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Abstract – The vision of autonomous network has become an industry consensus. Leading operators have moved from
network automation to network intelligence, and the deep integration of network and AI technology as the main technical
method enters the scale adoption in production networks. At the same time, the third‑generation AI technology has ushered
in a research and development boom driven by both data and knowledge. To build an architectural consensus to further
guide technical standards for accelerating industrial cooperation, a data and knowledge dual‑driven autonomous network
architecture, as well as its design principles, functional modules and deployment options, are given to unleash the power of
technology innovation and industry transformation.
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1. INTRODUCTION
An autonomous network is the goal of digital intelli‑
gent transformation of communication network opera‑
tion management, aiming to build automated and in‑
telligent operation and maintenance capabilities for the
whole life cycle of the network, providing new network
and ICT services to consumers and vertical industry cus‑
tomers with Zero‑Wait, Zero‑Failure, Zero‑Touch ex‑
periences, via in‑built digital and intelligent operation
and maintenance capabilities for Self‑conϐiguring, Self‑
healing, Self‑optimizing [1].
On one hand, from the perspective of customers in terms
of their digital experience [1]:
•Zero‑Wait provisioningmeans that through the precise
control of network resources, real‑time service provision‑
ing and immediate use are enabled;
•Zero‑Failure maintenance means through end‑to‑end
monitoring of the network, hidden risks are identiϐied be‑
fore customer complaints, and faults are recovered before
customers perceive them; and
•Zero‑Touch servicemeans through the exposure of net‑
work data and capabilities, customer self‑service is sup‑
ported, and online digital techniques are used to quickly
responds to customer needs.
On the other hand, from the perspective of OAM practice
in terms of digital transformation [1]:
•Self‑conϐiguring means that network expansion, up‑
grade and conϐiguration are automated, along with auto‑
matic dialing and testing andmachine on‑duty inspection
after network changes are made;
•Self‑healing means that the network failure and semi‑
healthy state (which might lead to later failures) are
keenly sensed, and services are guaranteedbasedon tech‑
nologies such as dynamic load balancing and multilevel
disaster recovery;

•Self‑optimizing accurate perception and identiϐication
of poor service quality, dynamic generation of optimiza‑
tion policies, and closed‑loop control are provided based
on big data and AI technologies, so as to ensure high‑
quality user experience.
To this end, autonomous networks deeply integrate AI
technology with the hardware, software, and systems of
communication networks to help intelligent network op‑
erations, enable agile business innovation, and build in‑
telligent endogenous networks.
At the same time, the development of AI technology has
ushered in anewstage. The ϐirst generation ofmodern ar‑
tiϐicial intelligence, ϐirst originated at the Dartmouth Con‑
ference in 1956,was knowledge‑driven symbolic artiϐicial
intelligence [2][3]. The second generation since then is
perceptual artiϐicial intelligence, which relies on a large
number of data‑driven statistical learningmethods to im‑
plement the perception and recognition of information
such as text, pictures, and speech [4][5].
According to the comparison in [6], in the knowledge‑
driven artiϐicial intelligence framework, large‑scale
knowledge base and common sense base could be built
which allows the machine to describe all the knowledge
of human beings. However, this method cannot change
dynamically, so it cannot adapt to large‑scale data and
ϐlexible knowledge. while in the data‑driven percep‑
tual AI framework, ML models cannot solve cognitive
problems, nor can they reason.
With the pervasive application of model AI and the vi‑
sion for its enablement to support digitalization trans‑
formation, a new trend of development direction for the
third‑generation artiϐicial intelligence, which integrates
knowledge and data to build a dual‑driven framework,
has emerged to combine the advantages of knowledge‑
driven and data‑driven to improve the explainability and
robustness of the model [7][8].
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In the context of digital and intelligent transformation,
with the improvement of network autonomy, dynamically
updated networks/systems bring complex and dynamic
knowledge management requirements, and automatic
and intelligent management and operation of knowledge
have also become a new trend.
Knowledge is concept, notion, or skill acquired through
study, practice, or exploration. Knowledge management
is the life cycle management of knowledge, including
knowledge construction, knowledge processing, knowl‑
edge sharing, knowledge application, knowledge update,
etc.
An automated and intelligent knowledge management
system can improve the quality of knowledge generation
and promote the efϐicient operation of the knowledge life
cycle, so as to achieve a timely update and accurate appli‑
cation of knowledge. Especially when manpower cannot
meet the current situation of huge knowledge manage‑
ment requirements, redundant processes can be further
streamlined, automated management processes fulϐilled,
operational management efϐiciency improved, and man‑
agement costs reduced.
However, implementing automated, intelligent iterations
of knowledge management in the context of autonomous
networks introduces the following new challenges and
opportunities that need to be addressed:
•Data acquisition is the starting point of knowledge con‑ 
struction. In practical applications, the diversity of data
sources results in inconsistent data standards and poor
data quality, resulting in multi‑source data ambiguity,
high noise, and an unclear relationship between data.
From the perspective of source form, knowledge is con‑ 
tained in structured (e.g. alarms, indicators, etc.), semi‑ 
structured (e.g. conϐiguration, log, standardized product
documentation), unstructured (e.g. practice manual, fail‑ 
ure case, experience sharing, packet capture data on pro‑ 
duction network for an alarm failure diagnosis, etc.) data,
even in the minds of experts. Correspondingly, we need
to match the tools to obtain this data and provide ”clear
and unambiguous” speciϐications to allow interoperabil‑ 
ity. At present, both the tools for non‑institutionalized
data acquisition and industry standards need improve‑ 
ments, which could be accelerated by collaborative efforts
via an archietectual blueprint.
•Practical approach: due to the systematic character‑ 
istics of the communication network itself, the integra‑ 
tion of AI and the network is bound to become system‑ 
atic. However, it is not trivial to introduce artiϐicial in‑ 
telligence technology into the communication network
and ϐinally achieve the goal of systematic transformation.
One needs ϐirstly to start from single‑point algorithm in‑ 
novation, then integrating into the production operation
and maintenance process, and then building platform‑ 
based hosting and sharing of common capabilities to ϐi‑ 
nally form a complete intelligent system, achieving stan‑ 
dard interoperability in both an efϐicient and economic
manner.

•Deployment method for knowledge collaborative
management: an autonomous network involves multiple busi‑ 
ness ϐields and hetergeneous networks. It is necessary
to manage knowledge at different layers through cross‑
ϐield knowledge creation, integration, sharing and collab‑ 
oration. Considering the hierarchical characteristics of
the network and management system, and the differences
in IT resource requirements at each stage of AI‑driven
knowledge generation (knowledge acquisition, training,
reasoning, etc.), it is necessary to build distributed AI ca‑ 
pabilities in the network to support an automatic closed‑ 
loop at each layer, as well as knowledge sharing and col‑ 
laboration between different layers.
In order to address the above issues and promote indus‑ 
trial cooperation, an autonomous network architecture,
dual‑driven by data and knowledge, deeply integrated
and coordinated, with advanced technologies, is given.

2. BASIC CONCEPTS
Applying the Data, Information, Knowledge, Wisdom 
(DIKW) pyramid[9] into the context of autonomous net‑ 
work, the following basic terms are used in this paper.
•Data are symbols that represent the properties of ob‑
jects and events, as a collection of facts in a raw or un‑
structured form. In autonomous networks, the raw data
about the managed objects obtained by the correspond‑
ing management system through measurement, such as
Performance Monitor (PM) data, Measurement Report
(MR) data, service status data, etc.
•Information consists of processed data, contained in
descriptions, answers to questions that begin with such
words as who, what, when, where, and how many, that
can be interpreted in a speciϐic context. In autonomous
networks, it corresponds to the data content that can
reϐlect the logical relationship and meaning of the net‑
work status after being processed by the network man‑
agement system, such as trafϐic statistics indicators, com‑
plaint work orders, and alarm data.
•Knowledge conveyed by instructions, answers to how‑
to questions, as ϐiltered, reϐined, and processed informa‑
tion associated with a speciϐic context that guides action.
Concepts, rules and experiences applied to autonomous
networks to achieve system automation and autonomy,
such as exceptions, intents, static rules, dynamic policies,
classiϐication/prediction models, etc.
•Wisdom or Meta‑knowledge conveyed by explana‑
tions, answers to why questions, which in the context
of autonomous networks, means the ability to effectively
manage knowledge according to the environmental con‑
text, through correct judgment of the environmental con‑
text, updating iterative knowledge as needed, and realiz‑
ing the correct application of knowledge.

3. RELATEDWORK
At present, TM Forum and ETSI have carried out prelim‑
inary research on knowledge management of communi‑
cation networks. The current research areas mainly fo‑
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cus on knowledge management and application require‑
ments, challenges, basic architectural reference points
and preliminary concept deϐinitions.
The Knowledge Management sub‑domain in the eTOM
[10] and TAM [11] standard projects of the TM Forumhas
made a preliminary review of knowledge management
from the perspective of business and application. The
ODA project team released IG1130F [12] in June 2019,
where requirements of knowledge management applica‑
tions, and suggestions for knowledge management ap‑
plications in TAM were given. The AIOps project team
released IG1190E [13] in May 2020, which studied the
challenges and opportunities faced by knowledge man‑
agement practices after the introduction of AI, with new
proposed process principles, etc. The Autonomous Net‑
work project team released IG1251 [14] in July 2021 to
study the autonomous network reference architecture.
The knowledge base and intelligence cross‑domain mod‑
ule and domain intelligence single‑domain module are
mentioned in the architecture, which is expected to pro‑
vide knowledge management functions.
ETSI GS ENI 005 [15] gives the deϐinition of the knowl‑
edge management function block of the ENI system, and
introduced the driving force, function, operation process,
etc. of the knowledge management module. In the draft
of ETSI GR ENI 015 [16], the knowledge management of
intent policies is studied, and the intent policies are man‑
aged by means of a knowledge graph. ETSI GR ENI 031
[17], which recently kicked off in March 2022, plans to
study the construction and application of network knowl‑
edge graphs into fault maintenance applications.

4. ARCHITECTURAL PRINCIPLES
This section provides several basic princples for guiding
the architecture design later.

4.1 Principle of layered operations
The autonomous network architecture should follow a
layered architecture model, which reduces the complex‑
ity of the overall systemand enables the independent evo‑
lution of each layer, which can operate autonomously and
hide domain implementation technology, intra‑domain
operations, and intra‑domain functional details from its
consuming layer.

4.2 Principle of closed‑loop automation
In autonomous networks, automation is based on a
closed‑loop mechanism and works as a feedback‑driven
process. The closed loop seeks to either achieve and
maintain the explicit set of intents or automatically ex‑
ecute the determined instructions from pre‑conϐigured
static rules or programmable dynamic policies, that drive
the four‑phase ”closed loop”, consisting of perception,
analysis, decision‑making and execution. Depending on
the timeliness requirements to closed‑loop processing in
different application scenarios in autonomous networks,

both the fast closed loop inside an autonomous domain
and the slow closed loop involving cross‑layer interac‑
tion and collaboration can be applied, respectively. The
rules/policies/intents driving the closed loops as well as
the closed loops themselves become themanaged objects
in the autonomous network.

4.3 Principle of model‑driven open interface
An open architecture based on a model‑driven approach
deϐines service interfaces and resource management in‑
terfaces by using information models that specify the
attributes of managed entities and the operations they
support. The deϐinitions of the interface and related
models can thus be partially decoupled and indepen‑
dent of the implementation of managed entities, which
can promote portability, reusability of interfaces, and al‑
low vendor‑neutral management of resources and ser‑
vices. For example, for closed‑loop management automa‑
tion requirements, for different operation layers of the
autonomous network can deϐine a uniϐied model‑driven
standardized interface with a common model for the
rules/policies/intents that drive the closed loops in dif‑
ferent layers of operation.

5. TARGETED SYSTEM ARCHITECTURE
As shown in Fig. 1, the autonomous network architecture
follows the layered architecture model, dividing into four
layers of operations and management, with open inter‑
faces for inter‑layer interactions and closed loops [18].

Fig. 1 – Targeted architecture for autonomous networks [18].

5.1 Four layers of operation management
•Business management layer provides customers,
ecosystems and partners with business enablement and
operation capabilities for the network business.
•Service management layer implements cross‑vendor
and cross‑domain service layer autonomy in the end‑to‑
end process of planning, construction, maintenance, and
optimization.
•Network management layer fulϐills the SLA commit‑
ment of network connections or behaviors, through the
closed‑loop capabilities of perception/analysis/decision‑
making/execution within a single network domain.
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•Element management layer dynamically senses and
automatically loptimizes equipment components and op‑
erating states, and opens up automated operation capa‑
bilities.

5.2 Three closed‑loops of automation
The autonomous network consists of three closed loops
to implement the full life cycle interaction between layers,
including:
•Resource closed loop for single‑domain resource man‑
agement to achieve single‑domain autonomy;
•Service closed loop for service‑oriented, end‑to‑end
management to achieve cross‑domain collaboration; and
•Customer closed loop for customer and business man‑
agement, including user information, business, billing,
customer service, etc.

5.3 Autonomous domain
An autonomous domain is the smallest unit of an au‑
tonomous network. It is coordinated by the upper‑layer
OAMsystem through a closed loopmanagement interface.
Corresponding to the four‑layer architecture of the au‑
tonomous network, building on top of the basic infrastru‑
cure facilities in the form of collections of network ele‑
ments and corresponding management systems, the au‑
tonomous domains form a three‑layer hierachy based on
their autonomous boundaries:
•resource autonomous domain corresponding to the
network element management and network management
layer of the architecture, includes the management and
control system and the network elements, implements
the autonomous closed loop of a single‑domain network,
supporting the upper‑layer OAM systems to achieve col‑ 
laborative autonomous closed loops across multiple re‑ 
source operation autonomous domains.
•service autonomous domain corresponding to the
business management layer of the architecture and each
subordinate resource operation autonomous domain, in‑ 
cludes the service operation layer software system on
the basis of each resource operation autonomous domain,
and provides the upper‑level business operation layer
with the autonomous capability of service closed loop au‑ 
tonomy, by driving the resource operation autonomous
domain(s) to implement the internal closed loop capabil‑ 
ity within its governance scope. In other words, the ser‑ 
vice operation autonomous domain and the resource op‑ 
eration autonomous domain are cascaded.
•business autonomous domain corresponding to the
business operation layer of the architecture and each
subordinate service operation autonomous domain, in‑ 
cludes the business operation layer software system
in each service operation autonomous domain, and
provides E2E business closed loop operation capabili‑ 
ties to customers/tenants, by triggering correspondent
closed loops inside the resource operation autonomous
domain(s) and the service operation autonomous do- 
main(s).

5.4 Evolving interfaces
As speciϐied in [19], there are different types of inter‑ 
faces between the layers (i.e. the boundaries between au‑ 
tonomous domains) in various levels of autonomous net‑ 
works, including:
•rules, speciϐications for how managed entities use data
and interactwithin a deϐined environment, is the featured
interface for Level‑2 autonomous networks.
•policies, sets of rules that govern and control the states
and state transitions of managed objects, is the featured
interface for Level‑3 autonomous networks.
•intents, normative deϐinitions of expectations, includ‑
ing requirements, goals, and constraints for the system
[20], is the featured interface for Level‑4 autonomousnet‑
works.
Higher‑order autonomymeans that business, service, and
resource operations can dynamically adjust decisions and
actions to adapt to changing goals and needs and cover a
wide range of situations without human intervention. In
this new environment, the business objectives of opera‑
tors and the expectations of customers need to be com‑
municated to the software systems that make up the au‑
tonomous network.
For this reason, the interfaces between autonomous do‑
mains have to gradually evolve from being based on
statically‑scripted rules, to dynamically programmable
policies to allowhuman‑involvedknowledgeupdates, and
further to declarative intents (i.e. descriptions of the de‑
sired status or features without dictating the methods or
commands to achieve them) to allow full‑automatic adap‑
tation of system behavior without human engagement.

5.5 Distribution of intelligence
Due to the widespread existence of closed loops in au‑
tonomous networks (autonomous domains), the applica‑
tion scenarios of intelligence are scattered at various lay‑
ers in the network. To realize systematic data‑knowledge
management, in an autonomous network, cognitive intel‑
ligent capabilities (i.e. abilities to generate knowledge
by using existing information) will be deployed in a dis‑
tributed manner and fall into one of the following cate‑
gories.
•Embedded capabilities, built into the network elements,
as part of fast closed loops.
•Plug‑in capabilities, bulit as an external supplement to
the devices or systems, which can be further classiϐied
into the following two sub‑classes.
•Centralized plug‑in capabilities, in the form of data
lakes, training platforms, knowledge centers, providing
model training services, digitizing knowledge, which em‑ 
bodies the Centralized enablement platform in Fig.1.
•Distributed plug‑in capabilities, in the form of speciϐic
domain models and reasoning applications, local knowl‑
edge optimization, as part of fast or slow closed loops in
various autonomous domains.
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6. LOGICAL ARCHITECTURE
In this section, a general data and knowledge driven ar‑ 
chitecture for autonomous networks is proposed, which 
could be applied to various autonomous domains as 
either Centralized or Distributed Plug‑in Capabilities in 
autonomous networks, for data collection, information 
extraction, knowledge generation, knowledge fusion, 
knowledge application, and knowledge update, etc.

6.1 Functional components
The knowledge management system includes a knowl‑ 
edge management module and a knowledge management 
application domain. The former provides knowledge 
management services for the latter, and the latter is the 
application domain of the former. External systems can 
exchange data and knowledge with the knowledge man‑ 
agement system through the external interfaces via for‑ 
mat conversion, if needed.
The knowledge management module is composed of the 
data domain, information domain, and knowledge do‑ 
main. Each domain has speciϐic functional sub‑modules, 
which cooperate to complete the transformation from 
data to information to knowledge, and through the knowl‑ 
edge management application domain, external system 
interaction, collaboratively complete the processes of 
knowledge generation, sharing, application, and itera‑ 
tion.

6.1.1 Data processing/collection
The data processing sub‑module preprocesses the data 
provided by the data source (incl. data cleaning, data ϐil‑ 
tering, etc.), and sends the processed and available data to 
the information extraction sub‑module of the information 
domain. Its data sources include:
•Raw data from knowledge management application do‑ 
mains (for example, various network management data,
business data, environmental data, etc.) in the basic ar‑ 
chitecture, and knowledge application monitoring report
(for example, rule/policy/model application frequency,
success rate, performance statistics, etc.) in the extended
architecture;
•External data from outside the system, including struc‑ 
tured data, semi‑structured data, unstructured data, etc.
For data with inconsistent formats, format conversion
should be performed before acquisition and processing.
This module can apply the technology, rules, strategies
and other knowledge provided by the knowledge storage
in data processing.

6.1.2 Information extraction
The information extraction sub‑module extracts basic 
knowledge elements such as entities, attributes and re‑
lationships from the data, and sends them to the knowl-

edge generation sub‑module. The above process may ap‑ 
ply knowledge such as extraction algorithms and models 
provided by the knowledge storage sub‑module.

6.1.3 Knowledge generation
Based on the basic elements of knowledge, the knowl‑ 
edge generation sub‑module completes the correct corre‑ 
spondence with the existing knowledge in the knowledge 
storage through technologies such as entity linking, gen‑ 
erates knowledge, and sends the generated knowledge to 
the knowledge fusion sub‑module. The above process can 
apply knowledge such as generation algorithms and mod‑ 
els provided by the knowledge storage.

6.1.4 Knowledge fusion
The knowledge fusion sub‑module compares and merges 
the input knowledge with the existing knowledge in the 
knowledge storage to eliminate potential conϐlicts and 
inconsistencies. Further, based on knowledge storage, 
original knowledge combined with new input knowledge, 
by applying knowledge reasoning, knowledge mining and 
other technologies, combined, reasoned, and derivative 
new knowledge is created to improve the completeness 
of the knowledge base.
The input to the knowledge fusion sub‑module includes:
•Internal knowledge from the knowledge generation
sub‑module; and
•External knowledge from experts or knowledge stor‑
age from external systems.

6.1.5 Knowledge storage
The knowledge storage sub‑module implements the stor‑
age and query functions of knowledge, which include:
•responding to the knowledge application request of each
sub‑modulewithin the knowledgemanagement, and pro‑
viding the corresponding knowledge in return;
•responding to the knowledge application requests of the
knowledgemanagement application domain, and provid‑
ing the corresponding knowledge in return; and
•providing corresponding knowledge in response to
knowledge sharing requests of external systems.

6.1.6 Knowledge recommendation
The knowledge recommendation sub‑module recom‑ 
mends and provides knowledge based on the knowl‑ 
edge requirements of the knowledge management appli‑ 
cation domain. When the knowledge recommendation 
sub‑module receives the knowledge application request 
from the knowledge management application domain, it 
queries the corresponding knowledge in the knowledge 
storage according to the application requirements.
•If the corresponding knowledge is found, the knowledge
is sent to the knowledge management application do‑
main.
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•Otherwise, the query does not return with an exact
match, knowledge recommendation calculation is per‑
formed and the recommended knowledge is sent to the
knowledge management application domain.

6.2 Functional variations
There are three types of knowledge management mod‑
ules, depending on the combination of internal functional
components and the characteristics of external presenta‑
tion. The basic variation provides the fundamental ele‑
ments for a minimal applicable combination (where the
knowledge is imported externally), the extended meta‑
knowledge variation monitors the knowledge in appli‑
cation and provides support for independent and auto‑
matic knowledge generation locally, and the active vari‑
ation provides further knowledge recommendation if no
exact match is found from the existing knowledge base.

6.2.1 Basic knowledge management

As shown in Fig. 2, the basic functional architec‑
ture supports the import, application, mining and up‑
dating of knowledge. Speciϐically, it includes ϐive sub‑
modules: data processing, information extraction, knowl‑
edge generation, knowledge fusion, and knowledge stor‑
age. Through the cooperative closed loop of eachmodule,
the functions of knowledge import, generation, process‑
ing, update and application are completed.

Fig. 2 – Architecture for basic knowledge management.

6.2.2 Extended meta‑knowledge management

On the basis of the basic architecture, the extended archi‑ 
tecture further supports the status monitoring, effective‑ 
ness evaluation and on‑demand active iterative updates 
of applied knowledge, as shown in Fig. 3, by superimpos‑ 
ing the management functions and interfaces correspond‑ 
ing to the knowledge application, meta‑knowledge on 
each module of the knowledge management basic func‑ 
tion architecture. Speciϐically, it includes ϐive steps of 
monitoring data processing (knowledge application re‑ 
port), state information extraction, effectiveness evalua‑ 
tion, updated knowledge generation, and updated knowl‑ 
edge storage.

Fig. 3 – Architecture for extended knowledge management.

6.2.3 Active knowledge exploration

As shown in Fig. 4, active management functional ar‑ 
chitecture introduces a new knowledge recommenda‑ 
tion sub‑module to further support the knowledge re‑ 
quirements based on the knowledge management ap‑ 
plication domain, which actively excavates and recom‑ 
mends new knowledge if no exact match is found in 
the existing knowledge base, based on status monitor‑ 
ing, effectiveness evaluation and an active iterative up‑ 
dates on demand for the application of previously ap‑ 
plied/recommended knowledge.

Fig. 4 – Architecture for active knowledge exploration.

6.3 Illustrative applications
This sections provides two illustrative applications en‑ 
abled by the proposed architecture.

6.3.1 Policy management application

As shown in Fig. 5, the basic functional architecture for 
knowledge‑driven policy management supports the static 
import, application, and update of policies. Speciϐically, 
it includes two sub‑modules, conϐlict resolution (knowl‑ 
edge fusion) and policy storage (knowledge storage), to 
support policy knowledge import, application and pas‑ 
sive update of OAM experts and external systems. As 
shown in Fig. 6, the extended functional architecture 
for knowledge‑driven policy management further real‑ 
izes the status monitoring, effectiveness evaluation, and 
on‑demand active iterative updates of policy application
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Fig. 5 – Basic knowledge‑driven policy management.

Fig. 6 – Extended knowledge‑driven policy management.

by deϐining and supporting ”meta‑policies” in the policy 
management domain based on its basic functional archi‑ 
tecture (supporting static import, application, and pas‑ 
sive update of policies). By superimposing the manage‑ 
ment functions corresponding to the policy application 
meta‑knowledge on the basic function architecture of pol‑ 
icy management, including meta‑policy event triggering 
(corresponding to policy monitoring report processing), 
meta‑policy condition evaluation (corresponding to pol‑ 
icy application effectiveness evaluation), and meta‑policy 
action decision‑making (corresponding to policy update 
and optimization), it cooperates with the existing con‑ 
ϐlict resolution and policy storage modules to complete 
the import, generation, processing, update, application 
and other functions of managing the corresponding meta‑ 
policies. In addition, policy‑driven logic can be further in‑ 
troduced into the execution of each module of the origi‑ 
nal policy application domain and the conϐlict resolution 
function module, and the relevant policies are uniformly 
stored. As shown in Fig. 7, the active functional archi‑ 
tecture for knowledge‑driven policy management adds 
a new policy recommendation sub‑module based on the 
extended functional architecture of policy management 
(supporting static import, application, monitoring, anal‑ 
ysis, and dynamic update of policies) to further support 
policy requirements based on policy management appli‑ 
cation domains, actively mine and recommend new poli‑ 
cies, and perform status monitoring, effectiveness evalu‑ 
ation, and on‑demand active iterative updates of recom‑ 
mended policy applications.

Fig. 7 – Active knowledge‑driven policy management.

6.3.2 AI/ML model management application

Fig. 8 – Basic for knowledge‑driven AI/ML model management.

As shown in Fig. 8, the basic functional architecture for 
knowledge‑driven AI/ML model management supports 
model training, external model import, model process‑ 
ing, model inference (application), and update, by in‑ 
cluding ϐive sub‑modules: data collection, data padding 
and preprocessing (information extraction), model train‑ 
ing (knowledge generation), model processing (knowl‑ 
edge fusion), and model storage (knowledge storage). As

Fig. 9 – Extended knowledge‑driven AI/ML model management.

shown in Fig. 9, based on its basic functional architec‑ 
ture, the extended functional architecture for knowledge‑ 
driven AI/ML model management further realizes the sta‑ 
tus monitoring, effectiveness evaluation and on‑demand 
active iterative updates of AI /ML model applications 
by deϐining and supporting meta‑policies in the AI/ML 
model knowledge management domain. As shown in
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Fig. 10 – Active knowledge‑driven AI/ML model management.

Fig. 10, on the basis of the extended functional architec‑ 
ture of AI/ML model management (supporting static im‑ 
port, application, monitoring, analysis and dynamic up‑ 
date of AI/ML models), the active management function 
architecture adds an AI/ML model recommendation sub‑ 
module to further support the knowledge requirements 
of the AI/ML model knowledge management application 
domain, by actively mining and recommending AI/ML 
models, and conducting status monitoring, effectiveness 
evaluation and on‑demand updates of the recommended 
AI/ML models in application.

6.4 Summary
In summary, the functional architecture described above 
addressed two key issues for autonomous network evolu‑ 
tion:
•Provision of a collaborative framework for data
and knowledge. Traditional knowledge‑driven methods
based on mathematical/physical models often have the
characteristics of relatively complete theoretical support,
but when the data‑drivenmodel is integrated, robustness
and adaptiveness of the entire collaborative framework is
considerably improved.
•Enablement of an iterative evolution between data
and knowledge. Using knowledge to guide the genera‑
tion of datamodels, inducting and generating new knowl‑
edge from data models, and forming alternate iterations
of knowledge and data is an important path to enable the
autonomous evolution of intelligent systems, and it is also
an important way to implement the knowledge system
that can be understood by people but surpasses the hu‑
man knowledge system.

7. PHYSICAL ARCHITECTURE
This section provides an illustration of how to apply the
above‑mentioned logical architectures into realistic de‑
ployment scenarios for the OAM of production networks.
Driven by the vision of autonomous networks, China Mo‑
bile strengthens the automatic operation and mainte‑
nance capabilities of network elements, network domain
OAM, and service management systems, in realizing end‑
to‑end service provisioning, automatic operation guaran‑
tee, and automatic quality optimization. In particular,

two platforms are introduced in the company’s network
OAMblueprint, as shown in Fig. 11 [18], for cross‑domain
data sharing and intelligence enablement, respectively. In
such context, an application architecture for the above
funtional architecture is composed of twomain parts, one
for the data plane evolution and the other for knowledge
plane integration.

Fig. 11 – China Mobile’s network OAM blueprint [18].

7.1 Data plane for evolving automation
•Network element layer has dynamic perception and
automatic optimization of equipment components and
operating status, and open automatic operation capabili‑
ties;
•Element management layer has opening equip‑
ment auto‑conϐiguration interfaces, and supporting
cross‑manufacturer collaborative management; and
•Shared data platform serves as the centralized data
pool for various applications/systems in different layers.
•Network management layer realizing process integra‑
tion, data sharing, and capability opening from the shared
data platform to ϐive operation and maintenance capabil‑
ity centers, and multiple domain OAM subsystems.

7.2 Knowledge plane for evolving intelligence
In terms of intelligence, the general capability platform is
introduced to serve as the AI platform, which provides
four types of AI capabilities, namely perception intelli‑
gence, diagnostic intelligence, predictive intelligence, and
control intelligence, are built around the three scenarios
of ”image recognition for ϐield operations, complex calcu‑
lation of network strategies, and network big data analy‑
sis”, energy saving and other ϐields for large‑scale applica‑
tion.
There are three deployment options to implement the
knowledge plane into the distributed intelligence ecosys‑
tem inside autonomous network architecture:
•Centralized deployment, where all the funtional sub‑
modules are integrated inside the central AI platform,
which is applicable for ”ofϐline learning and ofϐline appli‑
cation” slow‑loop scenarios.
•Distributed deployment, where all the functional sub‑
modules are deployed aside to their application do‑
main, with only initial conϐiguration needed from the re‑
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mote centralized platform, which is applicable for ”online
learning and online application” quick‑loop scenarios.
•Hybrid deployment, where the knowledge manage‑
ment sub‑modules are deployed near to their application
domain, while the meta‑knowledge management sub‑
modules (as in extended architecture) are deployed in
a centralized fashion, with uniϐied monitoring and iter‑
ation on‑demand triggered from remote center, which
could be used in ”static/closed context” scenarios, when
knowledge needs to be involved in a quick‑loop applica‑
tion while its iteration could sufϐice with a slow‑loop in‑
teration.

8. CONCLUSION AND NEXT STEPS

A data and knowledge collaborative architecture frame‑
work for the evolution of autonomous networks is given
to accelerate the introduction of advanced technologies,
efϐiciently promote industrial cooperation, and deepen
network capacity building.
At present, the research on knowledgemanagement stan‑
dards for autonomous networks is in its infancy, lead‑
ing the formulation of knowledgemanagement standards
in the context of autonomous networks, helping to guide
the industry to reach a consensus on knowledge manage‑
ment, cross‑domain knowledge‑sharing and network in‑
telligent applications; enabling knowledge management
to facilitate the hierarchical evolution of network auton‑
omy capacity building, and further promotes the stan‑
dardization of existing network operation and mainte‑
nance processes.
In particular, three parties would be playing essential
roles in the way forward:
•Standards for data collection, ontology models, knowl‑
edge representation, as well as general functional archi‑
tecture to establish a uniϐied mindset around collabo‑
rative endeavors of integrating knowledge management
into autonomous networks.
•Practice in production from service providers by intro‑
ducing into the existing network an operation and main‑
tenance process to guide the application of and feedback
into further research and development of systems or tool‑
ing for knowledge introduction, life cycle management,
and cross‑domain knowledge sharing.
•Implementation from network element/network man‑
agement manufacturers to decouple domain knowledge
management and business logic implementation, hence
providing ϐlexibility in reference implementation for cen‑
tralized and cross‑vendor knowledge sharing and appli‑
cations.
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