
SFCaaS: SERVICE FUNCTION CHAINS AS A SERVICE IN NFV ENVIRONMENTS

Tarik Moufakir1, Mohamed Faten Zhani1, Abdelouahed Gherbi1, Moayad Aloqaily2, Nadir Ghrada1
1EƵ cole de Technologie Supérieure (EƵ TS), Montreal, Quebec, Canada, 2Machine Learning Department, Mohamed Bin

Zayed University of Artiϐicial Intelligence (MBZUAI), UAE

NOTE: Corresponding author: Mohamed Faten Zhani, mfzhani@etsmtl.ca

Abstract – With the growing deployment of emergent technologies like software‑deϔined networking, network services are
expected to be revolutionized. In this paper, we investigate offering Service Function Chains as a Service (SFCaaS) in NFV
environments. We describe the potential business model to offer such a service and then we address the service function chain
provisioningand resource allocation problem. As the chain is deployed thanks to virtualmachines (i.e., instances) and links, we
conduct ϔirst a detailed study of the costs of Amazon EC2 instances with respect to their location, size, type and performance.
Afterwards, we address the resource allocation problem for service function chains from the SFC provider’s perspective. We
formulate the problem as an integer linear program aiming at reducing operational costs of the service function chains (i.e.,
costs of virtual machine instances and links, and synchronization among the instances). To address large‑scale instances of
the problem, we also propose a new heuristic algorithm to reduce operational costs taking into account the conducted study
of the costs of Amazon EC2 instances. We show through extensive simulations that the proposed heuristic signiϔicantly reduces
operational costs compared to a baseline algorithm inspired by the existing literature.

Keywords – FlexNGIA, network function virtualization, network softwarization, resource allocation, SFCaaS, service
function chaining

1. INTRODUCTION
Propelled by emerging technologies like Network Func‑
tion Virtualization (NFV), Software‑Deϐined Networking
(SDN) and data plane programmability, network soft‑
warization has become a new trend aiming at separating
software from the networking hardware. This trend is
revolutionizing the way networks are designed and
managed and opening the door for a new IT open
ecosys‑ tem with new platforms, software and network
services and applications [1, 2, 3]. As a matter of fact,
network soft‑ warization bring several beneϐits including
better agility and ϐlexibility, easy automation and faster
time‑to‑market services while ensuring scalability and
signiϐicantly re‑ ducing capital and operational
expenditure.
Network softwarization allows network/cloud providers
(called hereafter SFC provider) to roll out new service
offerings. In particular, it would be possible to offer
“Service Function Chains” as a Service (SFCaaS) where a
whole Service Function Chain (SFC) is offered as a
service to a third party (called hereafter service
provider). An SFC is an ordered set of Virtual Network
Functions (VNFs) that are crossed by packets arriving
from the chain’s sources and ϐlowing towards the
chain’s destina‑ tions (Fig. 1). VNFs are network
functions (e.g., ϐirewall, IDS or other functions)
implemented in virtual machines or containers running
on commodity servers or implemented in dedicated
hardware like Field‑Programmable Gate Arrays (FPGAs).
In this context, the SFC provider would face a major chal‑
lenge as to how to allocate the resources to the requested
SFC in the physical infrastructure. Although this problem

has been recently extensively addressed [4, 5, 6] in the
literature, we revisit this problem in this work with the
following novel contributions:

1. We consider two phases to provision an SFC
(Fig. 1). The ϐirst one is the translation phase
which aims at identifying the optimal number of
instances (i.e., vir‑ tual machines/containers) that
are required for each VNF in order to cater to the
demand. The second phase addresses the
mapping problem, which aims at deciding where
to place the instances taking into account the
deployment costs. To our knowledge no prior work
considered the translation phase.

2. We conduct a detailed study of the costs of
Virtual Machines (VMs) (i.e., instances) offered by
Amazon EC2 [7] with respect to the location,
instance size, and performance. This cost study
extends the one carried out by the authors in [8]
and sheds light on interesting observations about
the costs of instances offered by one of the major
cloud providers in the world. This study is used
later on in this paper to guide the proposed
solutions for the resource allo‑ cation for the
service function chains.

3. We formulate the mapping phase problem as an
Integer Linear Program (ILP) aiming at reducing
the SFC provider’s operational costs of the VM
instances and links as well as the synchronization
costs among the same‑type instances. It is also
worth noting that synchronization costs were not
considered in existing literature.

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

©International Telecommunication Union, 2022
Some rights reserved. This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.

More information regarding the license and suggested citation, additional permissions and disclaimers is available at:
https://www.itu.int/en/journal/j-fet/Pages/default.aspx

4. We also propose two heuristic algorithms to solve
themapping problemwith the same aforementioned
goals taking into account the conducted study of the
costs of Amazon EC2 instances. The ϐirst one is a ba‑
sic and intuitivemapping algorithm (called baseline)
and the second one is amore sophisticated algorithm
called SFC decomposition‑based provisioning (SPIN)
algorithm. We show through extensive simulations
that SPIN signiϐicantly reduces the operational costs
compared to the baseline.

Fig. 1 – SFCaaS ‑ SFC translation and mapping [1]

The remainder of this manuscript is organized as fol‑
lows. Section 2 describes the SFCaaS service model, high‑
lighting the business model and the potential involved
stakeholders as well as the technical challenges related
to the deployment of such a service. Section 3 provides
an overview of the related literature focusing on service
function chaining and highlights the novelty of this work.
Section 4 presents the detailed study of the costs of Ama‑
zon EC2 instanceswith respect to several parameters and
presents its main outcomes. Section 5 presents the ILP
formulation of the mapping problem. Furthermore, Sec‑
tion 6 introduces the two proposed greedy algorithms to
address the mapping problem. The experimental results
are provided in Section 7. Finally, conclusions and key re‑
search directions are described in Section 8.

2. SFCAAS ‑ BUSINESS MODEL, BENEFITS
AND CHALLENGES

In this section, we propose the following business model
that is adapted to SFCaaS. This model identiϐies the stake‑
holders involved in an environmentwhere SFCs are provi‑
sioned and offered as a service. We mainly identify three
stakeholders deϐined as follows:

• SFC provider: This is a company that offers “Service
Function Chains” as a Service (SFCaaS). It owns and
manages a physical infrastructure and is in charge
of deploying platforms and software required to run
network functions building the chains and also of
provisioning and managing the requested SFCs. It
should hence perform the SFC translation phase to
identify of the number of virtual machines and links
needed to build the chain. These components would
make up a virtual network as shown in Fig. 1) that
should be later on mapped onto the infrastructure.
The virtual network is obtained by identifying the
number of instances needed to implement each VNF
and the virtual links used to connect them (Fig. 1).
Note that, in addition to virtual links connecting the
VNFs, synchronization virtual links should also be
created to connect the instances implementing the
same VNF in order to ensure synchronization among
them. Indeed, synchronization is needed to guaran‑
tee the normal operation of a network function im‑
plemented in multiple instances (e.g., IDS) [9].

• Service provider: This could be a company or insti‑
tution that has users spread around theworld. A ser‑
vice provider needs to deϐine the SFC needed to run
its service, its composition, performance require‑
ments, and identiϐies the chain sources/destinations.
The composition of the SFC refers to the type of
each network function (NF) making up the chain.
The performance requirements could be in terms
of end‑to‑end delay, packet loss, trafϐic demand, re‑
sources (CPU, memory and disk) and other param‑
eters. Of course, the service provider relies on the
SFC provider to provision the SFC and allocate the
needed resources.

• User: These are customers of the service provider
and are located at the sources or destinations of the
service function chain. The trafϐic coming from users
will be steered across the SFC provisioned by the ser‑
vice provider.

Potential SFC providers could be major companies of‑
fering cloud services like Google, Amazon EC2, and Mi‑
crosoft that have their own networkwith predictable per‑
formance and has computing resources spread across
the network [10, 11] . For instance, the AWS infras‑
tructure shown in Fig. 2 is a software‑deϐined world‑
wide global infrastructure [10]with 25 regions across the
world serving 245 countries and territories where each
region contains one or more data centers. The infrastruc‑
ture has also more than 218 edge locations and 12 re‑
gional edge caches for a total of 230 points of presence.
Regions are connected through a private world‑wide net‑
work managed by Amazon AWS, which makes it easy for
Amazon to predict and even fully control the network
performance. As computing resources are available ev‑
erywhere in this global infrastructure and such compa‑
nies have the expertise on technologies like cloud com‑

680

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

©International Telecommunication Union, 2022

puting, virtualization, and SDN, it is straightforward that
they could provide SFCs as a service and easily provision
and allocate the required resources across their global in‑
frastructure.

Fig. 2 – AWS global infrastructure ‑ source [10]

• SFC beneϐits: Similar to traditional cloud computing
services, offering SFCs as service would bring several
beneϐits for service providers, such as avoiding manage‑
ment hassle with no need to software and hardware main‑
tenance. In addition, costs will be reduced for service
providers as there is no capital and operational expendi‑
ture. It would also be possible to get low prices thanks to
the economies of scale. Furthermore, SFCaaS would allow
predictable performance thanks to the SFC provider’s ex‑
pertise and knowledge of the infrastructure (i.e., topolo‑
gies, characteristics, performance). SFC providers could
also offer novel and customized network functions that
are carefully implemented and managed to offer optimal
performance [1].
• Technical challenges: From the SFC provider’s
perspective, the main challenge is to provision SFCs
while maximizing proϐit, minimizing operational costs
and satisfying the SFC requirements in terms of
end‑to‑end delay. In this context, we can identify several
challenges that can be summarized as follows:

• Decide how many instances to use implementing
a VNF: Implementing a VNF in a single instance
(VM/Container) may not be sufϐicient for several
reasons. Indeed, a single instance may not have
enough resources to handle the incoming trafϐic.
Hence, implementing the same VNF in multiple
instances allows us to overcome the lack of re‑
sources by distributing the function over several
Points‑of‑Presence (PoPs). It also allows us to
reduce delays, costs and to improve fault tolerance
as the failure of an instance would not necessarily
affect the others. At the opposite side, when a
VNF is implemented in multiple instances, there
might be some drawbacks. For instance, some data
might need to be synchronized among the different
instances in order to ensure a normal operation
of the network function (e.g., distributed intrusion
detection systems [9]). As a result, one needs to

consider the cost of synchronization among the
same‑type instances. This cost can be expressed in
terms of CPU, memory and bandwidth consumed
in order to ensure synchronization. There might
also be constraints on the delay needed to carry out
the synchronization [9]. In this context, deciding
how many instances are needed to implement one
VNF and what are the synchronization costs and
constraints are key challenges when provisioning
the SFC.

• Decide the type of VM instance to use to run the
VNF: The selection of the VM instance type depends
on the network function requirements (in terms of
resources like vCPU, memory, storage), processing
capacity (packets per second), and the operational
costs of running the instance. Of course, the decision
should take into account the network function
properties (the nature of the function itself, the used
software and operating system, database and other
software) as well as the geographical location of the
instance which has an impact on the cost and access
delay.

• Allocate resources for the chain: The third challenge
is to identify where to allocate the resources to place
the instances in the physical infrastructure and how
to allocate the bandwidth for the virtual links to con‑
nect instances. The goal would be to maximize the
SFC provider’s proϐits and minimize its operational
costs.

In this work, we try to approach the aforementioned chal‑
lenges and study the parameters and considerations to
address them. In the following section, we summarize the
existing literature that has attempted to address the same
problems.

3. RELATED WORK
In this section, we brieϐly present recent research work
addressing the provisioning problem of service function
chaining, i.e., the problem of placing and chaining of a set
of ordered VNFs. In recent years, a large body of work
has studied this problem [12, 13, 14, 15, 9]. Proposed
solutions have attempted to reach several objectives like
minimizing operational costs [16, 17, 18], minimizing
network utilization [16, 19], minimizing latency [20, 21,
22, 23, 24, 25, 26] and minimizing resource
consumption [27, 28, 29, 22, 24, 30, 26, 31]. The
analysis of existing literature on SFC placement and
chaining carried out by Santos et al. [32] ϐinds that
minimizing operational costs is the most widely
sought‑after goal as it was the aim of more than 42% of
published articles pertaining to service function
chaining.
For instance, Carpio et al. [14] formulate the placement
and chaining of VNFs as a mixed linear program and com‑
pare it with a random ϐit placement algorithm. For better

681

Moufakir et al.: SFCaaS: Service function chains as a service in NFV environments

©International Telecommunication Union, 2022

scalability, they devise a genetic algorithm to ϐind a sub‑
optimal solution. The proposed algorithm focuses ϐirst on
ϐinding admissible paths and calculating link costs then
allocating, within those paths, the resources for VNFs.
However, the algorithm assumes that the number of VNF
instances is known beforehand.
Bari et al. [33] designed a platform to carry out the place‑
ment, the chain composition and the monitoring of VNFs.
However, the proposed method neither addresses the
casewheremultiple instances are needed nor determines
the appropriate placement of VNFs in the infrastructure.
Beck and Botero [34] looked also at the VNF placement
and chaining problem and proposed CoordVNF, a solu‑
tion that aims at minimizing link utilization over the in‑
frastructure. This proposal considered the use ofmultiple
instances of the virtualized deep packet inspection func‑
tion where the trafϐic is split into TCP and non‑TCP trafϐic
and managed by different instances. However, the costs
of instances and their placement were not discussed in
this proposal.
Wang et al. [15] address the problem of online deploy‑
ment of multiple VNF instances in order to process the
ϐluctuating trafϐic rate received at the VNFs with the goal
of minimizing the costs of the provisioned resources. The
authors proposed two algorithms, one for provisioning a
single service chain and the other for provisioning simul‑
taneously multiple service chains.
Ghaznavi et al. [12] address the VNF placement problem
with the goal of reducing server and bandwidth consump‑
tion. They introduce a solution to optimize the placement
of VNFs by minimizing installation, transportation, reas‑
signment andmigration costs of VNF instances. However,
the solution assumes that all instances of the chain are of
the same type.
Mingshu et al. [35] propose a resource allocation algo‑
rithm with the goal of maximizing network resource uti‑
lization. This algorithm allocates the shortest and the
least costly underlying path to map each of the links of
the the service function chain.
Masahiro and Takanori [36] formulate the shortest path
tour problem as an ILP to solve the service chaining
and function placement and to ϐind the service path that
would minimize the delay.
Wang et al. [37] focused on determining paths for the
ϐlows that should cross the service function chain while
respecting the right order of the network functions. They
leverage the concept of virtual layered graph to consider
NFV processing latency and use shortest path algorithms
to solve the problem.
Chao et al. [38] proposed amechanism to dynamically de‑
ploy network functions. Their approach is based on ant
colony optimization and relies on cooperation between
multiple forwarding equipment on the packet transmis‑
sion path to jointly use already placed network functions
and further optimize packet delays.
Pham [39] explored the joint optimization of VNF place‑
ment and routing in order tomaximize cost‑efϐiciency un‑
der the delay‑guarantee constraint. He formulated the

problem as a mixed‑integer linear programming model
andproposedanalgorithmbasedon reinforcement learn‑
ing to ϐind an approximation solution for large‑scale in‑
stances of the problem.
Unlike previous work, in this paper, we consider not only
SFC mapping but also the translation phase where the
number of instances for each VNF is estimated and con‑
sidered in order to build a virtual network to be mapped.
We also address SFC mapping taking into account syn‑
chronization and deployment costs of the VNF instances.
Our work relies on realistic data and a study based on the
Amazon EC2 instance costs.
In the following section, we start ϐirst by studying the
costs of the offered general‑purpose instances as this
study will guide the development of the proposed solu‑
tions for the service function chain translation and map‑
ping phases.

4. STUDY OF THE COSTS OF AMAZON EC2
INSTANCES

In this section, we study of the costs (prices) of the
instances (i.e., VM) offered by Amazon EC2 with respect
to the amount of resources, location, and performance.
The outcome of this study is leveraged later while
develop‑ ing our SFC translation and mapping
solutions to care‑ fully place the instances in the
physical infrastructure. In particular, we considered
Amazon EC2 general‑purpose virtual machine instances
of type T2 [7] which provide a large range of ϐlavors as
shown in Fig 3. These general‑ purpose instances offer
compute, memory and network‑ ing resources that can
be used for diverse types of work‑ loads including
network functions. Each instance ϐlavor deϐines the
amount of vCPU and memory of the virtual machine
and has a different cost. The table shows the
hardware characteristics on which the VM ϐlavor
would run according to Amazon (Fig. 3).
In the following, we study several aspects related to
the cost of these ϐlavors and their performance. The
study includes an analysis of the instance cost versus its
location, its software stack, and its allocated resource
amount, and, ϐinally, the VNF performance (i.e., packet
processing capacity) versus the instance type.
• Instance cost vs. location: Fig. 4 shows the instance
price for 15 locations in the Amazon infrastructure. It is
clear that instance costs signiϐicantly vary from one loca‑
tion to another. According to the ϐigure, the difference
in cost between two locations for the same instance type
can go from 0.01$ and can reach 1$ for large instances.
It is worth noting that even a small difference in the in‑
stance cost may lead to a high impact in the instance cost.
For instance, 0.1$/hour cost difference would translate
into 86million dollars a year considering 100K instances,
and into around 2 billion dollars for around 2 million in‑
stances, which is a lower‑bound estimation of the num‑
ber of instances running on the Amazon EC2 infrastruc‑
ture [40].

682

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

©International Telecommunication Union, 2022

Fig. 3 – EC2 general‑purpose instances [7]

Fig. 4 – Instance price for different locations (note thatM4 instances are
not available in Paris)

• Cost vs. software stack: Fig. 5 shows the price of
different instances with different software stack. It
considers only the instances located at Amazon AWS
Oregon re‑ gion. The ϐigure shows that instance costs
vary depending on the software stack. Linux
distributions (e.g., Linux, RHEL, SLES) have similar costs
and are much less expen‑ sive than instances running
Microsoft Windows. Further‑ more, adding additional
software to the instance (e.g., SQL Web) would
signiϐicantly increase the price (e.g., up to 1.5$ for
large instances).
• Instance size vs. cost: The instance size refers to the
amount of resource in terms of CPU and memory that
an instance has. We hence aim at evaluating, for the
same cost, how much resources we can provision when
we use micro‑instances (i.e., the smallest instance that
has only 1 vCPU and 1GiB of memory) versus larger
instances. To do so, Fig. 6 shows the price of all
AWS instances and the amount of resources they
provide. It also shows how many t2.micro instances
could be provisioned for the same price.
For instance, as shown in the ϐigure, the price of one
m3.16xlarge instance (containing 64 vCPU and 256 GiB
of memory) is 3.2 $/hour. For almost the same price, one

Fig. 5 – Instance price for different software stacks (Oregon)

Fig. 6 – Price and size of Amazon EC2 instances compared to t2.tiny in‑
stances (US West, Oregon)

could provision 256 t2.micro instances offering 256 vCPU
and 256 GiB of memory. This means that if provision 256
t2.micro services, we can get 192 (i.e., 256‑64) more
vCPUs with the same amount of memory (256 GiB)
com‑ pared to a single m3.16xlarge instance. The same
note applies for the other types of instances.
As a result, we can conclude that small instances are more
cost‑effective compared to large instances as, for the same
cost, micro‑instances would provide roughly four times
more vCPUs. This is, of course, interesting if the func‑
tion/application could run normally in a distributed
manner on several instances.
• VNF performance vs. instance type: In this experi‑
ment, we try to evaluate the packet processing capacity
of each instance, i.e., howmuch packets an instance could
process when running a speciϐic VNF. To do so, we con‑
duct experiments using different VNF types running on
different instances while gradually increasing the packet
arrival rate in order to assess the limit of the instance pro‑
cessing capacity. We assume that the processing capacity
of the instance is reached when the CPU utilization of the
instance reaches 90% and the packet loss reaches 10%.
For instance, Fig 7 shows how the utilization and the
packet loss ratio evolution while increasing the incoming
packet rate for an Amazon Ec2 instance of type t2.micro
running a ϐirewall (Shorewall ϐirewall [41]). We can see

683

Moufakir et al.: SFCaaS: Service function chains as a service in NFV environments

©International Telecommunication Union, 2022

Fig. 7 – Firewall [software: Shorewall, instance: t2.micro]

Fig. 8 – IDS [software: Snort, instance: t2.micro]

that the CPU utilization reaches 90% and we start
having packet loss when the incoming packet rate is
around 10,000 packets per second (pps). This means
that the processing capacity for this particular network
function (Shorewall ϐirewall) on a t2.micro‑instance
is around 10,000 pps.
We have also conducted the same experiment while run‑
ning the Snort Intrusion Detection System (IDS) [42]
on the same type of instance. The results are re‑
ported in Fig. 8 and show that the processing capacity of
the t2.micro‑instance running the Snort IDS function is
13000 pps.
Fig. 9 summarize the results for three types of network
functions, namely a ϐirewall, an IDS and a NAT, that are
running on different types of instances. We can clearly see
in the ϐigure that, for the same instance type, the packet
processing capacity varies from one type of network func‑
tion to another. Moreover, we can also notice that the pro‑
cessing capacity is not always proportional to the amount
of allocated resources. Indeed, we can see in the ϐigure
that the t2.xlarge instance has four times the resources
than the t2.micro‑instance but is not able to process four
times the amount of packets processed by the t2.micro. As
a result, four micro‑instances would process much more
packets than a single t2.xlarge instance. While it is not
possible to provide a straightforward explanation of this
result (as we do not have access to internal statistics of the
AWS infrastructure), the reasons for such a result might
be the network bottlenecks and also the heterogeneity
of physical machines on which the instances are running
(see Fig. 3).
The above observation means that distributing a function
over multiple small instances would allow higher packet
processing capacity and also a lower cost according to
the comparison reported in Fig. 6.

Fig. 9 – VNF processing capacity per instance type

• Study outcomes: We can summarize the study out‑
comes as follows:

• Instance costs vary signiϐicantly from one location to
another.

• The software stack has a big impact on the instance
cost.

• The VNF processing capacity is not necessarily pro‑
portional to the amount of resources.

• The VNF processing capacity varies signiϐicantly
from one function to another.

• Small instances are more cost‑effective and hence,
if there is no synchronization cost, multiple in‑
stance deployment is more cost‑effective and pro‑
vides higher processing capacity.

Taking into consideration the above outcome, it is of ut‑
most importance to develop SFC provisioning solutions
that are able to ϐind the best trade‑off between cost (in‑
cluding instance price, synchronization and bandwidth
costs) and processing capacity. In the following, we pro‑
pose an integer linear program to solve the SFC mapping
phase and two greedy solutions to deal with large‑scale
instances of the problem.

5. MAPPING PHASE: PROBLEM
FORMULATION

In this section, we formulate the SFC mapping problem as
an Integer Linear Program (ILP) with the objective of
minimizing the SFC provider’s operational costs in
terms of instance deployment costs, bandwidth and
synchronization costs.

684

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

©International Telecommunication Union, 2022

Table 1 – Table of notations

Symbol Deϐinition
𝐺 = (𝑁, 𝑃) Graph 𝐺 where 𝑁 is the set of nodes

and 𝑃 is set of physical links
𝑉 = (𝐼, 𝐿) The virtual network Graph 𝑉

with 𝐼 is the set of VNF instances
and 𝐿 is the set of virtual links

𝐶𝑛 Available capacity at PoP
𝑛 ∈ 𝑁 expressed in number of instances

𝐵𝑚𝑛 Bandwidth capacity of the physical link
connecting nodes 𝑚 and 𝑛

𝑏𝑖,𝑗 Bandwidth requirement of the virtual
link connecting instances 𝑖 and 𝑗

𝛿𝑖𝑚 Deployment costs per unit of time for
VNF instance 𝑖 into PoP 𝑚

Δ𝑚,𝑛 Bandwidth cost per bandwidth unit in
physical link (𝑚, 𝑛)

𝑓𝑖𝑚 Boolean constant set to 1 if VNF instance
𝑖 has to be embedded into node 𝑚

𝑠𝑖𝑗 Boolean constant set to 1 if there is
a synchronization between instances

𝑖 and 𝑗
𝑥𝑖𝑚 Boolean decision variable indicating

whether or not instance 𝑖 is embedded
into node 𝑚

𝑦𝑖𝑗,𝑚𝑛 Boolean decision variable indicating
whether virtual link (𝑖, 𝑗) is mapped

into physical link (𝑚, 𝑛)
ℂ Operational costs
𝕊 Synchronization costs

The physical infrastructure owned by the SFC provider
is made from several PoPs that are geographically dis‑
tributed. The infrastructure is modeled by a graph 𝐺 =
(𝑁, 𝑃) where 𝑁 = {0, 1, ..., |𝑁|} represents the set of
PoPs and 𝑃 = {(𝑚, 𝑛) ∈
(𝑁 × 𝑁) | 𝑚 and 𝑛 are directly connected} denotes the
set of physical links that connect the PoPs. Each PoP 𝑛 ∈
𝑁 contains an amount of physical resources 𝐶𝑛
expressed as the maximal number of t2.tiny instances
that the PoP can host. Note that a t2.tiny instance
contains 1 vCPU, 1 GiB and 1 GB of memory and disk,
respectively. A physical link (𝑚, 𝑛) ∈ 𝑃 that connects the
PoP 𝑚 with PoP 𝑛 has a bandwidth capacity 𝐵𝑚𝑛.
Furthermore, a service function chain is represented as a
graph 𝑉 = (𝐼, 𝐿) where 𝐼 = {0, 1, ..., |𝐼|} is the set of
virtual instances in the chain and 𝐿 is the set of virtual
links connecting them.
Each VNF instance 𝑖 ∈ 𝐼 has a resource requirement of
1 vCPU, 1 GiB of memory, and 1GB of storage. Each
virtual link (𝑖, 𝑗) ∈ 𝐿 has bandwidth requirement 𝑏𝑖𝑗. It
is worth noting that, for simplicity, the endpoints of the
chain (i.e., sources and destinations) are also considered
instances with requested resources equal to zero. They
are con‑ strained to be mapped onto particular physical
PoPs that are provided in the VNF request.
Furthermore, we deϐine two decision variables. The ϐirst
one is denoted as 𝑥𝑖𝑚 ∈ {0, 1} and indicates whether or
not VNF instance 𝑖 is embedded into PoP 𝑚.

S1

VM3

VM4

VM5

VM6

VM7

VM8

VM9

VM10

VM1

VM2

VM0

0

1

2

6

7

5
9

12

8

10

Node

Link

Virtual Link

S0

S2

D=13

D

S Source

Destination

Se
rv

ic
e

Fu

n
ct

io
n

C

h
a

in

P
h

ys
ic

al

In
fr

as
tr

u
ct

u
re

IDS
Firewall

NAT

Mapping

Mapped
instance

3

4

13

11

V
ir

tu
al

To

p
o

lo
gy

VM11

Fig. 10 – SFC embedding problem

The second decision variable is denoted as 𝑦𝑖𝑗,𝑚𝑛 ∈
{0, 1}. If 𝑦𝑖𝑗,𝑚𝑛 = 1, the virtual link (𝑖, 𝑗) uses the
physical link 𝑚𝑛. It is worth noting that a virtual link is
embedded through a physical path (i.e, multiple
connected physical links). Hence, several physical
links could be used to embed a virtual link.
In other words, if 𝑦𝑖𝑗,𝑚𝑛 = 1, the
physical link (𝑚, 𝑛) is part of the physical path used to
embed the virtual link (𝑖, 𝑗).
• Objective function: The objective function when em‑
bedding an SFC request aims to minimize the operational
costs ℂ and synchronization cost of the embedded VNF
instances 𝕊. It can be expressed as:

𝐽 = min
(𝑥𝑖𝑚)𝑖∈𝐼,𝑚∈𝑁

(𝑦𝑖𝑗,𝑚𝑛)(𝑖,𝑗)∈𝐿,(𝑚,𝑛)∈𝑃

(ℂ + 𝕊) (1)

In the following, we provide more details on how to com‑
pute the operational and synchronization costs:
• Synchronization cost: The synchronization cost can be
expressed as follows:

𝕊 = ∑
(𝑖,𝑗)∈𝐿

∑
(𝑚,𝑛)∈𝑃

𝑦𝑖𝑗,𝑚𝑛𝑠𝑖𝑗 𝑏𝑖𝑗 Δ𝑚𝑛 (2)

where 𝑦𝑖𝑗,𝑚𝑛 indicates whether or not the physical link
(𝑚, 𝑛) is used for embedding the virtual link (𝑖, 𝑗). The
Boolean variable 𝑠𝑖𝑗 is equal to 1 if instances 𝑖 and 𝑗 im‑
plement the same VNF type and hence require synchro‑
nization among them to operate. In this case, there is a
synchronization cost computed as 𝑏𝑖𝑗 Δ𝑚𝑛, which is the
cost of using bandwidth needed to exchange synchroniza‑
tion data between 𝑖 and 𝑗.
• Instance and link operational costs: This is the cost
of running the VNF instances on the infrastructure and
the bandwidth consumed by the virtual links connecting
them. It can be expressed as follows:

ℂ = ∑
𝑚∈𝑀

∑
𝑖∈𝐼

𝑥𝑖𝑚 𝛿𝑖𝑚

+ ∑
(𝑖,𝑗)∈𝐿

∑
(𝑚,𝑛)∈𝑃

𝑦𝑖𝑗,𝑚𝑛 (1 − 𝑠𝑖𝑗) 𝑏𝑖𝑗 Δ𝑚,𝑛
(3)

685

Moufakir et al.: SFCaaS: Service function chains as a service in NFV environments

©International Telecommunication Union, 2022

where 𝛿𝑖𝑚 is the deployment cost (expressed in dollars
per unit of time) of VNF instance 𝑖 into PoP 𝑚. It is
worth noting that 𝛿𝑖𝑚 varies from one PoP to another as
it depends on several factors including the electricity
price in the PoP, the type of VNF, the license, and the
operating system as suggested by the conducted Amazon
EC2 study. The ϐirst term of the equation (Eq. (3))
represents the total cost of deploying the VNF instances.
The second term of the operational costs is the total cost
of bandwidth consumed by the virtual links. Δ𝑚,𝑛
denotes the cost in dollars (per bandwidth unit and unit
of time) for the physical link (𝑚, 𝑛).
The above objective function is subject to the following
set of constraints:
• SFC endpoints embedding constraint: SFC endpoints
(the sources and the destinations) should be embedded
into speciϐic PoPs stated in the request. We deϐine the
Boolean variable 𝑓𝑖𝑚 (provided as an input to the ILP)
that is equal 1 when the instance 𝑖 is an endpoint that has
to be embedded in PoP 𝑚. The following equation cap‑
tures this constraint:

𝑥𝑖𝑚 ≥ 𝑓𝑖𝑚 ∀𝑚 ∈ 𝑁, ∀𝑖 ∈ 𝐼 (4)

Instance embedding constraint: This constraint
ensures that each VNF instance 𝑖 is embedded once and
only once. It can be expressed as:

∑
𝑚∈𝑁

𝑥𝑖𝑚 = 1 ∀𝑖 ∈ 𝐼 (5)

• Resource capacity constraint: This constraint en‑
sures that any hosting PoP has enough resources to host
the VNF instances.

∑
𝑖∈𝐼

𝑥𝑖𝑚 ≤ 𝐶𝑚 ∀𝑚 ∈ 𝑁 (6)

where 𝐶𝑚 represents the available capacity at PoP 𝑚.
• Bandwidth constraint: We must also ensure that the
bandwidth capacity required to embed all virtual links in
a physical link does not exceed its available bandwidth.
This can be expressed as follows:

∑
𝑖,𝑗∈𝐿

𝑦𝑖𝑗,𝑚𝑛 𝑏𝑖𝑗 ≤ 𝐵𝑚𝑛 ∀ (𝑚, 𝑛) ∈ 𝑃 (7)

• Flow conservation constraint: We must also ensure
that the incoming trafϐic to a physical node is equal to its
outgoing trafϐic unless this PoP is a source or a destina‑
tion. This constraint can be expressed as:

∑
(𝑛,𝑚)∈𝑃

∑
(𝑖,𝑗)∈𝐿

𝑦𝑖𝑗,𝑛𝑚 𝑏𝑖𝑗 − ∑
(𝑖,𝑗)∈𝐿

𝑥𝑗𝑚 𝑏𝑖𝑗

= ∑
(𝑚,𝑛)∈𝑃

∑
(𝑖,𝑗)∈𝐿

𝑦𝑖𝑗,𝑚𝑛 𝑏𝑖𝑗 − ∑
(𝑖,𝑗)∈𝐿

𝑥𝑖𝑚 𝑏𝑖𝑗 ∀ 𝑚 ∈ 𝑁

(8)

The service chain embedding problem is an NP‑hard
problem as it generalizes bin‑packing problem; therefore,

ϐinding an optimal solution is not viable due to the large
number of requests processed in the production envi-
ronment. Hence, we propose two heuristics in the
following section to solve this problem and explore
potential solutions.

6. MAPPING PHASE ‑ PROPOSED
SOLUTIONS

In this section, we address the NP‑hardness of the pro-
blem by putting forward two heuristics solutions, a
baseline algorithm and a more sophisticated algorithm
called SFC decomposition‑based provisioning (SPIN).
Both solutions assume multiple sources and a single
destination to simplify the problem and aim at
minimizing SFC provider’s operational and
synchronization costs while ensuring that accepted
requests satisfy their end‑to‑end delay requirement. In
the following, we provide more details about the two
algorithms.
6.1 Solution 1: Baseline algorithm
The baseline algorithm is an intuitive algorithm that aims
to satisfy the requirements of the SFC in terms of re‑
sources (e.g., CPU, memory, bandwidth) and end‑to‑end
delay while minimizing instance costs. The algorithm
proceeds with the following steps. The ϐirst step is to
estimate the number of instances and virtual links
required for the whole chain. The number of instances is
simply equal to the number of t2.micro instances needed
to process the arriving packet rate. The processing
capacity of a t2.micro instance is estimated using the
technique described in Section 4 (e.g., Fig. 7 and Fig. 8).
Once the number of instances for each VNF is estimated,
the virtual topology is built. The second step is to allocate
resources for this virtual topology as shown in Algorithm
1. For each source instance of the virtual topology, we
start by embedding the virtual nodes (i.e., instances)
connected to it (i.e., neighbors). For each of these
instances, we recursively embed its neighbors by calling
recursively the function 𝐸𝑚𝑏𝑒𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑖)
(Algorithm 2). The complexity of this recursive algorithm
is 𝑂(|𝐼|2) where |𝐼| is the number of virtual instances in
the virtual topology.

Algorithm 1 Baseline
Input: Virtual topology V= (I,L)
Input: Placement constraint (𝑓𝑖𝑚)𝑖∈𝐼,𝑚∈𝑁
Input: Virtual Topology Destination 𝑑 ∈ 𝑁
Output: Boolean Embedded
for all 𝑖 ∈ 𝐼 such that 𝑖 is a source (i.e.,∑𝑚∈𝑁 𝑓𝑖𝑚 = 1)
do

𝑠 ⇐ the hosting physical node of source instance 𝑖
(i.e.,𝑓𝑖𝑠 = 1)
𝑥𝑖𝑠 ⇐ 1
Return EmbedNeighbors(i)

end for

686

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

©International Telecommunication Union, 2022

Algorithm 2 EmbedNeighbors(instance i)
𝑠 ⇐ Physical node hosting instance 𝑖
for all 𝑗 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑖) (Embedding instances con‑
nected to 𝑖) do
if 𝑗 is not embedded then
Find𝑚 such that𝑚 ∈ 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(𝑠, 𝑑)&𝐶𝑚 ≥
1 & 𝑃 𝑎𝑡ℎ𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝑠, 𝑚) ≥ 𝑏𝑖,𝑗
if 𝑚 exists then

𝑥𝑗𝑚 ⇐ 1 (Embed 𝑗 in 𝑚)
𝑦𝑖𝑗,𝑠𝑚 ⇐ 1 (Embed virtual link (𝑖, 𝑗) in physical
path (𝑠, 𝑚))
𝐶𝑚 ⇐ 𝐶𝑚 − 1 (Update the node capacity)

else
Return False (Instance 𝑗 is not embeddable)

end if
end if

end for
for all 𝑗 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑠) do
if 𝑗 is not embedded then
Return EmbedNeighbors(𝑗) (Embedding
instances connected to 𝑗)

end if
end for
Return True (all instances were embedded)

6.2 Solution 2: SFC decomposition‑based
provisioning (SPIN) algorithm

This algorithm is called SFC decomposition‑based pro-
visioning (SPIN) and proceeds into four phases
(Algorithm 3). In the ϐirst phase, we estimate the number
of instances for each VNF and estimate the number of
virtual links just like the way it is done by the baseline
algorithm. The second phase is the decomposition phase
where the virtual topology is divided into subchains
where each subchain is a chain of VNF instances that
contains a single instance of each VNF type and connects
one source to one destination.
The third phase is the subchain embedding phase (Algo‑
rithm 4) where each subchain is embedded in the
shortest path between the source and destination of the
subchain denoted as 𝑃 . The path 𝑃 is selected as the one
with the lowest cost and that has a delay satisfying the
e2e delay requirement of the chain and has enough
resources to em‑ bed the subchain (𝐹 𝑟𝑒𝑒𝐼𝑛𝑠𝑡(𝑃) is the
number of free in‑ stances in the path 𝑃 and
𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝑆𝐶𝑘) is the number of instances
needed by subchain 𝑆𝐶𝑘) . The vir‑ tual links intended
to carry the synchronization trafϐic are then
provisioned between the same‑type VNF instances
(Function 𝐸𝑚𝑏𝑒𝑑𝑆𝑦𝑛𝑐ℎ𝑉 𝑖𝑟𝑡𝑢𝑎𝑙𝐿𝑖𝑛𝑘𝑠(𝑉)) .
The last phase is the optimization phase 5 that consists of
selecting each instance and explores the possibility of mi‑
grating it in one of the physical nodes that are neighboring
its current physical location. The goal is to further reduce
operational and synchronization costs (Eq. (1)) while
always ensuring that the requested bandwidth and e2e
delay is satisϐied.

The complexity of SPIN algorithm is𝑂(𝐾)where𝐾 is the
number of subchains. The complexity of the optimiza‑
tion phase is 𝑂(|𝑉 |) where 𝑉 is the number of virtual in‑
stances in the virtual topology.

Algorithm 3 SPIN
Input: Virtual topology 𝑉 = (𝐼, 𝐿)
Input: Placement constraint (𝑓𝑖𝑚)𝑖∈𝐼,𝑚∈𝑁
Input: Virtual Topology Destination 𝑑 ∈ 𝑁
Output: Boolean 𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑, 𝑉 𝐿𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑
Decompose 𝑉 into 𝐾 subchains (𝑆𝐶𝑘)(𝑘=1..𝐾)
repeat

𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑 ⇐ 𝐸𝑚𝑏𝑒𝑑𝑆𝑢𝑏𝑐ℎ𝑎𝑖𝑛(𝑆𝐶𝑘)
𝑘 ⇐ 𝑘 + 1

until (𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒 ‖ 𝑘 = 𝐾 + 1)
𝑉 𝐿𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑 ⇐ 𝐸𝑚𝑏𝑒𝑑𝑆𝑦𝑛𝑐ℎ𝑉 𝑖𝑟𝑡𝑢𝑎𝑙𝐿𝑖𝑛𝑘𝑠(𝑉)
if (𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑 & 𝑉 𝐿𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑)=True (Embedding is
successful) then
Optimization(𝑉) (optimization phase)
Return 𝑇 𝑟𝑢𝑒

else
Return 𝐹𝑎𝑙𝑠𝑒

end if

Algorithm 4 EmbedSubchain(subchain 𝑆𝐶𝑘)
𝑃 ⇐ Find path with minimal cost such that
𝑑𝑒𝑙𝑎𝑦(𝑃) ≤ 𝑑𝑒𝑙𝑎𝑦(𝑆𝐶𝑘 & 𝐹𝑟𝑒𝑒𝐼𝑛𝑠𝑡(𝑃) ≤
𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝑆𝐶𝑘) & 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝑃) ≥
𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝑆𝐶𝑘)
if 𝑃 exists then
Embed 𝑆𝐶𝑘 in 𝑃
Return True (𝑆𝐶𝑘 is successfully embedded)

else
Return False (𝑆𝐶𝑘 is not embeddable)

end if

7. PERFORMANCE EVALUATION
7.1 Simulation setup
In order to evaluate the performance of the proposed al‑
gorithms, we developed a C‑based simulator that simu‑
lates the physical topology and carries out the
translation and mapping of the SFC requests. Each
simulation assumes the arrival of requests during two
months.
The physical infrastructure is assumed to contain
25 nodes with each node having a hosting capacity
randomly set between 50 and 100 t2.micro instances.
The nodes are connected with 10 Gbps links with
propagation delays randomly set between 10 and 50 ms.
The SFCs were generated randomly with an average
arrival rate set between 0.1 and 0.15 rps following a
Poisson distribution. The average lifetime of the
requests follows an exponential distribution with an
average of 1 hour. The average number of VNFs per
SFC is 10 with an average number of sources around 7.
The demand in terms of packet arrival for each SFC is
generated randomly between 2000 and 120 000 packets
per seconds.

687

Moufakir et al.: SFCaaS: Service function chains as a service in NFV environments

©International Telecommunication Union, 2022

Algorithm 5 Optimization(VirtualTopology 𝑉)
for all 𝑖 ∈ 𝑉 (Parse all instances) do

𝑛 ⇐ Physical node hosting 𝑖
for all 𝑚 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑛) (Explore migrating 𝑖 to
neighboring nodes) do

𝐶𝑜𝑠𝑡 ⇐ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑉 𝐶𝑜𝑠𝑡(𝑉) (Compute Embed‑
ding Cost Eq. (1))
𝑁𝑒𝑤𝐶𝑜𝑠𝑡 ⇐ 𝑉 𝐶𝑜𝑠𝑡(𝑉 , 𝑖, 𝑚) (Compute cost as‑
suming 𝑖 is hosted in 𝑚)
if 𝐶ℎ𝑒𝑐𝑘𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠(𝑉) & 𝑁𝑒𝑤𝐶𝑜𝑠𝑡 < 𝐶𝑜𝑠𝑡 (all
resource constraints should be satisϐied) then
Migrate(𝑖, 𝑚) (migrate instance 𝑖 to physical
node 𝑚

end if
end for

end for

The end‑to‑end delay requirement of an SFC request is
computed as follows: max𝑠,𝑑(𝑡𝑠,𝑑)× 130% where 𝑡𝑠,𝑑 is
the path latency between a source 𝑠 and a destination 𝑑
where 𝑠 and 𝑑 are a source and a destination of the SFC
request. This ensures that, theoretically, the end‑to‑end
delay requirement between the sources of the SFC and its
destination could be satisϐied as it is 30% higher than any
path between the sources and the destinations of the
request.
We also assume that we have nine types of VNFs.
The packet processing capacity of each type of VNF is
generated randomly between 2000 to 12000 packets
per second (pps) when running on a t2.micro‑instance.
The synchronization cost among same‑type instances is
0.01$/hour multiplied by the type of the instance. We
used the Amazon EC2 instance prices as instance costs.
The instance revenue as the cost of the instance
plus 0.1$/hour. this means that there is 0.1$/hour
proϐit for the SFC provider each instance.
In the next subsection, we present the results
generated for the two proposed algorithms under the
abovedescribed simulation setup.

7.2 Simulation results
We ϐirst compare the performance of the baseline and
SPIN algorithms for an arrival rate 0.03 requests per
second (rps).
As shown in ϐigures 11 and 12, SPIN maps 25% more re‑
quests and leads to around 37% higher CPU utilization in
the whole infrastructure.
To further assess the performance of the two proposed
greedy algorithms for different scenarios, we computed
the following metrics while varying the SFC requests
arriving rate:

• Acceptance ratio: This is computed as the ratio of
the number of accepted SFCs to the total number of
received SFC requests. Accepted requests refers to
the ones for which the algorithm succeeded in

Fig. 11 – Number of mapped requests over time (request arrival rate:
0.03 rps)

Fig. 12 – Infrastructure CPU utilization over time (request arrival
rate: 0.03 rps)

finding enough resources for the SFC while
satisfying its e2e delay requirements.

• Infrastructure utilization: This is the amount of used
CPU resource divided by the total available resource
(CPU).

• Cumulative proϐit: This is computed as the revenue
of the SFC provider minus its operational costs in‑
cluding the costs of the instance, bandwidth, and syn‑
chronization. The cumulative proϐit is computed for
the duration of the experiment.

• Average end‑to‑end (e2e) delay: This is the average
end‑to‑end delay between the sources and destina‑
tions of the SFC requests that were successfully em‑
bedded throughout the experiment.

In the following paragraphs, we provide and discuss the
obtained results for each metric.
The ϐirst considered metric is the acceptance ratio and is
depicted in Fig. 13. The ϐigure shows that, even for a low
request arrival rate, the baseline fails to accommodate
50% of the requests whereas SPIN succeeds in accommo‑
dating up to 65% of the requests. This means that even
if the infrastructure’s utilization is low and resources are
available (Fig. 14), the baseline, unlike SPIN, is not able
to efϐiciently leverage such available resources. As the ar‑
rival rate is increased, the acceptance ratio goes down for
both algorithms as the infrastructure becomes saturated
as Fig. 14. However, SPIN still outperforms the baseline
in terms of acceptance ratio.
Furthermore, as illustrated in Fig. 14, SPIN accepts up to
25% more requests for low arrival rates, showing that it
allows to efϐiciently leverage the infrastructure resources

688

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

©International Telecommunication Union, 2022

Fig. 13 – Acceptance ratio

Fig. 14 – Infrastructure utilization

compared to the baseline. It is worth noting that for high
arrival rates SPIN succeeds to reach 95% utilization com‑
pared to 80% utilization for the baseline.
We also study cumulative proϐit generated by each of the
two algorithms (Fig. 15). The ϐigure shows that the proϐit
generated by SPIN exceeds by up to 30% the one
generated by the baseline, especially for low arrival
rates. Finally, Fig. 16 shows the average end‑to‑end
delay per request for the accepted SFCs. It shows that
during low utilization, SPIN reduces by up to 35% e2e
delay and by up to 25% the e2e delay for high arrival
rates. This shows that SPIN does not only satisfy the
requests’ requirements in terms of e2e delay but further
reduces it compared to the baseline.

8. CONCLUSION AND FUTURE DIRECTIONS
Selecting the right placement for the VNF, the number and
the type of the VM instance is a major challenge for cloud
providers as it has a paramount impact not only on perfor‑
mance but also on cost. In this paper, we started by
studying these trade‑offs using general‑purpose
Amazon EC2 instances. For instance, we found that
micro‑instances (small instances) are more
cost‑effective. We also ϐind that the performance of a
virtual machine is not always proportional to the
amount of resources that are allo‑ cated. Hence, we
found that, provisioning several small instances, when
the function could be distributed, would provide better
performance than big instances with a smaller cost.

Fig. 15 – Cumulative proϐit

Fig. 16 – Average e2e delay per request

Furthermore, we investigated pro it-driven resource al-
location by mathematically modeling the problem as an
integer linear program and proposing two heuristics,
a baseline and a more sophisticated algorithm dubbed
SPIN, which allows to improve the performance of the
mapping with more accepted chains and hence to
increase proϐits.
This work opens the door for more research opportuni‑
ties. For instance, it would be interesting to further de‑
velop VNF benchmarks with the development of more
sophisticated procedures to benchmark VNFs depending
on the nature of the implemented network function. It
is also of utmost importance to devise resource
consump‑ tion models for speciϐic VNFs taking into
consideration the VNF characteristics and the hosting.
Another research avenue is to assess synchronization
costs among same‑ instance VNFs depending on the type
of the function and the instance locations.
More work should also be done on the management of
VNFs by developing platform‑aware resource allocation
as the performance of a virtual machine signiϐicantly
depends on the hosting platform (dedicated hardware
versus software, server model, type and amount of re‑
sources).

689

Moufakir et al.: SFCaaS: Service function chains as a service in NFV environments

©International Telecommunication Union, 2022

REFERENCES
[1] Mohamed Faten Zhani and Hesham Elbakoury.

“FlexNGIA: A Flexible Internet Architecture for
the Next‑Generation Tactile Internet”. In: Journal
of Network and Systems Management, Springer
(2020).

[2] Alexander Clemm, Mohamed Faten Zhani, and
Raouf Boutaba. “Network Management 2030:
Operations and Control of Network 2030
Services”. In: Journal of Network and Systems
Management, Springer (2020).

[3] Blesson Varghese, Philipp Leitner, Suprio Ray, Kyle
Chard, Adam Barker, Yehia Elkhatib, Herry Herry,
Cheol‑Ho Hong, Jeremy Singer, Fung Po Tso, Eiko
Yoneki, and Mohamed Faten Zhani. “Cloud
Futurology”. In: IEEE Computer 52.9 (Sept. 2019),
pp. 68–77.

[4] Walid Racheg, Nadir Ghrada, and Mohamed Faten
Zhani. “Proϐit‑driven resource provisioning in NFV‑
based environments”. In: IEEE International Con‑
ference on Communications (ICC). 2017, pp. 1–7.

[5] Farzad Tashtarian, Mohamed Faten Zhani, Bita
Fatemipour, and Delaram Yazdani. “CoDeC: A Cost‑
Effective and Delay‑Aware SFC Deployment”. In:
IEEE Transactions on Network and Service Manage‑
ment 17.2 (2020), pp. 793–806.

[6] Ahmed Amokrane, Mohamed Faten Zhani, Rami
Langar, Raouf Boutaba, and Guy Pujolle. “Green‑
head: Virtual data center embedding across dis‑
tributed infrastructures”. In: IEEE transactions on
cloud computing (TCC) 1.1 (2013), pp. 36–49.

[7] Amazon EC2 instances.
https://aws.amazon.com/fr/ec2/instance‑types/.
URL: https : / / aws . amazon . com / fr / ec2 /
instance-types/.

[8] Nadir Ghrada, Mohamed Faten Zhani, and Yehia
Elkhatib. “Price and Performance of Cloud‑hosted
Virtual Network Functions: Analysis and Future
Challenges”. In: IEEE Performance Issues in
Virtualized Environments and Software Deϔined
Networking (PVE‑SDN NetSoft 2018). Montreal,
Canada, June 2018.

[9] Zakaria Alomari, Mohamed Faten Zhani, Moayad
Aloqaily, and Ouns Bouachir. “On Minimizing Syn‑
chronization Cost in NFV‑based Environments”. In:
IEEE/ACM/IFIP International Conference on
Network and Service Management (CNSM).
Virtual Conference, Nov. 2020.

[10] AWS Infrastructure. https : / / infrastructure .
aws. Web Page. 2021. URL: https : / /
infrastructure.aws.

[11] Google Cloud. https://cloud.google.com/. Web
Page. 2021. URL: https://cloud.google.com/.

[12] Milad Ghaznavi, Aimal Khan, Nashid Shahriar,
Khalid Alsubhi, Reaz Ahmed, and Raouf Boutaba.
“Elastic virtual network function placement”. In:
IEEE International Conference on Cloud Networking
(CloudNet). 2015.

[13] Walid Racheg, Nadir Ghrada, and Mohamed Faten
Zhani. “Proϐit‑driven resource provisioning in NFV‑
based environments”. In: IEEE Conf. on Communi‑
cations (ICC). 2017. DOI: 10 . 1109 / ICC . 2017 .
7997163.

[14] Francisco Carpio, Samia Dhahri, and Admela Jukan.
“VNF placement with replication for Loac
balancing in NFV networks”. In: IEEE
International Conference on Communications (ICC).
2017, pp. 1–6.

[15] Xiaoke Wang, Chuan Wu, Franck Le, Alex Liu, Zong‑
peng Li, and Francis Lau. “Online VNF scaling in
datacenters”. In: IEEE International Conference on
Cloud Computing (CLOUD). 2016, pp. 140–147.

[16] Prajeesh Murukan, Dana Jamaluddine, Shalaka Kol‑
hapure, Fady Mikhael, and Shiva Nouzari. “A Cost‑
based Placement Algorithm for Multiple Virtual
Security Appliances in Cloud using SDN:
MOUFLP (Multi‑Ordered Uncapacitated Facility
Location Problem)”. In: arXiv preprint
arXiv:1602.08155 (2016).

[17] Xiaoxi Zhang, Chuan Wu, Zongpeng Li, and Francis
CM Lau. “Proactive VNF provisioning with multi‑
timescale cloud resources: Fusing online
learning and online optimization”. In: IEEE
Conference on Computer Communications
(INFOCOM). 2017, pp. 1–9.

[18] Lav Gupta, Mohammed Samaka, Raj Jain, Aiman
Erbad, Deval Bhamare, and Chris Metz. “COLAP:
A predictive framework for service function chain
placement in a multi‑cloud environment”. In: IEEE
Annual Computing and Communication Workshop
and Conference (CCWC). 2017, pp. 1–9.

[19] Wenrui Ma, Jonathan Beltran, Zhenglin Pan, Deng
Pan, and Niki Pissinou. “SDN‑based trafϐic aware
placement of NFV middleboxes”. In: IEEE
Transactions on Network and Service Management
14.3 (2017), pp. 528–542.

[20] Defang Li, Peilin Hong, Kaiping Xue, and Jianing Pei.
“Availability aware VNF deployment in datacenter
through shared redundancy and multi‑tenancy”. In:
IEEE Transactions on Network and Service Manage‑
ment 16.4 (2019), pp. 1651–1664.

[21] Akanksha Patel, Mythili Vutukuru, and Dilip Krish‑
naswamy. “Mobility‑aware VNF placement in the
LTE EPC”. In: IEEE conference on network function
virtualization and software deϔined networks
(NFVSDN). 2017, pp. 1–7.

690

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

©International Telecommunication Union, 2022

https://aws.amazon.com/fr/ec2/instance-types/
https://aws.amazon.com/fr/ec2/instance-types/
https://infrastructure.aws
https://infrastructure.aws
https://infrastructure.aws
https://infrastructure.aws
https://cloud.google.com/
https://cloud.google.com/
https://doi.org/10.1109/ICC.2017.7997163
https://doi.org/10.1109/ICC.2017.7997163

[22] Ke Yang, Hong Zhang, and Peilin Hong. “Energy‑
aware service function placement for service func‑
tion chaining in data centers”. In: IEEE Global Com‑
munications Conference (GLOBECOM). 2016,
pp. 1–6.

[23] Deval Bhamare, Mohammed Samaka, Aiman Erbad,
Raj Jain, Lav Gupta, and H Anthony Chan. “Opti‑
mal virtual network function placement in multi‑
cloud service function chaining architecture”. In:
Computer Communications 102 (2017), pp. 1–16.

[24] Nicolas El Khoury, Sara Ayoubi, and Chadi Assi.
“Energy‑aware placement and scheduling of net‑
work trafϐic ϐlows with deadlines on virtual net‑
work functions”. In: IEEE International Conference
on Cloud Networking (Cloudnet). 2016, pp. 89–94.

[25] Dilip Krishnaswamy, Ravi Kothari, and Vijay Ga‑
bale. “Latency and policy aware hierarchical par‑
titioning for NFV systems”. In: IEEE Conference on
Network Function Virtualization and Software De‑
ϔined Network (NFV‑SDN). 2015, pp. 205–211.

[26] Siri Kim, Yunjung Han, and Sungyong Park. “An
energy‑aware service function chaining and recon‑
ϐiguration algorithm in NFV”. In: IEEE International
Workshops on Foundations and Applications of Self*
Systems (FAS* W). 2016, pp. 54–59.

[27] Mohammad M Tajiki, Stefano Salsano, Luca Chiar‑
aviglio, Mohammad Shojafar, and Behzad Akbari.
“Joint energy efϐicient and QoS‑aware path alloca‑
tion and VNF placement for service function
chaining”. In: IEEE Transactions on Network and
Service Management 16.1 (2018), pp. 374–388.

[28] Zhichao Xu, Xiaoning Zhang, Shui Yu, and Ji Zhang.
“Energy‑efϐicient virtual network function place‑
ment in telecom networks”. In: IEEE International
Conference on Communications (ICC). 2018,
pp. 1–7.

[29] Bernardetta Addis, Dallal Belabed, Mathieu Bouet,
and Stefano Secci. “Virtual network functions
placement and routing optimization”. In: IEEE
International Conference on Cloud Networking
(CloudNet). 2015, pp. 171–177.

[30] Faizul Bari, Shihabur Rahman Chowdhury, Reaz
Ahmed, Raouf Boutaba, and Otto Carlos Muniz Ban‑
deira Duarte. “Orchestrating virtualized network
functions”. In: IEEE Transactions on Network and
Service Management 13.4 (2016), pp. 725–739.

[31] Chuan Pham, Nguyen H Tran, Shaolei Ren, Walid
Saad, and Choong Seon Hong. “Trafϐic‑aware and
energy‑efϐicient VNF placement for service
chaining: Joint sampling and matching
approach”. In: IEEE Transactions on Services
Computing 13.1 (2017), pp. 172–185.

[32] Guto Leoni Santos, Diego de Freitas Bezerra, EƵ
lisson da Silva Rocha, Leylane Ferreira, Andre ́Luis
Cavalcanti Moreira, Glauco Estaćio Gonçalves,
Maria Valeŕia Marquezini, AƵ kos Recse, Amardeep
Mehta, Judith Kelner, et al. “Service Function Chain
Placement in Distributed Scenarios: a Systematic
Review”. In: Journal of Network and Systems
Management 30.1 (2022), pp. 1–39.

[33] Md. Faizul Bari, Shihabur Rahman Chowdhury,
Reaz Ahmed, and Raouf Boutaba. “nf.io: A ϐile sys‑
tem abstraction for NFV orchestration”. In: IEEE
Conference on Network Function Virtualization and
Software Deϔined Network (NFV‑SDN). 2015.

[34] Michael Till Beck and Juan Felipe Botero. “Coor‑
dinated Allocation of Service Function Chains”. In:
IEEE Global Communications Conference (GLOBE‑
COM). Dec. 2015, pp. 1–6.

[35] Mingshu Lu, Zhihui Wu, Da Li, and Dong Wang. “Re‑
source Allocation Algorithm of Power Communica‑
tion Network Service Function Chain based on Re‑
source Characteristics”. In: IEEE International Con‑
ference on Computer Science, Electronic Informa‑
tion Engineering and Intelligent Control Technology
(CEI). 2021, pp. 382–387.

[36] Masahiro Sasabe and Takanori Hara. “Capacitated
shortest path tour problem‑based integer linear
programming for service chaining and function
placement in NFV networks”. In: IEEE Transactions
on Network and Service Management 18.1 (2020),
pp. 104–117.

[37] Yun Wang, Chih‑Kai Huang, Shan‑Hsiang Shen, and
Ge‑Ming Chiu. “Adaptive Placement and Routing
for Service Function Chains With Service Dead‑
lines”. In: IEEE Transactions on Network and Service
Management 18.3 (2021), pp. 3021–3036.

[38] Chao Bu, Jinsong Wang, and Xingwei Wang. “To‑
wards delay‑optimized and resource‑efϐicient net‑
work function dynamic deployment for VNF ser‑
vice chaining”. In: Elsevier Applied Soft Computing
120 (2022), p. 108711.

[39] Tuan‑Minh Pham. “Trafϐic Engineering Based
on Reinforcement Learning for Service Function
Chaining With Delay Guarantee”. In: IEEE Access 9
(2021).

[40] Amazon EC2 instances. Upper Limits on Number of
Amazon EC2 Instances by Region. Web Page. last
accessed May 2021. URL: https://alestic.com/
2011/08/ec2-max-instances/.

[41] Shorewall Firewall. http://shorewall.org. Ac‑
cessed: 06‑05‑2021. 2021.

[42] Snort ‑ Network Intrusion and Prevention System.
https : / / www . snort . org/. Accessed: 06‑05‑
2021. 2021.

691

Moufakir et al.: SFCaaS: Service function chains as a service in NFV environments

©International Telecommunication Union, 2022

https://alestic.com/2011/08/ec2-max-instances/
https://alestic.com/2011/08/ec2-max-instances/
http://shorewall.org
https://www.snort.org/

AUTHORS
Tarik Moufakir received the
Ph.D. degree in information
technology in 2021 from EƵ cole
de Technologie Supérieure
(EƵ TS) in Montreal, QC, Canada.
He received an M.Sc. in com‑
puter science in 2013 from
UQAM University, Canada and
another M.Sc. in computer
science from ENST Bretagne,
France in 2002. His main re‑

search interests are software‑deϐined networking and
cloud computing.

Mohamed Faten Zhani is an as‑
sociate professor with the Soft‑
ware and IT Engineering De‑
partment at lEƵ cole de Technolo‑
gie Supérieure (EƵ TS), Montreal,
QC, Canada. His research in‑
terests include cloud comput‑
ing, network function virtualiza‑
tion, software‑deϐined network‑

ing and resource management.

Abdelouahed Gherbi received
thePh.D. degree in computer en‑
gineering from Concordia Uni‑
versity, Canada. He is currently
an associate professor with the
Software and ITEngineeringDe‑
partment, EƵ cole de Technologie
Supérieure (EƵ TS), Montreal, QC,
Canada. His research interests

include model‑driven software engineering, modeling
andanalysis techniques for real‑timeand critical software
systems, software performance, high availability, and se‑
curity.

Moayad Aloqaily is an assis‑
tant professor with the Machine
Learning Department, Mo‑
hamed Bin Zayed University of
Artiϐicial Intelligence (MBZUAI),
United Arab Emirates. He
received his Ph.D. degree in
electrical and computer engi‑
neering from the University
of Ottawa, Ontario, Canada.
His current research interests

include the applications of AI and ML, connected and au‑
tonomous vehicles, blockchain solutions, and sustainable
energy and data management.

Nadir Ghrada received an
M.Sc. in computer science in
2018 from EƵ cole de Technologie
Supérieure (EƵ TS) in Montreal,
QC, Canada. His main research
interest is cloud computing.

692

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

©International Telecommunication Union, 2022

	SFCaaS: SERVICE FUNCTION CHAINS AS A SERVICE IN NFV ENVIRONMENTS
	1. INTRODUCTION
	2. SFCaaS - Business Model, Benefits and Challenges
	3. Related Work
	4. Study of the costs of Amazon EC2 instances
	5. Mapping Phase: Problem Formulation
	6. Mapping Phase - Proposed Solutions
	Solution 1: Baseline algorithm
	Solution 2: SFC decomposition-based provisioning (SPIN) algorithm

	7. Performance Evaluation
	Simulation setup
	Simulation results

	8. Conclusion and Future Directions
	REFERENCES
	AUTHORS

