on‑
set of production rather than implementing cybersecurity
as a follow‑up task.
A MUD ϐile is structured by the YANG model (RFC 6020)
[72]. A valid MUD ϐile contains two root objects: A “MUD”
container and an “ACL” container. The arguments can be
matched to create policies in the container object. Fur‑
ther information, such as the software version or the last
update, are included in the MUD container. The YANG
model’s augmentation and syntax are available in RFC
8520. The MUD ϐile is a sensitive ϐile that deϐines the net‑
work security policy at its core. Therefore, it needs to be
protected from adversaries. For this, Cryptographic Mes‑
sage Syntax (CMS) can be used (We point the reader to
RFC 5652 [77] for more information on this). The MUD
manager must also verify MUD ϐiles. The MUD‑signature
ϐile needs to be retrieved and compared to the signature
in the MUD ϐile. After the matching, the MUD ϐile is ver‑
iϐied and ready to use by the MUD manager. This solu‑
tion increases the accountability of the MUD ϐile based on
the reputation of the signer of the MUD ϐile that primarily
should be the manufacturer of the IoT device.
A simple line of a MUD ϐile usually consists of destination
and source IP addresses, destination and source ports,
protocols, and action containers. Therefore, a translation
of the Yang model to access control list entries is needed
by the MUDmanager to add these entries as rules to ϐire‑
walls. For example, based on the code snippet below, the
MUDmanager will allow outgoing trafϐic with UDP proto‑
col on port 1900 for the Google Voice Kit:
”udp” : { ”destination‑port” : { ”operator” : ”eq”, ”port” :
1900 } } }, ”actions” : { ”forwarding” : ”accept” } }
Besides these containers, theMUD ϐile includes other con‑
tainers like version, URL, to‑device‑policy, from‑device‑
policy, last‑update, cache‑validity, is‑supported, system‑
info, and other containers. Fig. 1 shows part of a sample
MUD ϐile. TheURLcontainer is useful forwhen the ϐile and
the signature are manually uploaded, and it points to the
addressof theMUD ϐile. The controller container speciϐies
a value that a controller will register with the MUD man‑
ager. The to‑device‑policy and from‑device‑policy con‑
tainers are used to explicitly deϐine the direction of traf‑
ϐic ϐlow in the MUD ϐiles. By allowing the permitted traf‑
ϐic from and to the particular device, the potentially mali‑
cious trafϐic gets dropped, hence the attack surface is re‑

duced. In order to create a MUD ϐile, the manufacturer
should list all possible connections from and to the de‑
vice, including the destination addresses, port and proto‑
cols, and the direction of the connections. In the absence
of a MUD ϐile generated and veriϐied by manufacturers, a
network administrator can try to store all valid trafϐic and
extract the network patterns and create a MUD ϐile as we
did in this work.

3. RELATEDWORK
In this section, we provide an overview of related work
in the ϐields of Intrusion Detection Systems (IDSs) and In‑
trusion Prevention Systems (IPSs) for IoT.
Computer systems under cyberattacksmay exhibit differ‑
ent characteristics than their regular activities. Those dif‑
ferences provide the basis of detection by an IDS [28] .
There exist three main approaches to IDS [29].  One is
”misuse detection”. The idea here is to identify the pat‑
terns from intrusion attempts, specify them as signa‑
tures, and compare them with data gathered from the
system. An IDS sends an alarm in case of a match be‑
tween an attack signature and the data gathered from sys‑
tem monitors. The second approach to intrusion detec‑
tion is ”anomaly detection”. The idea in anomaly detec‑
tion is to create amodel that builds a proϐile of the normal
behavior of the host/network and rule signiϐicant devia‑
tions from the normal behavior as anomalies. The third
approach is called ”speciϐication‑based detection.” As its
name suggests, it is based on a collection of predeϐined
speciϐications for intrusions and regular activities. In case
of a match between an activity and the intrusion speciϐi‑
cations, the system reports the activity as malicious.
An efϐicient IDS/IPS solution for IoT networks should be
able to operate in real time [17]. The protection should
be interoperable with diverse protocols for compatibility
among different vendors. The topology and architecture
of the network components also inϐluence the design of
intrusion detection in an IoT network.
With the rising number of threats against IoT systems,
many legacy IDS/IPS tools were adapted for operation in
an IoT setting. For example, Suricata, a widespread in‑
trusion detection and prevention system, was adapted to
work in a 6LoWPAN network to detect DDoS attacks and
reduce false alarm rates in [30] . A lightweight model was
proposed to detect DDoS attacks based on the energy con‑
sumption of the devices in a 6LoWPANnetwork in [31]. In
[32] the authors used Snort [33] , a popular IDS, to mon‑
itor, detect, and prevent the incoming malicious trafϐic
for an IoT network. Their approach achieved reasonable
detection rates. Another example of utilizing Snort can
be found at [34]. A two‑layer architecture was proposed
for intrusion detection, where one of the agents resides
in the home network, designed to collect data and send
them to the others, which reside in the ISP to perform
data analysis [35]. After analysis, the expert system gen‑
erates rules and policies for the home network and en‑
forces these policies at the home network gateway agent.

© International Telecommunication Union, 2022 391

Kazemi Darazam et al.: Using manufacturer usage descriptions for IoT network security: An experimental investigation of smart home network devices



Fig. 1 – MUD ϐile structure in JSON format for Google Voice Kit

This solution utilizes a combination of machine learning
methods and signature‑based methods. These kinds of
solutions are also called hybrid systems, as exempliϐied by
[36], which aim to achieve fast pattern matching to scale
up the performance.

Machine Learning (ML) methods have become a popu‑
lar choice for building effective IDS in recent years. They
have been employed to build models for representing the
expected behavior of a system in the case of anomaly
detection. Despite their effectiveness in detecting zero‑
day attacks, anomaly detection models may suffer from
high false‑positive rates. When detection of speciϐic at‑

tack types is also needed, ML models for multi‑class clas‑
siϐication are employed. One issue with ML‑based IDS
is the need for up‑to‑date, labeled datasets that include
the normal behavior of common IoT devices in the case
of anomaly detection and datasets with sample attack in‑
stances in the case of misuse detection.

IoT devices may exhibit speciϐic characteristics in net‑
work trafϐic, thus providing the opportunity for classiϐica‑
tion based on the trafϐic behavior, especially in smart en‑
vironments [37]. Classical ML algorithms such as Naive
Bayes, K‑Nearest Neighbor (KNN), decision trees, and
random forest may be employed to detect malware in the
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early stages when the attacker starts to scan a home net‑
work [38, 41, 42]. Combining ML models with Software‑
Deϐined Networks (SDN) may help reduce the impact of a
cyberattack, as in the case of [39].
SDN architectures have a set of advantages, such as ben‑
eϐiting from virtualization, central management, and of‑
fering APIs for external services [43, 47]. A primary ad‑
vantage of employing SDN is that it makes it possible to
provide security as a service [44]. An orchestrator in the
cloud provides a Restful API to the customer network and
the ISP. Security providersmay implement securitymech‑
anisms, which are enabled or disabled throughweb inter‑
faces by customers and the ISP. A smart home SDN net‑
work was designed by [48] , where a controller is inte‑
gratedwith an IDS to detect DDoS attacks near the source.
The soft switch of the network mirrors all the trafϐic to
the IDS. In case of malicious behavior in the trafϐic, the
IDS sends an alert to the controller, which generates a
ϐlow for blocking further trafϐic from that device. The so‑
lution seems to guarantee reducing delay in the network
and assure a high Quality of Service (QoS). Similarly, [46] 
shows that the cost of ϐlow‑based trafϐic analysis is much
lower than packet analysis. Another near‑source detec‑
tion approach employs an entropy formula to detect cy‑
berattacks, based on the observation that a network un‑
der attack would result in a decrease in the entropy of the
network packets due to reduced variation in the payload
[45]. The main concern in these solutions is the central
unit of decision, which contains user activity details. The
centralization attracts the attention of adversaries since a
security breach may threaten the privacy and security of
the whole home network and its users at a critical level.
A large number of IDS alerts may also interrupt the con‑
troller’s service, making it a single point of failure.
Besides the above‑mentioned solutions, numerous
IDS/IPS solutions exist, such as blockchain‑based solu‑
tions and benign‑worm solutions, to detect and mitigate
attacks in IoT. Blockchain is a distributed, shared ledger,
characterized by consensus in a peer‑to‑peer network.
It consists of sequences of blocks, where each block
is linked to the previous block in the shared ledger
and the veriϐication of a block depends on the agree‑
ment in the community of the network nodes [49].
Blockchain solutions for IoT security mainly focus on
the integrity of network intelligence data stored in the
ledger [50]. For instance, a Byzantine Fault Tolerant
blockchain was utilized to ϐind the mutual contacts in
communication and mark them in the shared blacklist in
[51] . Another approach was proposed in [52] to defend
against DDoS attacks. The framework’s security relies on
generating addresses for nodes that are IoT devices and
custom‑coded smart contracts.
A related community‑based approach, which did not uti‑
lize blockchain is the Community Guard [53]. This sys‑
temhas twomajor components, the guardian node, which
serves between the home router and themodem. The sec‑
ond is a community outpost that runs in the cloud server
and is a central managing unit. The nodes pull part of

rules and blacklisted IP(s) from the IDS, which runs on an
outpost and pushes the suspicious trafϐic to the outpost.
By the collaboration of the nodes in a home network, the
outpost is kept updated against novel attacks and can gen‑
erate new rules for attack detection. ShadowNet [54] is
another solution proposed for the mitigation of DDoS at‑
tacks at the source level using edge computing. The node
device is designed to run application‑speciϐic edge func‑
tions that will handle the requests correlated with web
services. With this part of the solution, blocking speciϐic
blacklisted IP(s) is possible without any effort at the gate‑
ways.
An example of benign‑worm solutions is AntibIoTic, a
solution for securing IoT devices automatically using a
white worm [26, 27]. The worm exploits the spreading
capability of IoT malware, such as Mirai, to compete for
infecting the IoT devices. However, instead of harming
the network by DDoS attacks, AntibIoTic aims to patch
the security vulnerabilities and inform system adminis‑
trators for further security operations. Another approach
to detecting application‑layer DDoS attacks is the utiliza‑
tion of the Chaos theory [55]. The approach is based on
the statistical analysis of features, including the request
and packet numbers, the data rate, the average packet
size, the combination of request and response time, and
parallel requests. A key advantage of this approach is its
realistic approximation to real‑world settings.
A major limitation of the available IoT security solutions,
especially those at the network layer, is the presence of
numerous types of devices from numerous manufactur‑
ers. This is a signiϐicant challenge, since the proposed so‑
lution must be compatible with all the available devices
under speciϐic environments and conditions. Moreover,
the limitations in the available resources, such as power,
memory, and process units, need to be addressed by the
lightweight solutions for detection mechanisms. Also,
usually, the gateways of smart homes have limited re‑
sources as well, and this is one of themost important rea‑
sonswhy security of smart homes have traditionally been
outsourced tomore powerful processing centers like ISPs
[7].

4. METHODOLOGY
In this section, we present the methodology of our study.
We state our threat model, discuss our data capturing
methodology, data analysis, and two case studies that
demonstrate real‑world applicability of the MUD‑based
approach.
To investigate the applicability of this approach, we cre‑
ated a dataset by collecting data in an IoT network. We
then analyzed the data to identify the features that allow
us to recognize patterns in the trafϐic ϐlow. For evaluation,
we generatedMUD ϐiles and investigated the feasibility of
usingMUDas a solution for the attackmitigationproblem.
In particular, we investigated the effectiveness of the se‑
curity mechanism that it provides [56]. Fig. 2 shows the
procedure for creating the MUD ϐiles.
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Fig. 2 – Procedure for creating a MUD ϐile

4.1 Threat model
In this work, our focus is a smart home network, where
multiple IoT devices such as IP cameras, voice kits, smart
TVs, refrigerators, thermostat controllers, lights, etc. are
connected to the homeWi‑Fi router, which connects them
to the modem connecting to the ISP.
IoT devices are usually added to networks together with
other computing devices, such as end user computers and
the current common practice allows remote access to IoT
devices. The spread of IoTmalware, such as the Mirai has
shown that most IoT devices are accessible remotely. For
high security, communication among IoT devices should
be limited to registered and identiϐied devices. Remotely
accessible IoT devices may grant unauthorized access to
attackers, which may then be followed by dictionary at‑
tacks against the authentication mechanisms of IoT de‑
vices that serve publicly. In case of a successful attack,
the IoT devices may function as zombie devices, which
take part in DDoS attacks. In this study, we focus on smart
home IoT devices that fall victim to these attacks through
communication with resources not needed for their nor‑
mal operation.

4.2 Equipment and network topology
A review of publicly available IoT network trafϐic datasets
reveals a frequent use of baby monitoring cameras [57].
These are sometimes partially compatible withMUD con‑
cepts, especially when using the Session Traversal Utili‑
ties for NAT (STUN) protocol . STUN is a protocol that col‑
laborates with other protocols and tools to discover the

presence of aNetworkAddressTranslation (NAT) service.
On the other hand, the incompatibility is due to the na‑
ture of the monitoring systems, where system adminis‑
trators may want to monitor different places and IP ad‑
dresses. A similar situation applies to general‑purpose
smart home voice assistants since they also have a wide
range of diversity in their network trafϐic patterns. In this
study we investigate babymonitoring cameras and smart
home voice assistants to approximate the real‑world di‑
versity in their trafϐic patterns. For this, we selected the
Motorola Baby Care camera [58], which has a wider va‑
riety of functionalities than other commercially available,
common baby monitoring cameras for end users. As for
the smart home voice assistant, we selected Google Voice
Kit [59] as a ready‑to‑develop home assistant. IoT net‑
works usually require a gateway to connect to the Inter‑
net, either directly or through a subnet of a larger net‑
work. We utilized a TP‑Link Archer C7 access point as the
gateway [60] , which is an affordable access point compat‑
iblewithOpenWRTas the ϐirmware [61] . Fig. 3 shows the
architecture of the established IoT network.
Below are further characteristics of the conϐiguration and
assembling procedure for the aforementioned compo‑
nents:

• The Google Voice Kit is physically assembled with a
Raspberry Pi [62] as a processor unit. The installa‑
tion includes an operating system and conϐiguration
of the software and scripts recommended by Google.

• The Motorola Baby Care is conϐigured through a
synchronization process with a smart mobile phone
with the Motorola Hubble application installed.
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• The TP‑Link access point is ϐlashed with OpenWRT
(v19.3). The installation includes the required pack‑
ages for storing, conϐiguring, and capturing trafϐic.

These devices were used for creating the dataset at the
IoT laboratory by capturing benign trafϐic. In the follow‑
ing section, we describe the data collection procedure.

4.3 Data collection
In order to capture network trafϐic, tcpdump 4.9 was
installed on OpenWRT, and block-mount, e2fsprogs,
kmod-fs-ext4, kmod-usb-storage, kmod-usb2, and
kmod-usb3 packages were deployed for creating a per‑
manent storage directory. A USB storage was attached
to the access point for storing the PCAP ϐiles. An access
point was connected to the Internet via a WAN port.
The IoT devices were connected to the WLAN. No other
devices were connected to the access point.
The deviceswere obtained for the purposes of the present
study and they were run for the ϐirst time in the estab‑
lished infrastructure. Therefore, they were expected to
have no malware infection. To capture trafϐic from Mo‑
torola BabyCare, wemonitored and executed all of the ap‑
plication features, such as capturing images, playing mu‑
sic, and sending voice commands. We captured two ϐiles,
one for 24 hours and the other about 1.5 hours, to make
sure that the devices complete their data transactionwith
manufacturer services for likely updates and reporting.
Nevertheless, our analysis of the PCAPs didn’t show ev‑
idence for such an activity. Since the two PCAP ϐiles were
similar, we used the smaller PCAP ϐile for the analysis.
The remote connections to the devices were established
both from from the local premises on campus and through
a cellular network. The frequency of command execution
did not have an impact on the features analyzed.
We used voice commands in two sessions to capture traf‑
ϐic from Google Voice Kit, each about 1.5 hours of trafϐic
capture. The commands were retrieved from the ofϐicial
support website. We covered virtually all categories of
voice commands reported in the manuals. The devices
were isolated from the rest of the network during the data
capture. The devices were not in communication with
other IoT devices either. The reason for the isolated traf‑
ϐic is that we aimed to generate the MUD ϐiles for each
device with this trafϐic in this phase. During the testing
phase, trafϐic was not isolated. The packet destinations
were only on the WAN side since our goal was to analyze
the communication pattern with the WAN side.

4.4 The dataset
In this section, we describe our dataset and its features.
Also, we report two publicly available datasets for com‑
parison. After collecting the benign data, we generated
reports and log ϐiles by following the previous work,
e.g., [63] . We used Capinfos [64] , PassiveDNS [65] ,
TCPdstat [66]  , DNStop [67], and Zeek[68] for the analy‑
sis. Moreover, the trafϐic ϐlowwas bidirectionally mapped

using Argus [69] , which made the dataset ϐiles easier to
use with the ML techniques. Below is a description of the
tools and the outputs of their processing.

• Capinfos: A software tool to generate statistical re‑
ports from a trafϐic capture. The reports can be in
a long format or table format. The long reports are
suitable for human readability, and the table format
is used for analysis with other tools.

• DNStop: A tool built on libpcap. It provides statistics
about DNS queries. It provides amap of destinations
and their popularity in the local network.

• Passivedns: It ϐilters DNS queries and returns infor‑
mation about trafϐic ϐlow direction. It is used in in‑
terfaces or for digital forensic operations.

• TCPdStat: A classical network forensic analysis tool.

• Zeek: Previously known as Bro, Zeek is a network
monitoring tool that beneϐits from hybrid solutions
in detecting intrusions. By processing PCAP ϐiles, it
generates different related reports based on the pro‑
tocols and services found on the PCAP.

We used the PCAP ϐiles to support manual analysis as
input for generating the MUD ϐiles. For this, we used
Mudgee [70] to create MUD proϐiles for the IoT devices
that do not have a MUD proϐile. We also used mud‑
maker.org [71], a website helpingmanufacturers and net‑
work administrators to produce their MUD ϐiles. It is also
possible to consult the YANG model [72] by IETF, to gen‑
erate the MUD ϐiles with the correct syntax.
Our dataset resembles the one published by the UNSW
research group. They reported an experimental investi‑
gation, in which they collected trafϐic of 28 distinct IoT
devices [73] . They proposed solutions for the security
of IoT networks, including manufacturer usage descrip‑
tions, anomaly detectionwithmachine learningmethods,
and SDN. The collected dataset was published in PCAP
and CSV ϐile formats. Also, using the Mudgee software,
they generated MUD proϐiles for 20 of their IoT devices.
Brieϐly, the goal of the study was to classify a large set of
IoTdevices basedon their trafϐic patterns. Instead, our fo‑
cus is to gather distinctive trafϐic patterns for speciϐic IoT
devices, not necessarily classiϐied. For this, we focus on
two IoT devices that provide assistance services. Another
similar dataset (CTU) is the one published by the Strato‑
sphere research lab in 2020 [74]. They captured trafϐic
from 20 IoTmalware in the lab and analyzed themmanu‑
ally using the Zeek anomaly detector. They also captured
benign trafϐic of three IoT devices with normal behavior.
There are differences, besides similarities between the
two datasets and our dataset. All three datasets captured
benignnetwork trafϐic topresent the expectedbehavior of
the target IoT devices. Also, the datasets employed differ‑
ent categories of IoT devices, but themajority of those de‑
vices are designed for a smart home network. The differ‑
ences in benign captures are that in CTU and our dataset,
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Fig. 3 – IoT lab Infrastructure

the target was IoT devices solely. However, the UNSW
dataset includes the traces of other devices as well. Fi‑
nally, we have no attack traces in the dataset, whereas
the CTU dataset includes traces of IoT malware, and the
UNSW dataset includes traces from general attack types.
The following section presents the data analysis of our
data.

4.5 Data analysis
The trafϐic from the Google Voice Kit and the Motorola
Baby Care was analyzed to ϐind the variation of the proto‑
cols andpacket destinations. Our goalwas to investigate if
it was possible to detect regular communication patterns
for each device by conducting trafϐic analysis. The ulti‑
mate goal was to understand if the whitelisting methods
could control the ϐlow of communication in IoT networks.

4.5.1 Google Voice Kit
We used the CapAnalysis tool [75] for visualizing trafϐic
ϐlowand the data volume transmitted between theGoogle
VoiceKit and the rest of the network . Amanual inspection
revealed that three speciϐic and known protocols were

involved during the Google Voice Kit trafϐic capture, be‑
sides one or more unknown protocols. The inspection
also showed that most trafϐic ϐlows were dedicated to the
unknown protocol(s).
To ϐind out the unknown protocol(s) and how they com‑
municate, a closer look at the ϐlows is needed. Fig. 4
presents a partial view of the ϐlow table for Google Voice
Kit. The red color in the right part shows the amount
of data sent and the purple shows the amount of data
received. The ϐlows that belong to the unknown proto‑
col started to communicate periodically within two min‑
utes. Furthermore, the destination IP address suggests
that those ϐlows belong to the Simple Service Discovery
Protocol (SSDP) [76] . Besides the SSDP, the other three
protocols used for the communication of Google Voice Kit
were DNS, SSL.Google and Google service protocol.
For analyzing the speciϐic destinations of the Google ser‑
vice protocol, we need to ϐind out the IP addresses in‑
volved. We used Passivedns and DNStop tools for a fur‑
ther investigation of the data. For visualization, we used
the statistics section of CAPAnalysis. The inspection of
the PCAPs showed that the majority of the sent data and
the received data targeted a speciϐic IP address that be‑
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Fig. 4 – Destinations of Google Voice Kit

longed to Google servers. The available data allowed us
to calculate a ratio (sent/received) that characterized the
communication of the device, besides its temporal prop‑
erties, such as a threshold for the volume of data sent and
received in repeating the time loops.

4.5.2 Motorola Baby Care camera
The report generation and PCAP processingmethodology
were repeated for Motorola Baby Care. Motorola Baby
Care uses SSL, HTTP, DNS, RTMP, and a set of protocols
not detected by CapAnalysis. An inspection of the cap‑
tured data revealed that this device used cloud‑based ser‑
vices from Google and Amazon. The presence of the plain
HTTP connection may indicate a vulnerability from the
perspective of cybersecurity, since it allowed plain‑text
data transfer. Nevertheless, a further inspection is be‑
yond the scope of the present study.
The ϐlow table indicates that unknown protocols targeted
three destination ports. The ϐirst one was SSDP, distin‑
guishable by its port number 1900. The other two (port
80 and 443) were HTTP and HTTPS ports. The connec‑
tion on port 443 to the API may serve for authentication,
whereas port 80 may serve for uploading.
The Motorola Baby Care camera functionalities are syn‑
chronizedwith different destination subnets in the cloud,
as shown in Fig. 5 and Fig. 6. The number of the subnets
in theMotorola devicewas larger than those in the Google
Voice Kit. Although this observation is limited to the small
scale of the collected data, the available captures may in‑
dicate that the number of subnets was small enough to be
included in a whitelist.

4.6 Implementation of MUD on the network
We implemented a custom‑builtMUDmanager in our net‑
work to evaluate the proposed security features and test if
our selected software stack works as expected in the es‑
tablished lab environment. The implementation also al‑
lowed us to check the proof ofwork developed by the gen‑
erated MUD ϐiles for Google Voice Kit and Motorola Baby
Care. In this section, we ϐirst present the technical back‑
ground on theMUD concept and then report the details of
the implementation.1

1TheMUD ϐiles and PCAP ϐiles are accessible at the Open Science Frame‑
work (OSF) repository: https://osf.io/gtw2h/

Recently, there have been three methods to develop a
MUD ϐile for IoT devices. The common practice suggests
that those methods have the same outcome in an accu‑
rate operation. The ϐirst method is basically to follow the
syntax of the MUD ϐile with the YANG model, also the ba‑
sis of the other two methods. The second is to use mud‑
maker.org, an online platform for making MUD ϐiles using
a wizard. The wizard requires the connections of the IoT
device from the user, including the source and destination
ports, protocols, the domain name, or IP addresses that
the device connects. The third may be useful if the devel‑
oper does not know the communication pattern of the IoT
device. For this, the Mudgee tool may be used, which re‑
ceives input of a PCAP ϐile and returns the output of the
MUD ϐile in JSON or CSV format. In order to achieve an ac‑
curate MUD ϐile that includes necessary information for
the IoT device to service, the developer needs to test all
possible functionalities of the device, from general func‑
tions to speciϐic ones, such as updating ϐirmware.
Fig. 7 presents a simpliϐied architecture of a MUD‑
integrated network. In this architecture, the ”Thing” com‑
ponent represents the IoT device that sends theMUDURL
to the gateway, as suggested by [9]. The gateway may
be software, a hardware switch, or even a router. The
switch then sends the packets to the MUD manager. The
MUDmanager may be installed on the same device as the
gateway or a separate device. The protocol for sending
the MUD URL may vary, depending on the implementa‑
tion. For example, the data may be sent via DHCP pack‑
ets, or by following the IEEE 802.1X standards [78]  to uti‑
lize EAPoverRadius. TheMUDmanager extracts theMUD
URL, and it requests theMUD ϐile from theMUD ϐile server
with a GET command. The MUD ϐile server may be a Web
server in the cloud. After the receipt of the MUD ϐile, the
MUD manager converts it into speciϐic network conϐig‑
urations and updates the conϐigurations in the network
gateway or any device responsible for the access control
mechanism in the network. The conϐigurations and the
MUD ϐile are deleted after the device disconnects from the
network.

4.6.1 TheMUD ϔiles for Google VoiceKit andMo‑
torola Baby Care

We generated an initial version of the MUD ϐile for Google
Voice Kit and Motorola Baby Care by using the output of
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Fig. 5 – Destinations vs. ϐlows in Motorola Baby Care camera

Fig. 6 – Data volumes and ϐlows in Motorola Baby Care camera

Fig. 7 – Architecture of MUD‑enabled network

the Mudgee software tool. The PCAP ϐiles were 
investigated to reveal the communication patterns in 
the network. A manual check was performed for the 
MUD ϐiles since speciϐic MUD rules may be incorrect 
when fully automatically generated from PCAP ϐiles, 
especially for the camera devices and the devices with 
remote access. For example, suppose a parent uses a 
camera to monitor various locations through different IP 
addresses. If the MUD ϐile is limited by whitelisting for 
a speciϐic IP address, it will lose its capacity to allow 
multiple IP addresses. Accordingly, the PCAP should be 
manually analyzed for the requests and the remote 
access controls. When controlled through an API or 
service from the cloud, the IP addresses must be 
speciϐied for remote access.

Manual trafϐic inspection and analysis, and MUD ϐile 
generation may be time consuming for network 
administrators, for each and every IoT device in the 
network. As mentioned before, our study aims to 
make network administrators who are concerned 
about automatic MUD generation methods, more 
conϐident about the usability and effectiveness of these 
methods. It is necessary to mention that all these 
alternatives are just temporary solutions until the 
manufacturers adopt the MUD standard.

Due to the novelty of the MUD concept, not many exper‑ 
iments are available in the literature. The NIST, a ma‑ 
jor contributor and supporter of MUD, developed guid‑ 
ances for MUD implementation, including different types 
of builds. Three builds were for proprietary software and 
technologies. The other was open source, though being 
limited to supporting hardware signatures. Therefore,
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we developed a new build based on an open‑source MUD
manager, namely osMUD [79]. We compiled the osMUD
for the TP‑Link Archer c7 v2 model running on the MIPS
architecture. After conϐiguring the DNSMasq for reading
the DHCP packets to extract the MUD URLs, the service
started to work.
In the next section, we discuss our experiments, which
were conducted to verify that the MUD‑based network
canmeet the communicationneeds of the devices and add
a layer of security on the network stack.

5. EVALUATION
MUD‑enabled networks are open to potential threats that
target them. The analysis of the collected data from the
two IoT devices showed that whitelisting methods are
possible to implement through generated MUD ϐiles. In
this section, we report the results of our data analysis and
present an evaluation of MUD‑enabled networks at a con‑
ceptual level.

5.1 Results of trafϐic data analysis
The trafϐic patterns reveal that the Google Voice Kit uses
three commonly used protocols to serve the user: SSL,
SSDP, and DNS. Its destinations are also limited to a
couple of Google services, suggesting that whitelisting
the network communication is reasonable for the Google
Voice Kit. As for Motorola Baby Care, the trafϐic patterns
show that it uses ϐive protocols: SSL for Google and the
Hubble API, HTTP for Amazon cloud, RTMP for streaming,
SSDP, and DNS. Furthermore, the number of protocol des‑
tinations is less than ten. It is even less than four if domain
names are used. Those results suggest that whitelisting
the network communication for Motorola Baby Care is
also a feasible approach. The ϐindings also suggest that
our MUD ϐiles can be implemented in any IoT network
having those two devices. It is also possible to reduce the
attack surface by modifying the MUD ϐiles so that speciϐic
protocols, such as SSDP, are not used.

5.2 Threats against MUD‑enabled network
IoT devices are usually added to networks together with
other computing devices, such as end‑user computers. In
principle, the IoT devices should serve in separated and
isolated LANs orVLANs, whereas the commonpractice al‑
lows remote access to IoT devices. The spread of IoTmal‑
ware, such as theMirai indicates thatmost IoT devices are
accessible remotely. In addition, communication among
the IoT devices should be limited to registered and iden‑
tiϐied devices. Remotely accessible IoT devices may also
grant unauthorized access to attackers, which may then
be followed by dictionary attacks against the authentica‑
tion mechanisms of IoT devices that serve publicly. In
case of a successful attack, the IoT devices may function
as zombie devices, which take part in DDoS attacks. This
section presents four cases that describe attack surfaces
as such.

A compatible network environment is needed to evalu‑
ate the MUD ϐiles for reliability. We achieved this com‑
patibility by implementing osMUD manager and modi‑
fying the gateway conϐigurations that run OpenWRT as
ϐirmware. After building this infrastructure, Google Voice
Kit andMotorola Baby Care camera ranwithout problems
in the MUD‑enabled network. In this network, the MUD
ϐiles specify access control through their entries, and the
MUD manager enforces those entries in the access con‑
trol list on the OpenWRT’s ϐirewall, which in our case is
iptables. Moreover, the MUD manager initially blocks all
communication from any source to any destination by de‑
fault. However, by adding rules to the access list, devices
can communicate with whitelisted destinations and pro‑
tocols. Therefore, the ϐirewall rules are the mechanism
of prevention. As a result, the attacks which can bypass
the ϐirewall rules can also bypassMUD‑enabled networks.
Below we present a set of cases for explaining potential
attacks on the MUD‑enabled network and the MUD stan‑
dard from the perspective of cybersecurity. We assume
that the attacker has understanding of MUD‑enabled net‑
works, how DNS and ϐirewalls work and in some cases,
has access to the local network or is an insider. This gen‑
eral threat model where insiders and outsiders can be
involved is shown in Fig. 8. Usually, an insider tries to
exploit vulnerabilities in protocols and an outsider tries
to brute force and do dictionary attacks against authen‑
tication panels of IoT devices. As previously explained,
in major cases, these devices are used to launch DDoS
attacks against public services. The outsiders are usu‑
ally Advanced Persistent Threat (APT) groups who aim to
damage governments or international organizations. The
insiders are usually the hackerswho aim to steal informa‑
tion and publish or sell them.

5.2.1 Case 1: Using non‑vendor MUD ϔiles
The architecture of theMUD‑enabled network is designed
for securing the integrity and veriϐication of the MUD
ϐile. On the other hand, speciϐic methods may be devel‑
oped to bypass the available security mechanisms. More‑
over, vendor‑provided, thus veriϐiedMUD ϐilesmay not be
available. In particular, if the MUD ϐile is generated by an‑
alyzing the trafϐic collection, it may be limited in scope
since certain functions and features of the IoT devices
might not have been executed during data collection from
the network trafϐic. This may lead to missing patterns in
the generated MUD ϐile. For instance, suppose we did not
execute the ϐirmware update during the network trafϐic
collection of the Motorola Baby Care camera. In this situ‑
ation, if the update server was a separate server from the
previously accessed server via the camera, then we miss
thedestination address that has tobe included in theMUD
ϐile.
As a result, our generated MUD ϐile would not cover the
entries for that destination, and the camera would not be
able to connect to that server in the MUD‑enabled net‑
work. Thus, a network administrator should either re‑
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Fig. 8 – General threat model on MUD‑enabled network

quest a veriϐied MUD ϐile from the vendor or execute all
the functionalities of the IoT device and capture its com‑
munication patterns to maximize the scope of the MUD
ϐile. Also, the network administrator may want to restrict
speciϐic protocols or ports not speciϐied by the MUD ϐile
in some cases. For instance, the SSDP protocol may be
blacklisted due to security policies in an organization’s
network. In this case, the administrator either needs to
use a customized version of the MUD ϐile or enforce the
rules or ϐlows from a security layer lower than the MUD
manager executes.

5.2.2 Case 2: MUD URL spooϔing
A likely method of compromising the devices in an IoT
network is to point at a compromised MUD ϐile by send‑
ing a modiϐied request containing a malicious MUD URL
to the MUD manager. Suppose an attacker can modify
the DHCP request (or any other protocol that the network
supports for initiator request) and change the MUD URL
toa fakeURLpointing to abogusMUD ϐile. In that case, the
layer of security added by MUD is bypassed. This modiϐi‑
cation can be implemented in two ways. The ϐirst is the
Man‑in‑the‑Middle (MITM) attack, a known attack type
that aims to sniff, interpret, modify, and forward the pack‑
ets in transmission. Second, another device may spoof
the newly added device’sMedia Access Control (MAC) ad‑
dress and send the initiator request containing the MUD
URL. Inboth cases, the result is fake access control entries,
which can deny the service of IoT devices ormake it avail‑
able to communicate with destinations not acceptable by
manufacturer or network administrators. Fig. 9 shows a
potential model of this attack type.

5.2.3 Case 3: DNS spooϔing

Another approach to bypass the MUD‑enabled network
policies andupdate theMUD ϐilewith a fakeone is to spoof
DNS query results. In this scenario, after the MUD man‑
ager extracts theMUDURL fromtheDHCPpacket, it needs
to resolve the IP address of that domain. If, in any case, the
adversaries can spoof this result and senda fake response,
then a fake web server will serve the fakeMUD ϐile for the
MUD manager, and as a result, the MUD manager will en‑
force fake access control rules on the IoT device.

5.2.4 Case 4: Attacks on MUD manager

The last scenario that we present as a case study, which
aims to exemplify threats for MUD‑enabled networks, is
to have a vulnerable MUD manager software. If an at‑
tacker gains access to the MUD manager by exploiting a
vulnerability in the MUD manager, the ϐirmware, or the
operating system that serves the MUD manager, modiϐi‑
cation in the policies and security mechanism of the net‑
work may become possible. This scenario is not speciϐic
to MUD‑enabled networks. Nevertheless, MUDmanagers
are still at an early stage in development. Therefore, we
should consider the presence of critical vulnerabilities in
MUD‑enabled networks.

6. DISCUSSION AND CONCLUSIONS
In this section, we summarize the ϐindings of the study,
present a discussion of the MUD concept for improving
the security of IoT networks and the operational assump‑
tions and limitations in the implementation.
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Fig. 9 – MUD URL spooϐing

Fig. 10 – DNS spooϐing

Fig. 11 – Attacks on MUDmanager

The present study is a simplistic Veriϐication of Con‑
cept (VoC), aka Proof of Concept (PoC) study, which
demonstrates the use of MUD implementations using an
open‑source methodology on two speciϐic devices, rather
than being a performance evaluation study that aims to

evaluate the performance of speciϐic software over spe‑
ciϐic hardware. A practical contribution of the study is
the presentation of explicit, step‑by‑step descriptions of
the implementation on two devices through open‑source
methodology for MUD to improve the security of IoT
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networks, in particular, in smart home environments.
Therefore, we started with an investigation of available
approaches and solutions for improving the security of
smart home networks. Recently, smart home networks
have been most vulnerable to DDoS attacks, where in‑
fected IoT devices are used as botnets. We found that
most of the available solutions are based on SDN archi‑
tectures andMLmethods. As an alternative, we proposed
that whitelisting policies are effective given their ease of
operation and applicability on smart home scale IoT net‑
works. Therefore, we presented MUD as a concept com‑
patible with customized standardization, having a sim‑
plistic architecture and straightforward implementation
for enforcing whitelisting policies in the network. We
tested the approach in two devices by generating MUD
ϐiles from network trafϐic data. We used the syntax of the
Yang model, published openly for use and customization.
For evaluating the MUD ϐiles, we implemented a unique
build of the MUD manager in our network and tested the
proof of concept for the MUD ϐiles for building a MUD‑
enabled network.
Recent approaches for securing small‑to‑medium size
networks have mostly focused on downsizing available
misuse‑based IDSs to make them compatible with IoT
networks. In general, the goal is to disassemble a work‑
ing IDS andmake it cost‑effective and lighter for improved
performance in an IoT network. The main issue with
this approach is that the architectures of the available
IDSs are not designed for this purpose. Therefore, those
devices may not function as expected even by modiϐica‑
tion and improvements. Another issue is that signature‑
based IDSs are disadvantageous against novel, polymor‑
phic malware. More recent approaches beneϐit from ML
to generate models of normal behavior proϐiles and then
run the models to detect anomalies. Although those ap‑
proaches are feasible due to their robustness in recogniz‑
ing patterns in IoT networks, their training and execution
may demand high processing power.
In contrast to the available approaches that aim at pro‑
viding technical solutions for IoT network security, MUD
is a standard developed and contributed by the manu‑
facturers. The MUD concept enforces the manufactur‑
ers to consider security before presenting the product to
the market rather than providing security afterward. In
return, providing product‑speciϐic MUD ϐiles increases a
manufacturer’s reputation in producing reliable and se‑
cure devices. The MUD concept has further advantages,
such as being easy to implement compared to the al‑
ternatives. Furthermore, it is compatible with different
hardware and operating systems. Also, computational re‑
quirements are relatively low, thus bringing performance
through a lightweight architecture.
The main feature of MUD‑enabled networks is the high
level of security by adding a layer on top of the security
stack in the network. The whitelisting methods enable
communication with a trusted destination in a trusted di‑
rection by utilizing trusted ports and protocols. This fea‑
ture is comparable with the expected behavior proϐiling

with machine learning models, yet MUD has its advan‑
tages.
Implementing aMUD‑enabled network is still challenging
due to the lack of documentation and experience about
this technology. However, the present study demon‑
strated its potential for developing device‑compatible
builds that do not have to follow the previous ones. As
for the implementation, the Google Voice Kit and the Mo‑
torola Baby Care did not have original MUD ϐiles to allow
comparative analysis. These ϐindings are valuable since
they reϐlect the potential of MUD as an emerging technol‑
ogy for IoT cybersecurity.

7. FUTURE STUDIES
In this study, we did not observe any indication of low
performance during service. Nevertheless, the compar‑
ison between the normal working and MUD‑enabled net‑
works must be made based on different parameters in
more crowded intranet networks. More generally, the
functionality of the MUD ϐiles on different builds needs to
be investigated. In particular, a complex network from
the hardware perspective may facilitate evaluating the
performance of the open‑source osMUDmanager and the
inter‑domain communications.
There are open questions related to the earlier versions
of security cameras that do not support communication
through API. Further research is needed to check if the
MUD approach would effectively improve the security of
those cameras that have a diversity of remote requests.
The solution can be searched by whitelisting the proto‑
cols and ports and generating MUD ϐiles based on these
features. Also, the performance comparison of differ‑
ent builds of the MUD‑enabled network is another ques‑
tion that can be investigated with affordable logistics.
Finally, other bypass mechanisms of MUD‑enabled net‑
works should be investigated in future research. This can
help for early upgrades on MUD to promise enhanced se‑
curity.
Another frontier of future research is integrating the
MUD‑enabled network in a large‑scale implementation
that includes multiple builds in a real environment. In
particular, integrating the MUD manager with an SDN
controller in the builds published by NIST may lead to a
better performance in a large‑scale architecture than its
alternatives. At this stage, it is not certain if MUD is able
to operate effectively in crowded networks, such as the
ones that use 5G technology to communicate.
The presentation of the quantitative evaluation is lim‑
ited in the present study. The primary goal has been to
present a veriϐication of concept approach and demon‑
strate its implementation on two devices, thus position‑
ing itself as a conceptual approach without directly aim‑
ing at presenting a dataset and the performance of a
methodology. Given this approach, a quantitative evalu‑
ation on the performance of a network of this scale would
be incomplete since it involves two IoT devices. We have
also discussed scenarios for possible attacks on theMUD‑
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enabled network. In future work we plan to address the
concept through rigorous quantitative evaluation with
large‑scale, MUD‑utilized IoT networks. We also plan to
propose a set of prevention methods for the discussed
threats. Finally, weplan to compose a datasetwith attacks
performed on this testbed for the beneϐit of the academic
community.
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