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Abstract – With the growing deployment of emergent technologies like software‑deϔined networking, network services are
expected to be revolutionized. In this paper, we investigate offering Service Function Chains as a Service (SFCaaS) in NFV
environments. We describe the potential business model to offer such a service and then we address the service function chain
provisioningand resource allocation problem. As the chain is deployed thanks to virtualmachines (i.e., instances) and links, we
conduct ϔirst a detailed study of the costs of Amazon EC2 instances with respect to their location, size, type and performance.
Afterwards, we address the resource allocation problem for service function chains from the SFC provider’s perspective. We
formulate the problem as an integer linear program aiming at reducing operational costs of the service function chains (i.e.,
costs of virtual machine instances and links, and synchronization among the instances). To address large‑scale instances of
the problem, we also propose a new heuristic algorithm to reduce operational costs taking into account the conducted study
of the costs of Amazon EC2 instances. We show through extensive simulations that the proposed heuristic signiϔicantly reduces
operational costs compared to a baseline algorithm inspired by the existing literature.

Keywords – FlexNGIA, network function virtualization, network softwarization, resource allocation, SFCaaS, service
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1. INTRODUCTION
Propelled by emerging technologies like Network Func‑ 
tion Virtualization (NFV), Software‑Deϐined Networking 
(SDN) and data plane programmability, network soft‑ 
warization has become a new trend aiming at separating 
software from the networking hardware. This trend is 
revolutionizing the way networks are designed and 
managed and opening the door for a new IT open 
ecosys‑ tem with new platforms, software and network 
services and applications [1, 2, 3]. As a matter of fact, 
network soft‑ warization bring several beneϐits including 
better agility and ϐlexibility, easy automation and faster 
time‑to‑market services while ensuring scalability and 
signiϐicantly re‑ ducing capital and operational 
expenditure.
Network softwarization allows network/cloud providers 
(called hereafter SFC provider) to roll out new service 
offerings. In particular, it would be possible to offer 
“Service Function Chains” as a Service (SFCaaS) where a 
whole Service Function Chain (SFC) is offered as a 
service to a third party (called hereafter service 
provider). An SFC is an ordered set of Virtual Network 
Functions (VNFs) that are crossed by packets arriving 
from the chain’s sources and ϐlowing towards the 
chain’s destina‑ tions (Fig. 1). VNFs are network 
functions (e.g., ϐirewall, IDS or other functions) 
implemented in virtual machines or containers running 
on commodity servers or implemented in dedicated 
hardware like Field‑Programmable Gate Arrays (FPGAs).
In this context, the SFC provider would face a major chal‑ 
lenge as to how to allocate the resources to the requested 
SFC in the physical infrastructure. Although this problem

has been recently extensively addressed [4, 5, 6] in the 
literature, we revisit this problem in this work with the 
following novel contributions:

1. We consider two phases to provision an SFC
(Fig. 1). The ϐirst one is the translation phase
which aims at identifying the optimal number of
instances (i.e., vir‑ tual machines/containers) that
are required for each VNF in order to cater to the
demand. The second phase addresses the
mapping problem, which aims at deciding where
to place the instances taking into account the
deployment costs. To our knowledge no prior work
considered the translation phase.

2. We conduct a detailed study of the costs of
Virtual Machines (VMs) (i.e., instances) offered by
Amazon EC2 [7] with respect to the location,
instance size, and performance. This cost study
extends the one carried out by the authors in [8]
and sheds light on interesting observations about
the costs of instances offered by one of the major
cloud providers in the world. This study is used
later on in this paper to guide the proposed
solutions for the resource allo‑ cation for the
service function chains.

3. We formulate the mapping phase problem as an
Integer Linear Program (ILP) aiming at reducing
the SFC provider’s operational costs of the VM
instances and links as well as the synchronization
costs among the same‑type instances. It is also
worth noting that synchronization costs were not
considered in existing literature.
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4. We also propose two heuristic algorithms to solve
themapping problemwith the same aforementioned
goals taking into account the conducted study of the
costs of Amazon EC2 instances. The ϐirst one is a ba‑
sic and intuitivemapping algorithm (called baseline)
and the second one is amore sophisticated algorithm
called SFC decomposition‑based provisioning (SPIN)
algorithm. We show through extensive simulations
that SPIN signiϐicantly reduces the operational costs
compared to the baseline.

Fig. 1 – SFCaaS ‑ SFC translation and mapping [1]

The remainder of this manuscript is organized as fol‑
lows. Section 2 describes the SFCaaS service model, high‑
lighting the business model and the potential involved
stakeholders as well as the technical challenges related
to the deployment of such a service. Section 3 provides
an overview of the related literature focusing on service
function chaining and highlights the novelty of this work.
Section 4 presents the detailed study of the costs of Ama‑
zon EC2 instanceswith respect to several parameters and
presents its main outcomes. Section 5 presents the ILP
formulation of the mapping problem. Furthermore, Sec‑
tion 6 introduces the two proposed greedy algorithms to
address the mapping problem. The experimental results
are provided in Section 7. Finally, conclusions and key re‑
search directions are described in Section 8.

2. SFCAAS ‑ BUSINESS MODEL, BENEFITS
AND CHALLENGES

In this section, we propose the following business model
that is adapted to SFCaaS. This model identiϐies the stake‑
holders involved in an environmentwhere SFCs are provi‑
sioned and offered as a service. We mainly identify three
stakeholders deϐined as follows:

• SFC provider: This is a company that offers “Service
Function Chains” as a Service (SFCaaS). It owns and
manages a physical infrastructure and is in charge
of deploying platforms and software required to run
network functions building the chains and also of
provisioning and managing the requested SFCs. It
should hence perform the SFC translation phase to
identify of the number of virtual machines and links
needed to build the chain. These components would
make up a virtual network as shown in Fig. 1) that
should be later on mapped onto the infrastructure.
The virtual network is obtained by identifying the
number of instances needed to implement each VNF
and the virtual links used to connect them (Fig. 1).
Note that, in addition to virtual links connecting the
VNFs, synchronization virtual links should also be
created to connect the instances implementing the
same VNF in order to ensure synchronization among
them. Indeed, synchronization is needed to guaran‑
tee the normal operation of a network function im‑
plemented in multiple instances (e.g., IDS) [9].

• Service provider: This could be a company or insti‑
tution that has users spread around theworld. A ser‑
vice provider needs to deϐine the SFC needed to run
its service, its composition, performance require‑
ments, and identiϐies the chain sources/destinations.
The composition of the SFC refers to the type of
each network function (NF) making up the chain.
The performance requirements could be in terms
of end‑to‑end delay, packet loss, trafϐic demand, re‑
sources (CPU, memory and disk) and other param‑
eters. Of course, the service provider relies on the
SFC provider to provision the SFC and allocate the
needed resources.

• User: These are customers of the service provider
and are located at the sources or destinations of the
service function chain. The trafϐic coming from users
will be steered across the SFC provisioned by the ser‑
vice provider.

Potential SFC providers could be major companies of‑
fering cloud services like Google, Amazon EC2, and Mi‑
crosoft that have their own networkwith predictable per‑
formance and has computing resources spread across
the network [10, 11] . For instance, the AWS infras‑
tructure shown in Fig. 2 is a software‑deϐined world‑
wide global infrastructure [10]with 25 regions across the
world serving 245 countries and territories where each
region contains one or more data centers. The infrastruc‑
ture has also more than 218 edge locations and 12 re‑
gional edge caches for a total of 230 points of presence.
Regions are connected through a private world‑wide net‑
work managed by Amazon AWS, which makes it easy for
Amazon to predict and even fully control the network
performance. As computing resources are available ev‑
erywhere in this global infrastructure and such compa‑
nies have the expertise on technologies like cloud com‑
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puting, virtualization, and SDN, it is straightforward that
they could provide SFCs as a service and easily provision
and allocate the required resources across their global in‑
frastructure.

Fig. 2 – AWS global infrastructure ‑ source [10]

• SFC beneϐits: Similar to traditional cloud computing
services, offering SFCs as service would bring several
beneϐits for service providers, such as avoiding manage‑ 
ment hassle with no need to software and hardware main‑ 
tenance. In addition, costs will be reduced for service
providers as there is no capital and operational expendi‑ 
ture. It would also be possible to get low prices thanks to
the economies of scale. Furthermore, SFCaaS would allow
predictable performance thanks to the SFC provider’s ex‑ 
pertise and knowledge of the infrastructure (i.e., topolo‑ 
gies, characteristics, performance). SFC providers could
also offer novel and customized network functions that
are carefully implemented and managed to offer optimal
performance [1].
• Technical challenges: From the SFC provider’s
perspective, the main challenge is to provision SFCs 
while maximizing proϐit, minimizing operational costs 
and satisfying the SFC requirements in terms of 
end‑to‑end delay. In this context, we can identify several 
challenges that can be summarized as follows:

• Decide how many instances to use implementing
a VNF: Implementing a VNF in a single instance
(VM/Container) may not be sufϐicient for several
reasons. Indeed, a single instance may not have
enough resources to handle the incoming trafϐic.
Hence, implementing the same VNF in multiple
instances allows us to overcome the lack of re‑ 
sources by distributing the function over several
Points‑of‑Presence (PoPs). It also allows us to
reduce delays, costs and to improve fault tolerance
as the failure of an instance would not necessarily
affect the others. At the opposite side, when a
VNF is implemented in multiple instances, there
might be some drawbacks. For instance, some data
might need to be synchronized among the different
instances in order to ensure a normal operation
of the network function (e.g., distributed intrusion
detection systems [9]). As a result, one needs to

consider the cost of synchronization among the 
same‑type instances. This cost can be expressed in 
terms of CPU, memory and bandwidth consumed 
in order to ensure synchronization. There might 
also be constraints on the delay needed to carry out 
the synchronization [9]. In this context, deciding 
how many instances are needed to implement one 
VNF and what are the synchronization costs and 
constraints are key challenges when provisioning 
the SFC.

• Decide the type of VM instance to use to run the
VNF: The selection of the VM instance type depends
on the network function requirements (in terms of
resources like vCPU, memory, storage), processing
capacity (packets per second), and the operational
costs of running the instance. Of course, the decision
should take into account the network function
properties (the nature of the function itself, the used
software and operating system, database and other
software) as well as the geographical location of the
instance which has an impact on the cost and access
delay.

• Allocate resources for the chain: The third challenge
is to identify where to allocate the resources to place
the instances in the physical infrastructure and how
to allocate the bandwidth for the virtual links to con‑ 
nect instances. The goal would be to maximize the
SFC provider’s proϐits and minimize its operational
costs.

In this work, we try to approach the aforementioned chal‑ 
lenges and study the parameters and considerations to 
address them. In the following section, we summarize the 
existing literature that has attempted to address the same 
problems.

3. RELATED WORK
In this section, we brieϐly present recent research work 
addressing the provisioning problem of service function 
chaining, i.e., the problem of placing and chaining of a set 
of ordered VNFs. In recent years, a large body of work 
has studied this problem [12, 13, 14, 15, 9]. Proposed 
solutions have attempted to reach several objectives like 
minimizing operational costs [16, 17, 18], minimizing 
network utilization [16, 19], minimizing latency [20, 21, 
22, 23, 24, 25, 26] and minimizing resource 
consumption [27, 28, 29, 22, 24, 30, 26, 31]. The 
analysis of existing literature on SFC placement and 
chaining carried out by Santos et al. [32] ϐinds that 
minimizing operational costs is the most widely 
sought‑after goal as it was the aim of more than 42% of 
published articles pertaining to service function 
chaining.
For instance, Carpio et al. [14] formulate the placement 
and chaining of VNFs as a mixed linear program and com‑ 
pare it with a random ϐit placement algorithm. For better
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scalability, they devise a genetic algorithm to ϐind a sub‑
optimal solution. The proposed algorithm focuses ϐirst on
ϐinding admissible paths and calculating link costs then
allocating, within those paths, the resources for VNFs.
However, the algorithm assumes that the number of VNF
instances is known beforehand.
Bari et al. [33] designed a platform to carry out the place‑
ment, the chain composition and the monitoring of VNFs.
However, the proposed method neither addresses the
casewheremultiple instances are needed nor determines
the appropriate placement of VNFs in the infrastructure.
Beck and Botero [34] looked also at the VNF placement
and chaining problem and proposed CoordVNF, a solu‑
tion that aims at minimizing link utilization over the in‑
frastructure. This proposal considered the use ofmultiple
instances of the virtualized deep packet inspection func‑
tion where the trafϐic is split into TCP and non‑TCP trafϐic
and managed by different instances. However, the costs
of instances and their placement were not discussed in
this proposal.
Wang et al. [15] address the problem of online deploy‑
ment of multiple VNF instances in order to process the
ϐluctuating trafϐic rate received at the VNFs with the goal
of minimizing the costs of the provisioned resources. The
authors proposed two algorithms, one for provisioning a
single service chain and the other for provisioning simul‑
taneously multiple service chains.
Ghaznavi et al. [12] address the VNF placement problem
with the goal of reducing server and bandwidth consump‑
tion. They introduce a solution to optimize the placement
of VNFs by minimizing installation, transportation, reas‑
signment andmigration costs of VNF instances. However,
the solution assumes that all instances of the chain are of
the same type.
Mingshu et al. [35] propose a resource allocation algo‑
rithm with the goal of maximizing network resource uti‑
lization. This algorithm allocates the shortest and the
least costly underlying path to map each of the links of
the the service function chain.
Masahiro and Takanori [36] formulate the shortest path
tour problem as an ILP to solve the service chaining
and function placement and to ϐind the service path that
would minimize the delay.
Wang et al. [37] focused on determining paths for the
ϐlows that should cross the service function chain while
respecting the right order of the network functions. They
leverage the concept of virtual layered graph to consider
NFV processing latency and use shortest path algorithms
to solve the problem.
Chao et al. [38] proposed amechanism to dynamically de‑
ploy network functions. Their approach is based on ant
colony optimization and relies on cooperation between
multiple forwarding equipment on the packet transmis‑
sion path to jointly use already placed network functions
and further optimize packet delays.
Pham [39] explored the joint optimization of VNF place‑
ment and routing in order tomaximize cost‑efϐiciency un‑
der the delay‑guarantee constraint. He formulated the

problem as a mixed‑integer linear programming model
andproposedanalgorithmbasedon reinforcement learn‑
ing to ϐind an approximation solution for large‑scale in‑
stances of the problem.
Unlike previous work, in this paper, we consider not only
SFC mapping but also the translation phase where the
number of instances for each VNF is estimated and con‑
sidered in order to build a virtual network to be mapped.
We also address SFC mapping taking into account syn‑
chronization and deployment costs of the VNF instances.
Our work relies on realistic data and a study based on the
Amazon EC2 instance costs.
In the following section, we start ϐirst by studying the
costs of the offered general‑purpose instances as this
study will guide the development of the proposed solu‑
tions for the service function chain translation and map‑
ping phases.

4. STUDY OF THE COSTS OF AMAZON EC2
INSTANCES

In this section, we study of the costs (prices) of the 
instances (i.e., VM) offered by Amazon EC2 with respect 
to the amount of resources, location, and performance. 
The outcome of this study is leveraged later while 
develop‑ ing our SFC translation and mapping 
solutions to care‑ fully place the instances in the 
physical infrastructure. In particular, we considered 
Amazon EC2 general‑purpose virtual machine instances 
of type T2 [7] which provide a large range of ϐlavors as 
shown in Fig 3. These general‑ purpose instances offer 
compute, memory and network‑ ing resources that can 
be used for diverse types of work‑ loads including 
network functions. Each instance ϐlavor deϐines the 
amount of vCPU and memory of the virtual machine 
and has a different cost. The table shows the 
hardware characteristics on which the VM ϐlavor 
would run according to Amazon (Fig. 3).
In the following, we study several aspects related to 
the cost of these ϐlavors and their performance. The 
study includes an analysis of the instance cost versus its 
location, its software stack, and its allocated resource 
amount, and, ϐinally, the VNF performance (i.e., packet 
processing capacity) versus the instance type.
• Instance cost vs. location: Fig. 4 shows the instance
price for 15 locations in the Amazon infrastructure. It is
clear that instance costs signiϐicantly vary from one loca‑
tion to another. According to the ϐigure, the difference
in cost between two locations for the same instance type
can go from 0.01$ and can reach 1$ for large instances.
It is worth noting that even a small difference in the in‑
stance cost may lead to a high impact in the instance cost.
For instance, 0.1$/hour cost difference would translate
into 86million dollars a year considering 100K instances,
and into around 2 billion dollars for around 2 million in‑
stances, which is a lower‑bound estimation of the num‑
ber of instances running on the Amazon EC2 infrastruc‑
ture [40].
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Fig. 3 – EC2 general‑purpose instances [7]

Fig. 4 – Instance price for different locations (note thatM4 instances are
not available in Paris)

• Cost vs. software stack: Fig. 5 shows the price of
different instances with different software stack. It
considers only the instances located at Amazon AWS
Oregon re‑ gion. The ϐigure shows that instance costs
vary depending on the software stack. Linux
distributions (e.g., Linux, RHEL, SLES) have similar costs
and are much less expen‑ sive than instances running
Microsoft Windows. Further‑ more, adding additional
software to the instance (e.g., SQL Web) would
signiϐicantly increase the price (e.g., up to 1.5$ for
large instances).
• Instance size vs. cost: The instance size refers to the
amount of resource in terms of CPU and memory that
an instance has. We hence aim at evaluating, for the
same cost, how much resources we can provision when
we use micro‑instances (i.e., the smallest instance that
has only 1 vCPU and 1GiB of memory) versus larger
instances. To do so, Fig. 6 shows the price of all
AWS instances and the amount of resources they
provide. It also shows how many t2.micro instances
could be provisioned for the same price.
For instance, as shown in the ϐigure, the price of one
m3.16xlarge instance (containing 64 vCPU and 256 GiB
of memory) is 3.2 $/hour. For almost the same price, one

Fig. 5 – Instance price for different software stacks (Oregon)

Fig. 6 – Price and size of Amazon EC2 instances compared to t2.tiny in‑ 
stances (US West, Oregon)

could provision 256 t2.micro instances offering 256 vCPU 
and 256 GiB of memory. This means that if provision 256 
t2.micro services, we can get 192 (i.e., 256‑64) more 
vCPUs with the same amount of memory (256 GiB) 
com‑ pared to a single m3.16xlarge instance. The same 
note applies for the other types of instances.
As a result, we can conclude that small instances are more 
cost‑effective compared to large instances as, for the same 
cost, micro‑instances would provide roughly four times 
more vCPUs. This is, of course, interesting if the func‑ 
tion/application could run normally in a distributed 
manner on several instances.
• VNF performance vs. instance type: In this experi‑
ment, we try to evaluate the packet processing capacity
of each instance, i.e., howmuch packets an instance could
process when running a speciϐic VNF. To do so, we con‑
duct experiments using different VNF types running on
different instances while gradually increasing the packet
arrival rate in order to assess the limit of the instance pro‑
cessing capacity. We assume that the processing capacity
of the instance is reached when the CPU utilization of the
instance reaches 90% and the packet loss reaches 10%.
For instance, Fig 7 shows how the utilization and the
packet loss ratio evolution while increasing the incoming
packet rate for an Amazon Ec2 instance of type t2.micro
running a ϐirewall (Shorewall ϐirewall [41]). We can see
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Fig. 7 – Firewall [software: Shorewall, instance: t2.micro]

Fig. 8 – IDS [software: Snort, instance: t2.micro]

that the CPU utilization reaches 90% and we start 
having packet loss when the incoming packet rate is 
around 10,000 packets per second (pps). This means 
that the processing capacity for this particular network 
function (Shorewall ϐirewall) on a t2.micro‑instance 
is around 10,000 pps.
We have also conducted the same experiment while run‑ 
ning the Snort Intrusion Detection System (IDS) [42] 
on the same type of instance. The results are re‑ 
ported in Fig. 8 and show that the processing capacity of 
the t2.micro‑instance running the Snort IDS function is 
13000 pps.
Fig. 9 summarize the results for three types of network 
functions, namely a ϐirewall, an IDS and a NAT, that are 
running on different types of instances. We can clearly see 
in the ϐigure that, for the same instance type, the packet 
processing capacity varies from one type of network func‑ 
tion to another. Moreover, we can also notice that the pro‑ 
cessing capacity is not always proportional to the amount 
of allocated resources. Indeed, we can see in the ϐigure 
that the t2.xlarge instance has four times the resources 
than the t2.micro‑instance but is not able to process four 
times the amount of packets processed by the t2.micro. As 
a result, four micro‑instances would process much more 
packets than a single t2.xlarge instance. While it is not 
possible to provide a straightforward explanation of this 
result (as we do not have access to internal statistics of the 
AWS infrastructure), the reasons for such a result might 
be the network bottlenecks and also the heterogeneity 
of physical machines on which the instances are running 
(see Fig. 3).
The above observation means that distributing a function 
over multiple small instances would allow higher packet 
processing capacity and also a lower cost according to 
the comparison reported in Fig. 6.

Fig. 9 – VNF processing capacity per instance type

• Study outcomes: We can summarize the study out‑
comes as follows:

• Instance costs vary signiϐicantly from one location to
another.

• The software stack has a big impact on the instance
cost.

• The VNF processing capacity is not necessarily pro‑
portional to the amount of resources.

• The VNF processing capacity varies signiϐicantly
from one function to another.

• Small instances are more cost‑effective and hence,
if there is no synchronization cost, multiple in‑
stance deployment is more cost‑effective and pro‑
vides higher processing capacity.

Taking into consideration the above outcome, it is of ut‑
most importance to develop SFC provisioning solutions
that are able to ϐind the best trade‑off between cost (in‑
cluding instance price, synchronization and bandwidth
costs) and processing capacity. In the following, we pro‑
pose an integer linear program to solve the SFC mapping
phase and two greedy solutions to deal with large‑scale
instances of the problem.

5. MAPPING PHASE: PROBLEM
FORMULATION

In this section, we formulate the SFC mapping problem as 
an Integer Linear Program (ILP) with the objective of 
minimizing the SFC provider’s operational costs in 
terms of instance deployment costs, bandwidth and 
synchronization costs.
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Table 1 – Table of notations

Symbol Deϐinition
𝐺 = (𝑁, 𝑃) Graph 𝐺 where 𝑁 is the set of nodes

and 𝑃 is set of physical links
𝑉 = (𝐼, 𝐿) The virtual network Graph 𝑉

with 𝐼 is the set of VNF instances
and 𝐿 is the set of virtual links

𝐶𝑛 Available capacity at PoP
𝑛 ∈ 𝑁 expressed in number of instances

𝐵𝑚𝑛 Bandwidth capacity of the physical link
connecting nodes 𝑚 and 𝑛

𝑏𝑖,𝑗 Bandwidth requirement of the virtual
link connecting instances 𝑖 and 𝑗

𝛿𝑖𝑚 Deployment costs per unit of time for
VNF instance 𝑖 into PoP 𝑚

Δ𝑚,𝑛 Bandwidth cost per bandwidth unit in
physical link (𝑚, 𝑛)

𝑓𝑖𝑚 Boolean constant set to 1 if VNF instance
𝑖 has to be embedded into node 𝑚

𝑠𝑖𝑗 Boolean constant set to 1 if there is
a synchronization between instances

𝑖 and 𝑗
𝑥𝑖𝑚 Boolean decision variable indicating

whether or not instance 𝑖 is embedded
into node 𝑚

𝑦𝑖𝑗,𝑚𝑛 Boolean decision variable indicating
whether virtual link (𝑖, 𝑗) is mapped

into physical link (𝑚, 𝑛)
ℂ Operational costs
𝕊 Synchronization costs

The physical infrastructure owned by the SFC provider 
is made from several PoPs that are geographically dis‑ 
tributed. The infrastructure is modeled by a graph 𝐺 = 
(𝑁, 𝑃 ) where 𝑁 = {0, 1, ..., |𝑁|} represents the set of 
PoPs and 𝑃 = {(𝑚, 𝑛) ∈ 
(𝑁 × 𝑁) | 𝑚 and 𝑛 are directly connected} denotes the 
set of physical links that connect the PoPs. Each PoP 𝑛 ∈ 
𝑁 contains an amount of physical resources 𝐶𝑛
expressed as the maximal number of t2.tiny instances 
that the PoP can host. Note that a t2.tiny instance 
contains 1 vCPU, 1 GiB and 1 GB of memory and disk, 
respectively. A physical link (𝑚, 𝑛) ∈ 𝑃 that connects the 
PoP 𝑚 with PoP 𝑛 has a bandwidth capacity 𝐵𝑚𝑛.
Furthermore, a service function chain is represented as a 
graph 𝑉 = (𝐼, 𝐿) where 𝐼 = {0, 1, ..., |𝐼|} is the set of 
virtual instances in the chain and 𝐿 is the set of virtual 
links connecting them.
Each VNF instance 𝑖 ∈ 𝐼 has a resource requirement of 
1 vCPU, 1 GiB of memory, and 1GB of storage. Each 
virtual link (𝑖, 𝑗) ∈ 𝐿 has bandwidth requirement 𝑏𝑖𝑗.  It 
is worth noting that, for simplicity, the endpoints of the 
chain (i.e., sources and destinations) are also considered 
instances with requested resources equal to zero. They 
are con‑ strained to be mapped onto particular physical 
PoPs that are provided in the VNF request.
Furthermore, we deϐine two decision variables. The ϐirst 
one is denoted as 𝑥𝑖𝑚 ∈ {0, 1} and indicates whether or 
not VNF instance 𝑖 is embedded into PoP 𝑚.  
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Fig. 10 – SFC embedding problem

The second decision variable is denoted as 𝑦𝑖𝑗,𝑚𝑛 ∈ 
{0, 1}.  If 𝑦𝑖𝑗,𝑚𝑛 = 1,  the virtual link (𝑖, 𝑗) uses the 
physical link 𝑚𝑛.  It is worth noting that a virtual link is 
embedded through a physical path (i.e, multiple 
connected physical links). Hence, several physical 
links could be used to embed a virtual link. 
In other words, if 𝑦𝑖𝑗,𝑚𝑛 = 1,  the 
physical link (𝑚, 𝑛) is part of the physical path used to 
embed the virtual link (𝑖, 𝑗).
• Objective function: The objective function when em‑
bedding an SFC request aims to minimize the operational
costs ℂ and synchronization cost of the embedded VNF
instances 𝕊. It can be expressed as:

𝐽 = min
(𝑥𝑖𝑚)𝑖∈𝐼,𝑚∈𝑁

(𝑦𝑖𝑗,𝑚𝑛)(𝑖,𝑗)∈𝐿,(𝑚,𝑛)∈𝑃

(ℂ + 𝕊) (1)

In the following, we provide more details on how to com‑
pute the operational and synchronization costs:
• Synchronization cost: The synchronization cost can be
expressed as follows:

𝕊 = ∑
(𝑖,𝑗)∈𝐿

∑
(𝑚,𝑛)∈𝑃

𝑦𝑖𝑗,𝑚𝑛𝑠𝑖𝑗 𝑏𝑖𝑗 Δ𝑚𝑛 (2)

where 𝑦𝑖𝑗,𝑚𝑛 indicates whether or not the physical link
(𝑚, 𝑛) is used for embedding the virtual link (𝑖, 𝑗). The
Boolean variable 𝑠𝑖𝑗 is equal to 1 if instances 𝑖 and 𝑗 im‑
plement the same VNF type and hence require synchro‑
nization among them to operate. In this case, there is a
synchronization cost computed as 𝑏𝑖𝑗 Δ𝑚𝑛, which is the
cost of using bandwidth needed to exchange synchroniza‑
tion data between 𝑖 and 𝑗.
• Instance and link operational costs: This is the cost
of running the VNF instances on the infrastructure and
the bandwidth consumed by the virtual links connecting
them. It can be expressed as follows:

ℂ = ∑
𝑚∈𝑀

∑
𝑖∈𝐼

𝑥𝑖𝑚 𝛿𝑖𝑚

+ ∑
(𝑖,𝑗)∈𝐿

∑
(𝑚,𝑛)∈𝑃

𝑦𝑖𝑗,𝑚𝑛 (1 − 𝑠𝑖𝑗) 𝑏𝑖𝑗 Δ𝑚,𝑛
(3)
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where 𝛿𝑖𝑚 is the deployment cost (expressed in dollars 
per unit of time) of VNF instance 𝑖 into PoP 𝑚.  It is 
worth noting that 𝛿𝑖𝑚 varies from one PoP to another as 
it depends on several factors including the electricity 
price in the PoP, the type of VNF, the license, and the 
operating system as suggested by the conducted Amazon 
EC2 study. The ϐirst term of the equation (Eq. (3)) 
represents the total cost of deploying the VNF instances. 
The second term of the operational costs is the total cost 
of bandwidth consumed by the virtual links. Δ𝑚,𝑛 
denotes the cost in dollars (per bandwidth unit and unit 
of time) for the physical link (𝑚, 𝑛).
The above objective function is subject to the following 
set of constraints:
• SFC endpoints embedding constraint: SFC endpoints
(the sources and the destinations) should be embedded
into speciϐic PoPs stated in the request. We deϐine the
Boolean variable 𝑓𝑖𝑚 (provided as an input to the ILP)
that is equal 1 when the instance 𝑖 is an endpoint that has
to be embedded in PoP 𝑚. The following equation cap‑
tures this constraint:

𝑥𝑖𝑚 ≥ 𝑓𝑖𝑚 ∀𝑚 ∈ 𝑁, ∀𝑖 ∈ 𝐼 (4)

Instance embedding constraint: This constraint 
ensures that each VNF instance 𝑖 is embedded once and 
only once. It can be expressed as:

∑
𝑚∈𝑁

𝑥𝑖𝑚 = 1 ∀𝑖 ∈ 𝐼 (5)

• Resource capacity constraint: This constraint en‑
sures that any hosting PoP has enough resources to host
the VNF instances.

∑
𝑖∈𝐼

𝑥𝑖𝑚 ≤ 𝐶𝑚 ∀𝑚 ∈ 𝑁 (6)

where 𝐶𝑚 represents the available capacity at PoP 𝑚.
• Bandwidth constraint: We must also ensure that the
bandwidth capacity required to embed all virtual links in
a physical link does not exceed its available bandwidth.
This can be expressed as follows:

∑
𝑖,𝑗∈𝐿

𝑦𝑖𝑗,𝑚𝑛 𝑏𝑖𝑗 ≤ 𝐵𝑚𝑛 ∀ (𝑚, 𝑛) ∈ 𝑃 (7)

• Flow conservation constraint: We must also ensure
that the incoming trafϐic to a physical node is equal to its
outgoing trafϐic unless this PoP is a source or a destina‑
tion. This constraint can be expressed as:

∑
(𝑛,𝑚)∈𝑃

∑
(𝑖,𝑗)∈𝐿

𝑦𝑖𝑗,𝑛𝑚 𝑏𝑖𝑗 − ∑
(𝑖,𝑗)∈𝐿

𝑥𝑗𝑚 𝑏𝑖𝑗

= ∑
(𝑚,𝑛)∈𝑃

∑
(𝑖,𝑗)∈𝐿

𝑦𝑖𝑗,𝑚𝑛 𝑏𝑖𝑗 − ∑
(𝑖,𝑗)∈𝐿

𝑥𝑖𝑚 𝑏𝑖𝑗 ∀ 𝑚 ∈ 𝑁

(8)

The service chain embedding problem is an NP‑hard
problem as it generalizes bin‑packing problem; therefore,

ϐinding an optimal solution is not viable due to the large 
number of requests processed in the production envi-
ronment. Hence, we propose two heuristics in the 
following section to solve this problem and explore 
potential solutions.

6. MAPPING PHASE ‑ PROPOSED
SOLUTIONS

In this section, we address the NP‑hardness of the pro-
blem by putting forward two heuristics solutions, a 
baseline algorithm and a more sophisticated algorithm 
called SFC decomposition‑based provisioning (SPIN). 
Both solutions assume multiple sources and a single 
destination to simplify the problem and aim at 
minimizing SFC provider’s operational and 
synchronization costs while ensuring that accepted 
requests satisfy their end‑to‑end delay requirement. In 
the following, we provide more details about the two 
algorithms.
6.1 Solution 1: Baseline algorithm
The baseline algorithm is an intuitive algorithm that aims 
to satisfy the requirements of the SFC in terms of re‑ 
sources (e.g., CPU, memory, bandwidth) and end‑to‑end 
delay while minimizing instance costs. The algorithm 
proceeds with the following steps. The ϐirst step is to 
estimate the number of instances and virtual links 
required for the whole chain. The number of instances is 
simply equal to the number of t2.micro instances needed 
to process the arriving packet rate. The processing 
capacity of a t2.micro instance is estimated using the 
technique described in Section 4 (e.g., Fig. 7 and Fig. 8). 
Once the number of instances for each VNF is estimated, 
the virtual topology is built. The second step is to allocate 
resources for this virtual topology as shown in Algorithm 
1. For each source instance of the virtual topology, we
start by embedding the virtual nodes (i.e., instances)
connected to it (i.e., neighbors). For each of these
instances, we recursively embed its neighbors by calling
recursively the function 𝐸𝑚𝑏𝑒𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑖)
(Algorithm 2). The complexity of this recursive algorithm
is 𝑂(|𝐼|2) where |𝐼| is the number of virtual instances in
the virtual topology.

Algorithm 1 Baseline
Input: Virtual topology V= (I,L)
Input: Placement constraint (𝑓𝑖𝑚)𝑖∈𝐼,𝑚∈𝑁
Input: Virtual Topology Destination 𝑑 ∈ 𝑁
Output: Boolean Embedded
for all 𝑖 ∈ 𝐼 such that 𝑖 is a source (i.e.,∑𝑚∈𝑁 𝑓𝑖𝑚 = 1)
do

𝑠 ⇐ the hosting physical node of source instance 𝑖
(i.e.,𝑓𝑖𝑠 = 1)
𝑥𝑖𝑠 ⇐ 1
Return EmbedNeighbors(i)

end for
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Algorithm 2 EmbedNeighbors(instance i)
𝑠 ⇐ Physical node hosting instance 𝑖
for all 𝑗 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑖) (Embedding instances con‑
nected to 𝑖) do
if 𝑗 is not embedded then
Find𝑚 such that𝑚 ∈ 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(𝑠, 𝑑)&𝐶𝑚 ≥
1 & 𝑃 𝑎𝑡ℎ𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝑠, 𝑚) ≥ 𝑏𝑖,𝑗
if 𝑚 exists then

𝑥𝑗𝑚 ⇐ 1 (Embed 𝑗 in 𝑚)
𝑦𝑖𝑗,𝑠𝑚 ⇐ 1 (Embed virtual link (𝑖, 𝑗) in physical
path (𝑠, 𝑚))
𝐶𝑚 ⇐ 𝐶𝑚 − 1 (Update the node capacity)

else
Return False (Instance 𝑗 is not embeddable)

end if
end if

end for
for all 𝑗 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑠) do
if 𝑗 is not embedded then
Return EmbedNeighbors(𝑗) (Embedding  
instances connected to 𝑗)

end if
end for
Return True (all instances were embedded)

6.2 Solution 2: SFC decomposition‑based 
provisioning (SPIN) algorithm

This algorithm is called SFC decomposition‑based pro-
visioning (SPIN) and proceeds into four phases 
(Algorithm 3). In the ϐirst phase, we estimate the number 
of instances for each VNF and estimate the number of 
virtual links just like the way it is done by the baseline 
algorithm. The second phase is the decomposition phase 
where the virtual topology is divided into subchains 
where each subchain is a chain of VNF instances that 
contains a single instance of each VNF type and connects 
one source to one destination.
The third phase is the subchain embedding phase (Algo‑ 
rithm 4) where each subchain is embedded in the 
shortest path between the source and destination of the 
subchain denoted as 𝑃 . The path 𝑃 is selected as the one 
with the lowest cost and that has a delay satisfying the 
e2e delay requirement of the chain and has enough 
resources to em‑ bed the subchain (𝐹 𝑟𝑒𝑒𝐼𝑛𝑠𝑡(𝑃 ) is the 
number of free in‑ stances in the path 𝑃 and 
𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝑆𝐶𝑘) is the number of instances 
needed by subchain 𝑆𝐶𝑘) . The vir‑ tual links intended 
to carry the synchronization trafϐic are then 
provisioned between the same‑type VNF instances 
(Function 𝐸𝑚𝑏𝑒𝑑𝑆𝑦𝑛𝑐ℎ𝑉 𝑖𝑟𝑡𝑢𝑎𝑙𝐿𝑖𝑛𝑘𝑠(𝑉 )) .
The last phase is the optimization phase 5 that consists of 
selecting each instance and explores the possibility of mi‑ 
grating it in one of the physical nodes that are neighboring 
its current physical location. The goal is to further reduce 
operational and synchronization costs (Eq. (1)) while 
always ensuring that the requested bandwidth and e2e 
delay is satisϐied.

The complexity of SPIN algorithm is𝑂(𝐾)where𝐾 is the
number of subchains. The complexity of the optimiza‑
tion phase is 𝑂(|𝑉 |) where 𝑉 is the number of virtual in‑
stances in the virtual topology.

Algorithm 3 SPIN
Input: Virtual topology 𝑉 = (𝐼, 𝐿)
Input: Placement constraint (𝑓𝑖𝑚)𝑖∈𝐼,𝑚∈𝑁
Input: Virtual Topology Destination 𝑑 ∈ 𝑁
Output: Boolean 𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑, 𝑉 𝐿𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑
Decompose 𝑉 into 𝐾 subchains (𝑆𝐶𝑘)(𝑘=1..𝐾)
repeat

𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑 ⇐ 𝐸𝑚𝑏𝑒𝑑𝑆𝑢𝑏𝑐ℎ𝑎𝑖𝑛(𝑆𝐶𝑘)
𝑘 ⇐ 𝑘 + 1

until (𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒 ‖ 𝑘 = 𝐾 + 1)
𝑉 𝐿𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑 ⇐ 𝐸𝑚𝑏𝑒𝑑𝑆𝑦𝑛𝑐ℎ𝑉 𝑖𝑟𝑡𝑢𝑎𝑙𝐿𝑖𝑛𝑘𝑠(𝑉 )
if (𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑 & 𝑉 𝐿𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑)=True (Embedding is
successful) then
Optimization(𝑉 ) (optimization phase)
Return 𝑇 𝑟𝑢𝑒

else
Return 𝐹𝑎𝑙𝑠𝑒

end if

Algorithm 4 EmbedSubchain(subchain 𝑆𝐶𝑘)
𝑃 ⇐ Find path with minimal cost such that
𝑑𝑒𝑙𝑎𝑦(𝑃 ) ≤ 𝑑𝑒𝑙𝑎𝑦(𝑆𝐶𝑘 & 𝐹𝑟𝑒𝑒𝐼𝑛𝑠𝑡(𝑃 ) ≤
𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝑆𝐶𝑘) & 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝑃) ≥
𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝑆𝐶𝑘)
if 𝑃 exists then
Embed 𝑆𝐶𝑘 in 𝑃
Return True (𝑆𝐶𝑘 is successfully embedded)

else
Return False (𝑆𝐶𝑘 is not embeddable)

end if

7. PERFORMANCE EVALUATION
7.1 Simulation setup
In order to evaluate the performance of the proposed al‑ 
gorithms, we developed a C‑based simulator that simu‑ 
lates the physical topology and carries out the 
translation and mapping of the SFC requests. Each 
simulation assumes the arrival of requests during two 
months.
The physical infrastructure is assumed to contain 
25 nodes with each node having a hosting capacity 
randomly set between 50 and 100 t2.micro instances. 
The nodes are connected with 10 Gbps links with 
propagation delays randomly set between 10 and 50 ms.
The SFCs were generated randomly with an average 
arrival rate set between 0.1 and 0.15 rps following a 
Poisson distribution. The average lifetime of the 
requests follows an exponential distribution with an 
average of 1 hour. The average number of VNFs per 
SFC is 10 with an average number of sources around 7. 
The demand in terms of packet arrival for each SFC is 
generated randomly between 2000 and 120 000 packets 
per seconds.
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Algorithm 5 Optimization(VirtualTopology 𝑉 )
for all 𝑖 ∈ 𝑉 (Parse all instances) do

𝑛 ⇐ Physical node hosting 𝑖
for all 𝑚 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑛) (Explore migrating 𝑖 to
neighboring nodes) do

𝐶𝑜𝑠𝑡 ⇐ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑉 𝐶𝑜𝑠𝑡(𝑉 ) (Compute Embed‑
ding Cost Eq. (1))
𝑁𝑒𝑤𝐶𝑜𝑠𝑡 ⇐ 𝑉 𝐶𝑜𝑠𝑡(𝑉 , 𝑖, 𝑚) (Compute cost as‑
suming 𝑖 is hosted in 𝑚)
if 𝐶ℎ𝑒𝑐𝑘𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠(𝑉 ) & 𝑁𝑒𝑤𝐶𝑜𝑠𝑡 < 𝐶𝑜𝑠𝑡 (all
resource constraints should be satisϐied) then
Migrate(𝑖, 𝑚) (migrate instance 𝑖 to physical
node 𝑚

end if
end for

end for

The end‑to‑end delay requirement of an SFC request is 
computed as follows: max𝑠,𝑑(𝑡𝑠,𝑑)× 130% where 𝑡𝑠,𝑑 is 
the path latency between a source 𝑠 and a destination 𝑑 
where 𝑠 and 𝑑 are a source and a destination of the SFC 
request. This ensures that, theoretically, the end‑to‑end 
delay requirement between the sources of the SFC and its 
destination could be satisϐied as it is 30% higher than any 
path between the sources and the destinations of the 
request.
We also assume that we have nine types of VNFs. 
The packet processing capacity of each type of VNF is 
generated randomly between 2000 to 12000 packets 
per second (pps) when running on a t2.micro‑instance. 
The synchronization cost among same‑type instances is 
0.01$/hour multiplied by the type of the instance. We 
used the Amazon EC2 instance prices as instance costs. 
The instance revenue as the cost of the instance 
plus 0.1$/hour. this means that there is 0.1$/hour 
proϐit for the SFC provider each instance. 
In the next subsection, we present the results 
generated for the two proposed algorithms under the 
abovedescribed simulation setup.

7.2 Simulation results
We ϐirst compare the performance of the baseline and 
SPIN algorithms for an arrival rate 0.03 requests per  
second (rps).
As shown in ϐigures 11 and 12, SPIN maps 25% more re‑ 
quests and leads to around 37% higher CPU utilization in 
the whole infrastructure.
To further assess the performance of the two proposed 
greedy algorithms for different scenarios, we computed 
the following metrics while varying the SFC requests 
arriving rate:

• Acceptance ratio: This is computed as the ratio of
the number of accepted SFCs to the total number of
received SFC requests. Accepted requests refers to
the ones for which the algorithm succeeded in

Fig. 11 – Number of mapped requests over time (request arrival rate:
0.03 rps)

Fig. 12 – Infrastructure CPU utilization over time (request arrival
rate: 0.03 rps)

finding enough resources for the SFC while
satisfying its e2e delay requirements.

• Infrastructure utilization: This is the amount of used
CPU resource divided by the total available resource
(CPU).

• Cumulative proϐit: This is computed as the revenue
of the SFC provider minus its operational costs in‑
cluding the costs of the instance, bandwidth, and syn‑
chronization. The cumulative proϐit is computed for
the duration of the experiment.

• Average end‑to‑end (e2e) delay: This is the average
end‑to‑end delay between the sources and destina‑
tions of the SFC requests that were successfully em‑
bedded throughout the experiment.

In the following paragraphs, we provide and discuss the 
obtained results for each metric.
The ϐirst considered metric is the acceptance ratio and is 
depicted in Fig. 13. The ϐigure shows that, even for a low 
request arrival rate, the baseline fails to accommodate 
50% of the requests whereas SPIN succeeds in accommo‑ 
dating up to 65% of the requests. This means that even 
if the infrastructure’s utilization is low and resources are 
available (Fig. 14), the baseline, unlike SPIN, is not able 
to efϐiciently leverage such available resources. As the ar‑ 
rival rate is increased, the acceptance ratio goes down for 
both algorithms as the infrastructure becomes saturated 
as Fig. 14. However, SPIN still outperforms the baseline 
in terms of acceptance ratio.
Furthermore, as illustrated in Fig. 14, SPIN accepts up to 
25% more requests for low arrival rates, showing that it 
allows to efϐiciently leverage the infrastructure resources
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Fig. 13 – Acceptance ratio

Fig. 14 – Infrastructure utilization

compared to the baseline. It is worth noting that for high 
arrival rates SPIN succeeds to reach 95% utilization com‑ 
pared to 80% utilization for the baseline.
We also study cumulative proϐit generated by each of the 
two algorithms (Fig. 15). The ϐigure shows that the proϐit 
generated by SPIN exceeds by up to 30% the one 
generated by the baseline, especially for low arrival 
rates. Finally, Fig. 16 shows the average end‑to‑end 
delay per request for the accepted SFCs. It shows that 
during low utilization, SPIN reduces by up to 35% e2e 
delay and by up to 25% the e2e delay for high arrival 
rates. This shows that SPIN does not only satisfy the 
requests’ requirements in terms of e2e delay but further 
reduces it compared to the baseline.

8. CONCLUSION AND FUTURE DIRECTIONS
Selecting the right placement for the VNF, the number and 
the type of the VM instance is a major challenge for cloud 
providers as it has a paramount impact not only on perfor‑ 
mance but also on cost. In this paper, we started by 
studying these trade‑offs using general‑purpose 
Amazon EC2 instances. For instance, we found that 
micro‑instances (small instances) are more 
cost‑effective. We also ϐind that the performance of a 
virtual machine is not always proportional to the 
amount of resources that are allo‑ cated. Hence, we 
found that, provisioning several small instances, when 
the function could be distributed, would provide better 
performance than big instances with a smaller cost.

Fig. 15 – Cumulative proϐit

Fig. 16 – Average e2e delay per request

Furthermore, we investigated pro it-driven resource al-
location by mathematically modeling the problem as an 
integer linear program and proposing two heuristics, 
a baseline and a more sophisticated algorithm dubbed 
SPIN, which allows to improve the performance of the 
mapping with more accepted chains and hence to 
increase proϐits.
This work opens the door for more research opportuni‑ 
ties. For instance, it would be interesting to further de‑ 
velop VNF benchmarks with the development of more 
sophisticated procedures to benchmark VNFs depending 
on the nature of the implemented network function. It 
is also of utmost importance to devise resource 
consump‑ tion models for speciϐic VNFs taking into 
consideration the VNF characteristics and the hosting. 
Another research avenue is to assess synchronization 
costs among same‑ instance VNFs depending on the type 
of the function and the instance locations.
More work should also be done on the management of 
VNFs by developing platform‑aware resource allocation 
as the performance of a virtual machine signiϐicantly 
depends on the hosting platform (dedicated hardware 
versus software, server model, type and amount of re‑ 
sources).
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