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Abstract – The cyber–physical convergence is opening upnewbusiness opportunities for industrial operators. The need
for deep integration of the cyber and the physical worlds establishes a rich business agenda towards consolidating new
system and network engineering approaches. This revolution would not be possible without the rich and heterogeneous
sources of data, as well as the ability of their intelligent exploitation, mainly due to the fact that data will serve as a funda‑
mental resource to promote Industry 4.0. One of themost fruitful research andpractice areas emerging from this data‑rich,
cyber‑physical, smart factory environment is the data‑driven process monitoring ield, which applies machine learning
methodologies to enable predictive maintenance applications. In this paper, we examine popular time series forecasting
techniques as well as supervised machine learning algorithms in the applied context of Industry 4.0, by transforming and
preprocessing the historical industrial dataset of a packingmachine’s operational state recordings (real data coming from
the production line of a manufacturing plant from the food and beverage domain). In our methodology, we use only a
single signal concerning the machine’s operational status to make our predictions, without considering other operational
variables or fault and warning signals, hence its characterization as “agnostic”. In this respect, the results demonstrate
that the adopted methods achieve a quite promising performance on three targeted use cases.
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1. INTRODUCTION

Cyber‑physical systems are an inevitable outcome of 
the fourth industrial revolution (also coined as Industry 
4.0). Embedded computing, Internet communication, and 
ubiquitous control have now become fundamental 
components of modern engineered products and their 
manufacturing processes [1]. The cyber–physical 
convergence is opening up new business opportunities 
for industrial operators. The vision of a virtual world, 
that is overlaid on the physical world to continuously 
monitor it and take intelligent actions to adapt the cyber 
world to industrial needs, is part of an emerging trend of 
in pervasive and mo‑ bile computing [2]. The need for 
deep integration of those interrelated worlds opens up a 
rich business agenda to‑ wards establishing a new 
system and network engineering that is both physical 
and virtual [3]. Consequently, industrial cyber‑physical 
systems employment is expected to revolutionize the 
way enterprises conduct their business from a holistic 
viewpoint, i.e., from shop‑ loor to business 
interactions, from suppliers to consumers, and from 
design to testing across the entire product and service 
lifecycle [4].

This revolution would not be possible without the rich 
and heterogeneous sources of data, as well as the ability of 
their intelligent exploitation; this is mainly due to the fact 
that data will serve as a fundamental resource to promote 
Industry 4.0 from machine automation to information 
extraction and then to knowledge discovery [5]. Smart 

factories already operate using sophisticated sensors, 
actuators and communication technologies. Internet 
of Things (IoT) devices are not seen any more as 
“dumb things” generating individually a few bytes, but 
as industrial devices, generating data of variable size 
and signi i‑ cant importance, still operated via batteries to 
make them more lexible and cheap to assemble, 
install and manage [6]. Smart factories perform 
adaptive responses by continuously monitoring and 
extracting information from physical objects (e.g., 
machines, work pieces, robotic elements, etc.) and 
production processes [7]. In this setting, large amounts 
of data are generated and collected, requiring advanced 
big data processing methodologies to build an integrated 
environment in which the production processes can be 
mirrored transparently and administrated in a more 
ef icient way [8]. One of the most fruitful re‑ search 
and practice areas emerging from this data‑rich, 
cyber‑physical, smart factory environment is the data‑ 
driven process monitoring ield, which applies 
multivariate statistical methods to enable prognostics, 
diagnostics and fault detection for industrial process 
operations and production results [9]. By applying big 
data analytics, it is possible to ind interpretive results for 
strategic decision‑ making, providing novel insights 
which lead to signi icant production improvements, such 
as, maintenance cost decrease, early fault detection, 
machine stoppage prediction, spare parts inventory 
reduction, increased production, improvement in 
operator safety and repair veri ication [10].
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Novel developments in specialized ields of information 
and communication technologies and availability of easy‑ 
to‑use, often freely available, software tools and off‑the‑ 
shelf hardware components, offer great potential to trans‑ 
form the smart factory domain and their impact on the 
smart factory data pools effectively. One of the most 
trending developments is in the area of Machine Learning 
(ML). The utilization of ML is motivated by its enhanced 
capabilities to spare resources, machining time and 
energy, and its improved operational capacity where 
traditional methods have reached their limits [11]. 
However, the ield of ML is highly diverse and many 
different algorithms, theories, and methods are available. 
For many industrial operators, this represents a barrier 
regarding the adoption of powerful ML tools and thus 
may block the us‑ age of the huge amounts of data which 
are more and more becoming available [12]. Additionally, 
industrial technology providers have chosen to deploy 
standalone systems which act as black boxes from 
which, in most cases, vital data is not possible to be 
acquired. Furthermore, it is also worth noting that, in 
many cases, the lack of quali ied infrastructure, due to 
cost‑related reasons such as the high commission fees of 
third party providers, is also a common problem.

Based on the aforementioned assumptions, it is evident 
that there are large and complex production lines which 
suffer from the absence of the necessary, sophisticated 
prediction infrastructure and, therefore, from the 
inability to receive the corresponding data and maintain 
a rich data pool. In this paper, we argue that even those 
can become able to establish a reliable and ef icient 
prediction ability, in order to activate the required 
Predictive Maintenance (PdM) mechanisms. Speci ically, 
we aim to predict a packing machine’s stoppages on the 
following three targeted use cases:

1. Forecasting of the total daily duration of stoppages in
the near future

2. Prediction of whether the packing machine will be
stopped for more than 10 minutes in the next hour
(later mentioned as “Minor Stoppage Duration Ex‑
ceeding” case)

3. Prediction of whether a speci ic type of stoppage
(breakdown event) will occur in the next hour (later
mentioned as “Breakdown Occurrence” case)

In order to apply our proposed methodologies for these
cases, we are taking advantage of univariate time se‑
ries data coming from a production line machine of a
largemanufacturing plant from the food and beverage do‑
main1. We aimat using the entire behavior of themachine
as a single piece of data, or, in other words, we investigate
whether a sequence of interruptions of a speci ic duration
1Anon‑disclosure agreement prevents us fromprovidingmore informa‑
tion regarding the company, the plant, the equipment and the related
data.

can potentially lead to the production line’s stoppage in 
the near future.

Speci ically, we irst transform the collected raw dataset 
with several essential and required data preprocessing 
procedures and then we leverage this transformed time 
series data with two core approaches. The irst one, 
consists of univariate time series forecasting algorithms 
(Prophet, ARIMA, HWAMS, TBAT, N‑BEATS) that are em‑ 
ployed for forecasting the irst aforementioned use case. 
We also produce forecasting ensembles of these models 
to examine if we can achieve higher accuracy using 
multiple combinations of individual models. The second 
approach leverages machine learning algorithms to 
model our time series data, reframing the latter into a 
feature‑ based dataset. We utilize tree‑based machine 
learning regression algorithms (decision tree, XGBoost 
regressor, extra‑trees regressor, AdaBoost, gradient 
boosting regressor), both individually and as ensembles, 
in the same use case we apply the time series 
forecasting algorithms and compare their performance 
and results. Lastly, we investigate the next two 
aforementioned use cases as bi‑ nary classi ication 
problems, using the random forest algorithm to make 
our predictions.

To make this methodology clear, we offer a high‑level 
visual representation of our overall work low in Fig. 1.

2. RELATED WORK
Recently, ML services in the context of Industry 4.0 and 
PdM are trending in the ICT and manufacturing ields. 
More and more applied research is conducted to come 
up with reliable and insightful predictive analytics work‑ 
lows and solutions which can be adopted by industrial 
manufacturing companies. Here, we present some 
indicative research work which can be considered as 
the most relevant to our research. In order to narrow 
down the presentation, we focus on approaches which 
use intelligent techniques and take advantage of real 
data coming from actual industrial plants.

The authors of [13], present a data‑driven approach for 
estimating the probability of machine breakdown 
during speci ied time interval in the future, in the 
context of discrete parts manufacturing systems. 
Speci ically, they utilize data such as historical log 
messages, event logs and operational information from 
milling machines in order to estimate the Remaining 
Useful Life (RUL) by using the random forest machine 
learning algorithm. Results demonstrate that machine 
failures can be reliably predicted up to 168 hours in 
advance and that feature selection algorithms highly 
impact log‑based Predictive Maintenance (PdM).

Research work [14] studies a predictive maintenance 
application in the white goods/home appliances sector. 
The use case concerns a single production line that 
produces drums for dryers and the objective is to predict 
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Fig. 1 – Methodology work low

if the factory is going to have a breakdown on the next 
day, using legacy and operational data. Several machine 
learning algorithms are employed for modeling this 
binary classi ication problem such as Support Vector 
Machine (SVM), the multinomial naıv̈e Bayes classi ier, 
k‑NN, decision tree, random forest, and the Multilayer 
Perceptron (MLP), from which decision tree reaches the 
highest accuracy score. Another interesting inding is the 
usage of an additional custom metadata feature in the 
modeling, calculated in the original dataset, that helped 
to increase the accuracy from 77.7% to the inal and best 
score of 95%.

In [15], the authors develop a Bayesian network for fault 
assessment of an electrical motor. Their proposed model 
is able to calculate through inference the probability of 
rotor fault of an induction motor and de ine the weakest 
branch in the structure of the Bayesian network that leads 
to failure by determining the probabilities of 
intermediate events. Their methodology is validated in 
a motor of a real industrial site, using its history ile and 
the results of conducted diagnostics to determine the a 
priori probabilities of several potential fault causes and 
thus enabling the Bayesian network to de ine the most 
likely faults.

The authors of [16] examine a predictive maintenance 
use case, proposing a method for early detection of faults 
in boiler feed pumps. In particular, they utilize existing 
event data and measurements acquired from SCADA 
systems of a coal ired power plant. The aim is to 
produce a model that can detect deviations from the 
normal operation state based on regression and to check 

which events or failures can be detected by it. Their 
proposed algorithm consists of a bag of regression 
models and the experimental results indicate that it 
outperforms decision trees and Multilayer Perceptron 
(MLP) classi ication algorithms.

In research work [17], a data‑driven soft sensing method‑ 
ology is presented for monitoring the quality of an indus‑ 
trial pasteurization process. The methodology is based 
on machine learning and benchmarks various algorithms 
such as decision tree, ridge regression, extra trees for es‑ 
timating the temperature of products during the pasteur‑ 
ization process. The work studies a real beer pasteuriza‑ 
tion process in collaboration with Heineken’s plant in Pa‑ 
tras, Greece and the results demonstrate notable perfor‑ 
mance in temperature prediction accuracy, with an aver‑ 
age Root Mean Square Error (RMSE) of 1.85°C in the test 
sets.

The authors of [18] investigate the machinery involved in 
the production of high‑quality steel sheets by predicting 
the degradation of the drums within the involved heat‑ 
ing coilers. They incorporate valuable sources of infor‑ 
mation like expert knowledge, con iguration parameters 
and real‑time information coming from sensors mounted 
on the machines, in order to develop a predictive model 
based on a Discrete Bayesian Filter (DBF) that estimates 
and predicts the gradual degradation of such machin‑ 
ery. The DBF model reaches high success, compared with 
knowledge‑based and classic machine learning models 
and appears to be robust against noisy and luctuating
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data and integrate well expert knowledge with 
production data.

In [19], authors propose a data‑driven algorithm to pre‑ 
dict throughput bottlenecks in a real‑world production 
system from an automotive production line. They employ 
an Auto‑Regressive Integrated Moving Average (ARIMA) 
method to predict the active run periods of the machine 
and integrate it with a data‑driven active period technique 
to form a binary classi ication bottleneck prediction prob‑ 
lem. Authors of [20] present a methodology that utilizes 
process sensor data from operation periods to forecast 
possible equipment stoppages (or faults) of a speci ied 
industrial equipment, which is used in the anode pro‑ 
duction process for the aluminum industry. The classi‑ 
iers employed were the decision tree, random forest, the 
Gaussian/Bernoulli naive Bayes and multilayer percep‑ 
tron including the logistic regression. The visualization 
of the features patterns and the simulation results show 
that a warning timeframe of around 5‑10 minutes before 
the incident occurs is a feasible goal.

Contribution and motivation of our work Different to 
the aforementioned research work, and as an extended 
version of our previous work in [21], this paper includes 
the following novelties:

• Investigation of a packing machine’s stoppages in a
production line of a manufacturing plant from the
food and beverage domain.

• Complex utilization of a single production scale ma‑
chine signal in order to create a dataset that will al‑
low the modeling of the machine’s stoppage behav‑
ior. The machine is located at the inal stages of the
packing manufacturing process and there are multi‑
ple machinery, human and material reasons and is‑
sues that appear earlier in the process and cause it to
stop. However, we are not able to monitor these and
we onlymonitor the signal describing its operational
state, hence the characterization of ourmethodology
as “agnostic”, which contradicts approaches that ap‑
ply ML techniques and require large pools of data
coming from different sources.

• We not only attempt to investigate interesting, to
industrial operators and the general literature, use
cases but we also aim at testing the potential self‑
forecastability of this univariate time series, by pre‑
dicting the machine’s behavior based on the past
measurements of its operational state.

• Extraction of custom metadata features from the
original signal data in order to enable the employ‑
ment of machine learning classi ication and regres‑
sion algorithms.

• Comparison of traditional forecasting and machine
learning regression models, as well as their gener‑

ated ensembles, in the applied context of Industry
4.0.

• The generated ensembles are proven to produce
more accurate forecasts than simple, naive models.

The use cases investigated in this work are arguably very
interesting, as the packing machine is considered to be
the bottleneck of the production line. In this way, a po‑
tential successful predictivemodeling can give shop‑ loor
operators the opportunity to take proactive actions and
scheduling of the production line, resulting in great cost
reduction and higher plant ef iciency and productivity.

3. DATA ANALYSIS AND PREPROCESSING
In this section we describe how the raw data is collected,
analysed and transformed in order to create ameaningful
data representation for our modeling approaches. All of
our proposed steps below are implemented using Python
and Pandas, the powerful data analysis library [22].

3.1 Data collection and outline
As we have already mentioned, our factory application
is related to the food and beverages sector. An IoT con‑
troller is installed to receive digital signals regarding the
packing machine running state (RUN and STOP states) of
the production line. In particular, the controller is a Rasp‑
berry Pi 3 Model B that is connected to the output of a
Siemens SIMATIC S7‑300 Programmable Logic Controller
(PLC) and receives and stores the data locally for further
analysis. Data acquisition is implemented in a clear and
transparent way without interfering in any way to the
process, which may cause pro it loss. More signals and
information require great effort, as data is gathered in dif‑
ferent data storage modules, which in many cases con‑
sider ”black box” systems, the topology does not allow an
easy wired data transfer, and current infrastructure does
not offer many options on data transmission. In addition,
the presence of many metal surfaces, motors and invert‑
ers cause a lot of noise and prevents the use of wireless
communications, which in practice appear to have low re‑
liability. Thus, working with the current dataset was our
only option.

The dataset consists of an irregular event‑based time se‑
ries, containing the stoppages and running states of an
industrial packing machine which alternate at arbitrary
times and as a result the spacing of the observation times
is not constant. It is collected in a total period of one
year, from October 2018 to October 2019 and contains
73576 entries from which 36775 are stoppages. Each
time the machine’s operation state changes either from
RUN to STOP and vice versa, it is logged as an event with
three columns:

• The timestamp in which the state changed.
• The binary value of the machine’s state (1 for RUN
and 0 for STOP).
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• The duration of the previous state in seconds by cal‑
culating their timestamp difference.

Table 1 re lects a short snapshot of the raw data.
Table 1 – Example of the collected raw data

Timestamp State Duration
2019‑05‑30 14:44:09.298 1 2.141
2019‑05‑30 14:44:12.866 0 3.567
2019‑05‑30 14:44:24.994 1 12.128
2019‑05‑30 14:44:30.127 0 5.133
2019‑05‑30 14:45:15.596 1 45.469

It is also worth mentioning that industrial operators 
further discriminate the stoppages based on their 
duration, resulting in three stoppage categories:

• Minor stoppages, those that last between 10 seconds
and 5 minutes.

• Breakdown stoppages, those that last between 5 and
40 minutes.

• Major stoppages, those that last more than 40 min‑
utes.

In table 2 and 3, the packing machine’s daily operational
RUN time statistics in hour scale and count of stoppages
per category are presented respectively for the time pe‑
riod of October 2018 to October 2019.

Table 2 – Daily RUN time statistics in hour scale

Metric Value
min 2.1
max 20

Daily Mean 14
Daily Median 14.5

Daily St.Deviation 3.5

Table 3 – Machine’s stoppages count statistics

Count Value
Daily Mean (all categories) 180

Minor 32441
Breakdown 2545

Major 289

3.2 Dataset cleaning
The irst step of the data preparation process involves the
application of some core preprocessing steps in order to
clean up the data from outliers and noisy, inconsistent in‑
formation that can decrease the predictive performance
of the models.
First of all, a small number of “duplicates” (consecutive
rows with the same value, either 1 or 0) is removed from
the dataset as it is important to have strictly alternating
states. Afterwards, we need to assign the duration of each
event in its own row. So, based on the aforementioned

raw format, a shifting operation is applied in the duration 
column in order to set for each row the duration of it’s 
next row. A third step is to tidy up the data based on the 
normal operation days and hours of the machine (and the 
whole production line in general). Any events that might 
have happened outside these (e.g after Saturday evenings, 
before the irst shift of Mondays) are considered as special 
events (e.g for testing or maintenance purposes) and they 
are removed.

3.3 Feature engineering
This is the most important step prior to applying our 
proposed modeling approaches. Section 3.3.1 describes 
the core methodology to create a meaningful dataset. 
This dataset is used to model univariate time series 
forecast‑ ing problems, as presented in Section 4.1. In 
Section 3.3.2 we build upon this dataset and extract 
additional features to be used in our machine learning 
regression and classi‑ ication approaches.

3.3.1 Basic data preparation
It is evident that the described dataset in its raw format 
is not capable of providing useful information as input 
to a prediction model. Therefore, following the cleaning 
and preprocessing steps it is essential to add more 
representative information about the machine’s 
functional patterns and we accomplish this by extracting 
features from the same data we have.
One common operation is to “resample” (group) the data 
in different time intervals each time (e.g by 5, 10, 15, 
30 minutes, hourly or daily resampling) and calculate ag‑ 
gregation and statistical features such as the sum, mean, 
standard deviation of the durations or the count of the 
stoppage and running events in each interval.
It is worth mentioning that this resampling procedure 
requires additional preparation of the aforementioned 
dataset in order to calculate accurately the above features. 
As an example, assuming the resampling by 5 minutes, an 
interval 09:05‑09:10 and a stoppage occurring at 09:09 
until 09:15 (6 minutes duration), the event must be split 
into two events, one occurring at 09:09 with a duration 
of 1 minute and one occurring at 09:10 with a duration of 
5 minutes. In this way, the initial information of the 
duration is not altered but it is just distributed correctly 
between the intervals 09:05‑09:10 and 09:10‑09:15 for 
the feature calculations. In Fig. 2, a visual representation 
of this procedure is presented, while Table 4 depicts a 
dataset example concerning the total duration (in 
seconds) and count of stoppages per hour.

3.3.2 Feature extraction
Supervised machine learning algorithms like the ones we 
use in our experiments depend on meaningful features, in 
order to correlate and map the input data with the output
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Fig. 2 – Split resampling representation

Table 4 – Example of an hourly resampled dataset of stoppages

Timestamp Sum Count
2019‑05‑30 14:00:00 1176.647 14
2019‑05‑30 15:00:00 1133.857 23
2019‑05‑30 16:00:00 44.975 2
2019‑05‑30 17:00:00 818.693 7
2019‑05‑30 18:00:00 298.273 5

class of interest. The relevancy of features with the class
to be predicted is a factor of high importance for the suc‑
cessful modeling and prediction performance of the al‑
gorithms. In our case, we generate a rich feature set by
adding various features based on the process described
in Section 3.3.1, and the knowledge of the industrial op‑
erators, reaching into a inal number of 115 features.
The core feature list consists of the total duration (sum)
and the number (count) of the occurred stoppages and
run events in a given interval. Speci ically, concerning the
stoppages, we calculate sum and count features for each
aforementioned stoppage category. Some performance
indicators can be also synthesized based on Minor stop‑
pages as they are themost frequent type of stoppages and
arguably the most important for analysing the machine’s
behavior. For example,Mean Time Between Stops (MTBS)
andMeanTimeBetweenRuns (MTBR), give an intuitive re‑
lection on how frequently do stoppages and run events
respectively occur, during the speci ied interval, and are
calculated as follows :

𝑀𝑇 𝐵𝑆 = 𝑠𝑢𝑚(𝑟𝑢𝑛)
𝑐𝑜𝑢𝑛𝑡(𝑠𝑡𝑜𝑝𝑠) (1)

𝑀𝑇 𝐵𝑅 = 𝑠𝑢𝑚(𝑠𝑡𝑜𝑝)
𝑐𝑜𝑢𝑛𝑡(𝑟𝑢𝑛𝑠) (2)

Furthermore, based on the feature list above (sum and
count of [minor_stop, breakdown_stop, major_stop], sum
and count of runs, MTBS, MTBR), we extract two distinct
feature categories which are calculated for each feature
of the former. The irst one, consists of the so‑called lag
features, which are variables containing values fromprior

time intervals and particularly, our lags range from 1 to 5
prior time steps. For example, assuming an hourly input
window interval and a speci ic row in the dataset corre‑
sponding to the data for the input interval between09:00‑
10:00, count_stop represents the count of stops of that
hour and count_stop_t_1, count_stop_t_2 the count of stops
occurred in the intervals 08:00‑09:00 and 07:00‑08:00,
respectively. The second category is about rolling statis‑
tics features, where we calculate the moving arithmetic
mean and standard deviation of the core features with
their lag values.

At last, we also create the time_since_[major_stop, break‑
down_stop] which is the time elapsed (in minutes) from
the last occurrence of a [major_stop, breakdown_stop] un‑
til each input time interval. Besides this, we decompose
the timestamp columnof Table 4 into single date time fea‑
tures like day_of_week, day_of_month, week, hour for each
input time interval. The purpose is to provide the models
with an understandable representation of the time nature
of the data so they can potentially catch and model any
underlying time related patterns such as trends and sea‑
sonalities.

4. PROPOSEDMODELING APPROACHES
Our proposedmodeling approaches are distinguished be‑
tween two core categories. The irst one, is univariate
time series forecasting, which takes into account only one
time dependent (numerical) variable and by modeling
only its historical values, it produces forecasts for future
time points. The second one, is the supervised machine
learning approach, which differentiates from the former
by using features in order to model and map the input
data to an output, the prediction target of interest.

4.1 Univariate time series forecasting
Univariate time series data is a collection of observations
with chronological order. In particular, it consists of the
independent variable, time, and just one dependent vari‑
able, which varies over time. Forecasting this kind of data
means that past measurements are analysed by the algo‑
rithms to model the underlying pattern and behavior of
the series and make predictions for future points. Our
use case concerns the forecasting of the daily total sum
of minor stoppages, i.e, how much time will the investi‑
gated machine be in stop state per day in the future, due
to minor stoppages. In particular, the dataset consists of
the timestamp column, which ranges from January 2019
to August 2019 and the sum_minor_stop feature column.
Daily resampling of the observations is chosen as it is an
important indicator for industrial operators when mon‑
itoring the machine’s ef iciency. It is not by coincidence
that we examine this use case, as minor stoppages are the
most frequent type of stoppages and are considered to
be the bottleneck of the machine’s operation. Concern‑
ing the selected date period, in these dates the machine
is more busy than any other period during the year, and
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thus, succeeding in generating insightful forecasts is vital
to industrial operators. Modelwise,weuse theAtsPy time
series library [23] for the implementation of the models
described below. After producing forecasts for each indi‑
vidual model, we create their ensembles as described in
Section 4.3.

• ARIMA, stands for Autoregressive Integrated Moving
Average model, which is expressed as ARIMA(p,d,q).
Parameters p, d, and q are integer values that decide
the structure of the time series model; parameter p,
q is the order of the Auto‑Regressive (AR)model and
the Moving Average (MA) model respectively, while
parameter d is the level of difference applied to the
data, if non stationarity is detected [24, 25].

• Prophet, is a procedure for forecasting time series
data based on an additive model where non‑linear
trends are it with yearly, weekly, and daily season‑
ality, plus holiday effects. It is robust to missing data
and shifts in the trend and typically handles outliers
well [26].

• TBAT, is a method that accounts for multiple season‑
alities, using a combination of Fourier terms, expo‑
nential smoothing models, and Box‑Cox transforma‑
tions in a completely automatedmanner. TBATS also
allows for the seasonal patterns to dynamically ad‑
just over time [27]. In the ensembles generation,
TBATS is a simple variation of TBAT, crafted in the
AtsPy library for using seasonal transformation and
TBAT without seasonal.

• N‑BEATS, is a deep neural architecture based on
backward and forward residual links and a very deep
stack of fully‑connected layers incorporated for solv‑
ing univariate times series point forecasting prob‑
lems [28].

• HWAMS, implements Holt Winter’s exponential
smoothing with additive trend and multiplicative
seasonality [29].

4.2 Supervised machine learning
In this part we attempt to reframe the univariate time se‑
ries forecasting approach as a supervised machine learn‑
ing problem. The motivation for this feature‑based time
series modeling is to explore new valuable, for industrial
operators, predictionuse cases, such as the prediction of a
stoppage occurrence in the near future. Moreover, we can
potentially overcome some limitations of the data, that
univariate time series forecastingmethods usually cannot
handle ef iciently. For example, such limitations include
the lack ofmassive historical data from a long time period
to capture seasonality, and the fact that the past measure‑
ments of just the prediction target cannot be enough to
model it’s behavior, as it might be also dependent to other
exogenous factors.

Considering the above, we transform the univariate time 
series data into a feature‑based dataset, that machine 
learning algorithms can take advantage of. To achieve 
this, the dataset must undertake a considerable transfor‑ 
mation as there is no concept of input and output features 
in time series. A supervised learning framing of a time 
series means that the data needs to be split into 
multiple samples that the models can learn from, and 
generalize across. Each sample (row) must have both an 
input set of features (columns) and an output component, 
i.e, the prediction target, also known as the class of the 
problem. We extract and generate the input set of 
features as presented in Section 3.3.2. Regarding the 
prediction target, we describe our use case decisions 
accordingly in Sections 4.2.1 and 4.2.2. The model 
implementation and evaluation are made using Python 
and the Scikit‑Learn library [30].

4.2.1 Regression approach
A machine learning regression approach considers the 
modeling of input data to predict numerical (integer or 
continuous) values. In this part, we leverage machine 
learning regression algorithms, both individually and as 
ensembles (see Section 4.3), for the same use case and 
experiment details we applied the univariate time 
series forecasting models (time period ranging from 
January 2019 to August 2019 and taking into account 
only information from minor stoppages). The dataset is 
constructed in a way so that the input features (see 
Section 3.3.2) correspond to the previous day of the 
prediction target. In other words, input features of 
each sample (row) are mapped with the next day’s 
value of sum_minor_stop target.
Model‑wise, we utilize the following tree‑based 
regression algorithms.

• Decision Tree, a simple regression tree implementa‑
tion.

• Extra Trees, implement a meta‑estimator that its a
number of randomized decision trees (a.k.a. extra‑
trees) on various subsamples of the dataset and uses
averaging to improve the predictive accuracy and
control over itting [31].

• Gradient Boosting Regressors (GBR) is a machine
learning technique for regression problems, which
produces a prediction model in the form of an en‑
semble of weak predictionmodels, typically decision
trees. At each step, a new tree is trained against the
negative gradient of the loss function, which is anal‑
ogous to (or identical to, in the case of least‑squares
error) the residual error [32].

• eXtremeGradientBoosting (knownasXGBoost andde‑
noted with XGB in the ensembles), is a decision‑tree‑
based ensemble machine learning algorithm that
uses a gradient boosting framework. In particular,
it is about a scalable and accurate implementation of
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gradient boostingmachines and it hasproven topush
the limits of computing power for boosted trees al‑
gorithms as it was built and developed for the sole
purpose of model performance and computational
speed [33].

• AdaBoost, an AdaBoost regressor is a meta‑
estimator that begins by itting a regressor on the
original dataset and then its additional copies of
the regressor on the same dataset but where the
weights of instances are adjusted according to the
error of the current prediction. As such, subsequent
regressors focus more on dif icult cases [34, 35].

4.2.2 Classi ication approach
In our machine learning classi ication approach, we in‑
vestigate two distinct binary classi ication tasks.

1. Prediction of whether the packing machine will be
stopped for more than 10 minutes in the next hour
(“Minor Stoppage Duration Exceeding” case)

2. Prediction of whether a speci ic type of stoppage
(breakdown event) will occur in the next hour
(“Breakdown Occurrence” case)

Both cases constitute a very important and interesting
challenge. A potential accurate predictivemodeling could
warn industrial operators and in this way give them
enough time to take preventive and corrective mainte‑
nance actions in the machine’s production line or the in‑
vestigated machine itself. As a result, this could lead to
avoiding stoppages from occurring, and thus, to signi i‑
cant cost reductions for the unit. Regarding the dataset,
in both cases, we calculate the aforementioned features
of Section 3.3.2, for an hourly input window and resam‑
pling interval. This means that we gather and aggregate
the data per hour andwemap each hour interval (row) to
the prediction target (class) for the next hour.
We use the random forest classi ier as the modeling algo‑
rithm for both cases. A random forest is a meta‑estimator
that its a number of decision tree classi iers on various
subsamples of the dataset and uses averaging to improve
the predictive accuracy [36]. We chose this classi ier as
it is considered a highly accurate and robust method be‑
cause of the number of decision trees participating in the
process. It does not suffer from the over itting problem,
canceling out the biases by generating an internal unbi‑
ased estimate of the generalization error as the forest
building progresses.

4.3 Average ensembles generation
Forecasting accuracy canpotentially be improvedby com‑
bining forecasts, produced by different algorithms [37,
38]. Thus, we attempt such an ensemble approach as
well, generating two distinct ensemble categories from
the aforementioned univariate forecasting and regression

models, respectively. In particular, multiple combina‑
tions of the individual models compose an ensemble by
averaging their predictions for each data point in the test
data.
We produce, in a brute force manner, all possible com‑
binations of ensembles of different lengths (subsets) be‑
tween the models, generating iteratively ensembles con‑
sisting of

𝑖 = 2...𝑘 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑚𝑜𝑑𝑒𝑙𝑠 (3)

where 𝑖, is the number of individual models in each en‑
semble and 𝑘, is the total number of individual models in
each model category (forecasting and regression).
Taking forecasting category as an example, which con‑
sists of ive (5) individual models, we generate all pos‑
sible ensembles that consist of 2, 3, 4 and 5 individual
models respectively. So, for 𝑖 = 2 we get ensembles pro‑
duced by two (2) individual models like ARIMA_Prophet,
ARIMA_TBAT, ARIMA_N‑BEATS ... Prophet_TBAT etc. Ac‑
cordingly, for 𝑖 = 3, we get ensembles produced by
three (3) individual models like ARIMA_Prophet_TBAT,
ARIMA_Prophet_N‑BEATS ... etc. Of course, only unique
ensemble combinations are created, i.e, duplicate ensem‑
bles like Prophet_ARIMA are not generated.

5. EVALUATION AND RESULTS
In this section we irst present the metrics used to evalu‑
ate our proposed approaches and afterwards we evaluate
and compare the time series forecastingmethodswith the
machine learning regression algorithms for the same pre‑
diction problem. In the last section, the results of the two
classi ication use cases are evaluated and discussed.

5.1 Metrics
The followingmetrics were used to evaluate the results of
the univariate time series forecasting and machine learn‑
ing regression models :

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑
𝑡=1

|𝑒𝑡| (4)

𝑀𝐴𝑃𝐸 = 100%
𝑛

𝑛
∑
𝑡=1

∣ 𝑒𝑡
𝑦𝑡

∣ (5)

𝑅𝑀𝑆𝐸 = √ 1
𝑛

𝑛
∑
𝑡=1

𝑒2
𝑡 (6)

𝑀𝐴𝑆𝐸 = 𝑀𝐴𝐸
𝑀𝐴𝐸𝑖𝑛−𝑠𝑎𝑚𝑝𝑙𝑒,𝑛𝑎𝑖𝑣𝑒

(7)

where 𝑒𝑡 is the absolute error, 𝑛 is the sample size and 𝑦𝑡 is 
the actual value

The irst three are quite common in the literature, while 
the last one is an interesting metric that gives us an 
alternative baseline for determining the quality of our 
forecasts.
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• Mean Absolute Percentage Error (MAPE) expresses
the average of the absolute percentage errors. While
it is easily interpretable and one of the most popu‑
lar metrics, it has also certain disadvantages [39, 40]
that lead us to utilizing other metrics as well for a
more reliable and complete evaluation of themodels.

• Mean Absolute Error (MAE) is a data scale‑dependent
metric which indicates how big of an error we can
expect from the forecast on average.

• Root Mean Squared Error (RMSE) is the standard de‑
viation of the residuals (prediction errors). It is
a data scale‑dependent metric sensitive to outliers,
putting a heavier weight on larger errors.

• Mean Absolute Scaled Error (MASE) is a measure of
forecast accuracy which compares the model’s fore‑
cast against a naive benchmark method calculated
in‑sample. This measure is data scale‑independent,
useful in cases where there are different scales in the
data or values which are negative or close to zero. In
addition, it is easily interpretable: when𝑀𝐴𝑆𝐸 < 1,
it implies that the forecasts of the proposed method
perform, on average, better out‑of‑sample than the
in‑sample one‑step forecasts of the naive method
[41].
As a benchmark reference, a simple naive model sets
all forecasts to be the value of the last observation.
That is, at the time 𝑡, the 𝑘‑step‑ahead naive forecast
𝐹𝑡+𝑘 is “predicted” with the observed value at time
𝑡(𝑦𝑡) ∶

𝐹𝑡+𝑘 = 𝑦𝑡 (8)

The naive static average model sets the forecasts
to the average value using the expanding window
method and the moving median and average models
set the forecasts with themedian and average values
calculated with the rolling windowmethod.

Concerning our classi ication approach, the evaluation
metrics we use are the following:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇 𝑃 + 𝑇 𝑁
𝑇 𝑃 + 𝑇 𝑁 + 𝐹𝑃 + 𝐹𝑁 (9)

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑃 (10)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑁 (11)

F‑Measure = 2 ∗ Precision * Recall
Precision+Recall (12)

where 𝑇 𝑃 , 𝑇 𝑁 are the true positives and negatives and 𝐹 
𝑃 , 𝐹𝑁 the false positives and negatives predicted 
outcomes of the model

• Accuracy is intuitively the overall fraction of predic‑
tions our model got right. However, it is not enough
to evaluate our models using only this metric, espe‑
cially for class‑imbalanced datasets like ours. In this
way, we examine the following metrics to get a more
clear view of the model performance.

• Precision represents the proportion of positive iden‑
ti ications that were actually correct.

• Recall represents the proportion of the actual posi‑
tives that were identi ied correctly.

• F‑measure is a measure of a test’s accuracy. It pro‑
vides away to combine both precision and recall into
a single measure that captures both properties.

5.2 Comparison between forecasting and 
regression models

In this part, the comparative performance of the 
regression algorithms and the univariate forecasting 
models is discussed. Our purpose is to examine which 
model category and which speci ic models perform 
better, what is the performance of the ensembles and 
what is the over‑ all predictive ability for our use case of 
interest. We em‑ ploy the aforementioned model 
categories with their respective individual models and 
ensembles, to make the prediction for our use case. 
We perform the training of the models with 75% of the 
data, while the evaluation is conducted with the 
remaining 25%, of both sets of the original dataset. 
Due to time series indexing, this means that the most 
recent data is used for the actual forecasts. To evaluate 
the overall performance in this use case we choose to 
present the following top ive models produced per 
modeling category.

Forecasting ensembles :
1. ARIMA, TBAT, NBEATS, TBATS

2. ARIMA, TBAT, NBEATS

3. TBAT, NBEATS, TBATS

4. Prophet, TBAT, NBEATS, TBATS

5. ARIMA, TBAT, TBATS

Regression ensembles :

1. AdaBoost, XGB, Decision Tree

2. GBR, AdaBoost, XGB, Decision Tree

3. GBR, AdaBoost, Decision Tree

4. XGB, Extra Tree, Decision Tree

5. XGB, Decision Tree
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Table 5 – Results of the best ive forecasting models

MASE
Model MAPE MAE RMSE moving_mean static_mean moving_median naive

1 19,765 % 32,536 42,399 0,926 0,882 0,920 0,664
2 19,833 % 33,026 43,255 0,940 0,895 0,934 0,674
3 20,007 % 33,808 44,282 0,962 0,916 0,956 0,690
4 20,135 % 33,165 43,435 0,944 0,899 0,938 0,677
5 20,156 % 33,489 42,568 0,953 0,908 0,947 0,683

Table 6 – Results of the best ive regression models

MASE
Model MAPE MAE RMSE moving_mean static_mean moving_median naive

1 20,753 % 31,085 37,988 0,890 0,842 0,866 0,632
2 20,984 % 31,727 38,368 0,909 0,860 0,884 0,645
3 21,017 % 31,466 37,879 0,901 0,853 0,877 0,639
4 21,080 % 31,458 38,553 0,901 0,852 0,877 0,639
5 21,252 % 32,118 39,735 0,920 0,870 0,895 0,653

In Tables 5 and 6 the detailed results of these best 
ive models are presented per modeling category. We 
note that results for the MAE and RSME metrics are 
expressed in minute scale. Considering both tables, we 
irst point out the fact that ensembles make the top of 
the leader board as their resulting combined averaged 
forecasts are more accurate than those of the individual 
models and we also notice a comparable performance 
from both modeling categories. In particular, 
forecasting methods did slightly better in terms of 
relative errors (MAPE) but regression models were 
slightly better regarding the mean absolute and root 
mean squared errors. So, taking into account all these 
metrics, with each one having it’s speci ic importance, 
we can conclude that in this use case the two modeling 
categories were equally competitive. In addition, we 
should also highlight the results of the MASE metric, i.e, 
the benchmark comparison against the four naive 
methods described in Section 5.1. We can tell that our 
proposed models produced on average more accurate 
forecasts than naive models. This is interesting, as it 
means that we can employ a meaningful model, in terms 
of implementation worthiness, when compared to a naive 
forecasting solution.
Examining the winning ensembles more in depth, we ob‑ 
serve on the one side that the TBAT algorithm with its 
variation, TBATS, dominates in the forecasting ensembles. 
We also notice the model type variation in those 
winning ensembles, as we do not get ensembles of 
closely related models, but we witness the 
combinations of different algorithms, especially those 
which include the N‑ BEATS deep neural architecture. 
On the other side, we observe that decision tree and 
secondly XGBoost, are core contributor models in each 
ensemble.
In Fig. 3 we demonstrate a visualized comparison of the 
actual test data and the forecasts produced by the best 
model from the forecasting and regression category. The 
data set comprises 34 daily data points ranging from 

12 July to 30 August, as depicted in the x‑axis and the 
total sum of minor_stoppages expressed in seconds.
We notice the steady, seasonal alike prediction pattern of 
the forecasting ensemble which is close to the mean of the 
data. This is kind of expected, due to the underlying 
modeling process of the individual models. In contrast, 
the regression model differentiates by producing higher 
and more custom forecasts, in some cases it even 
results interestingly in really high accuracy, like in the 
dates 16, 27 July and 14 August.
Closing up, we acknowledge the decent performance of 
the models in regards to our agnostic modeling. In 
particular, the reframing of the time series data as a 
supervised regression problem can be regarded 
successful, considering that the regression models 
achieved equal performance with the forecasting models, 
which are tailored for speci ic univariate time series 
problems. Research‑wise, we could extend the 
experiments in the future with the collection of 
additional data, in order to have a more holistic view of 
the trends, seasonality and other patterns and thus, 
achieve better forecasting accuracy. We could also try 
working on different subsets of the data to examine the 
performance of the models in relation to the dataset 
size. Lastly, it would be interesting to further experiment 
with ensembles between models that have been trained 
in different subsets of the data as well as ensembles 
between the forecasting and regression models.

5.3 Classi ication use cases
In this part, we present the results of the random for‑ 
est classi ier for the two aforementioned prediction use 
cases. For simplifying our indings evaluation, we can re‑ 
gard for each use case accordingly, the positive class as 
an alarm generation towards the industrial operators and 
the negative class as an ignore state, assuming that the 
predictions were incorporated in a real‑time predictive 
maintenance system. For both of them we perform the
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Fig. 3 – Actual data and model performance visualization

training and evaluation of the models in the same way as
in our regression approach, applying a 75% / 25% per‑
centage split between the training and test sets. This is
also approximately the class distribution for both cases,
75% and 25 % for the negative and positive class respec‑
tively. For each use case we present the generated confu‑
sion matrix2 (tables 7 and 9) which consists of the pre‑
dicted true and false positives and true and false nega‑
tives, based on which the classi ications metrics are de‑
rived in tables 8 and 10.

5.3.1 Minor stoppage duration exceeding
In the dataset we treat the classes as follows: positive (1)
is the class describing that the total sum of minor stop‑
pages will exceed the duration of 10 minutes in the next
hour and negative (0) is the class about the opposite. The
dataset focuses on the period of April 2019 till July 2019,
which is the operational peak of the production line and
the packing machine. Considering tables 7 and 8, we ob‑
serve that the classi ier detects only 11 % of the actual
alarms it should detect, which is in fact low. However,
we notice an optimistic result, the almost absolute iden‑
ti ication of the ignore class, with 99% recall for ignore

2Also known as an error matrix, it is a speci ic table layout that allows
visualization of the performance of an algorithm, typically a supervised
learning one (in unsupervised learning it is usually called a matching
matrix). Each column of the matrix represents the instances in a pre‑
dicted class while each row represents the instances in an actual class.

class and 78% precision for the alarm class, meaning that
the classi ier at least would not signal many false alarm
warnings. This is indeed a valuable predictive ability; oth‑
erwise, producing frequent false alarms may lead to the
industrial operator’s distraction. Or even worse, inaccu‑
rate predictions can make them take wrong preventive
and corrective decisions for the production line and the
investigated machine.
Table 7 – Confusion matrix ofMinor Stoppage Duration Exceeding case

Predicted
ignore alarm

Ac
tu
al ignore 369 4

alarm 113 14

Table 8 – Performance ofMinor Stoppage Duration Exceeding case

Accuracy Class Precision Recall F‑measure
77 % ignore 77 % 99% 86%

alarm 78 % 11% 19%

5.3.2 Breakdown occurrence
This use case is modeled between January 2019 and
September 2019, the period containing the most obser‑
vations in our dataset. In this way, our aim is to gather in
the input data as many breakdown events and relevant
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information around their occurrence as possible, in or‑
der to increase the chances of a successful prediction. We
treat as positive (1) class, the event of a breakdown oc‑
curence in the next hour and as negative (0) class, the ex‑
act opposite event. Reviewing the results in tables 9 and
10, we notice that our classi ier performed better in this
case than the previous one, in the prediction of the ac‑
tual occurrences of themain class of interest (in this case,
”alarm” for a possible breakdown). The improvementwas
by a factor of 10%, reaching a recall of 21% (compared to
11% of the previous case). However, this was caused, by
the reduced precision, i.e, the reduced ability of themodel
to distinguish clearly between the actual and false alarms
and so the alarm class has only, on average, a 51% chance
to be predicted correctly (compared to 78% of the previ‑
ous case). This is a usual phenomenon in machine learn‑
ing, also known as precision and recall trade‑off, in which
improving the former metric might worsen the latter and
vice versa. The predictive power for the ignore (negative)
class is slightly worse than the irst use case, as precision
dropped from 77% to 75%, but it is still a relatively good
sign that themodel can at least performwell for one of the
metrics.

Table 9 – Confusion matrix of Breakdown Occurrence case

Predicted
ignore alarm

Ac
tu
al ignore 804 69

alarm 274 72

Table 10 – Performance of Breakdown Occurrence case

Accuracy Class Precision Recall F‑measure
72 % ignore 75 % 92% 82%

alarm 51 % 21% 30%

In Fig. 4, the performance of random forest is provided to
visualize the differences in each metric, per use case and
prediction class. The igure at the top depicts the perfor‑
mance for the ignore (negative) class, while the bottom
one is for the alarm (positive) class.
Given these results for both use cases and looking fur‑
ther into the F‑measure values, we can sum up that
our feature‑based time series classi ication approach
achieved an overall moderate, weak performance in the
alarm (positive) class. On the contrary, it reveals inter‑
esting results for the ignore (negative) class, which seems
to be predicted in a quite accurate way. The tests indi‑
cate thatwemiss essential information inorder to achieve
high accuracy in the prediction of alarm cases and this
is not to our surprise, as we do not monitor the differ‑
ent factors that may cause a stoppage and in general dis‑
turbances in the production line. This means that future
research activities will include the collection of those ex‑
ogenous factors and the further modeling experimenta‑
tion of the aforementioned use cases. Nonetheless, our

Fig. 4 – Performance of random forest in both classi ication use cases, 
per class. The igure at the top depicts the performance for the ignore 
(negative) class, while the bottom one is for the alarm (positive) class.

agnostic methodology so far can be still regarded as 
decent work, considering the results produced while 
having only one signal at our disposal. In this way, the 
regression and classi ication approaches we developed 
can be utilized as baseline work for these future 
activities.

6. CONCLUSION

In this work, we investigated the prediction of industrial 
packing machine stoppages by applying the approaches of 
traditional univariate time series forecasting and super‑ 
vised machine learning. Our highest forecasting and 
classi ication accuracy of 80% and 77% respectively does 
not imply a perfect, state‑of‑the‑art performance but we 
can still regard these results as promising considering 
our agnostic methodology, indicating that it is feasible, 
at least to a certain extent, to model the machine’s 
behavior based only on its raw past operational state 
measurements. We acknowledge that the presence of 
noise and random luctuations in the data as well as the 
lack of strong seasonalities, clear structural patterns, 
and most importantly the absence of the stoppage 
factors weaken the forecasting and predictive ability of 
the models. Therefore, we note that better results can 
be potentially achieved with the use of more 
production line data. Such data could be derived from 
additional sensors and operational variables, fault or 
warning signals from the same machine as well as from 
other machines which operate in the same line.
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This is due to the fact that such data affects the general 
low of the entire packaging line and consequently the 
operation of the packing machine. Hence, it is clear 
that prospects for future research include the collection 
of such data and use it in our modeling. In addition to the 
aforementioned update and enrichment of our data pool, 
our proposed methodologies can act as a reference for 
future enhancements with more suitable predictive 
models and techniques (such as deep learning, feature 
selection methods, classi ication ensembles, and class 
imbalance handling) that can eventually lead to a more 
robust and accurate prediction framework.
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