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Abstract – When it comes to the security of the Internet of Things (IoT), securing their communications is paramount.
In multi‑hop networks, nodes relay information amongst themselves, opening the data up to tampering by an intermediate
device. To detect and avoid suchmalicious entities, we grant nodes the ability to analyse their neighbours behaviour. Through
the use of consensus‑based validation, based upon the blockchain’s miners, all nodes can agree on the trustworthiness of all
devices in the network. By expressing this through a node’s reputation, it is possible to identify malicious devices and isolate
them from network activities. By incorporating this metric into amulti‑hop routing protocol such as AODV, we can inϔluence
the path selection process. Instead of deϔining the best route based upon overall length, we can choose the most reputable
path available, thus traversing trustworthy devices. By performing extensive analyses through multiple simulated scenarios,
we can identify a decrease in packet drop rates compared to AODV by≈ 48% and≈ 38%when subjected to black hole attacks
with 30 and 100 node networks respectively. Furthermore, by subjecting our system to varying degrees of grey holes, we can
conϔirm its adaptability to different types of threats.
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1. INTRODUCTION
The Internet of Things (IoT) has become part of our 
everyday lives, providing services in multiple areas. 
From ”Smart” equipment to wearable healthcare 
devices, the IoT processes a lot of important and 
sensitive data. Furthermore, as is the case with wearable 
healthcare devices such as a pacemaker, by allowing a 
connection with the open Internet, we also open the 
corresponding attack surface to new threats [1]. This 
can result in the loss of sensitive data and can even go 
as far as to cause signiϐicant health risks to the patient. 
In some use cases such as smart agriculture, IoT 
devices must operate in hostile environments where a 
direct connection with a base station or access point is 
not always available. To maintain communications, 
these devices employ the multi‑hop paradigm, allowing 
intermediate nodes to transmit and relay passing 
packets to their destination. However, in doing so, we 
also increase the chance of attack, as any node in our 
network could compromise our routing activities [2].
One way to provide an extra layer of security is allowing 
nodes to only converse with neighbours that they trust. 
The notion of trust is deeply embedded in the human psy‑ 
che and is a main contributor to how we form relation‑ 
ships. The parameters of how trust is deϐined varies from 
person to person, however, a fundamental element is the 
notion of reputation, where the higher the reputation, the 
more likely we are to trust said person or entity. Indeed, 
although the reputation inϐluences the trust value, the op‑ 
posite is also the case, where breaking someone’s trust 
severely impacts that person’s reputation. By rendering 
the reputation of someone or something common know‑ 
ledge, any change will be perceived by everyone, meaning

that any impact will have inevitable repercussions. This 
system can be applied to the digital networking world 
where nodes possess a known reputation value, allowing 
their neighbours to determine if they can be trusted. As a 
result, in a similar fashion to human interactions, if a node 
acts badly in the network, their reputation will decrease, 
allowing easy separation between malicious entities and 
good trustworthy nodes.
In multi‑hop IoT networks, nodes are generally left to 
their own devices, operating as conϐigured and routing 
data when needed. This means, there is no shared me‑ 
mory between devices, meaning that data must be actively 
provided to each node for them to know it. This is im‑ 
portant since as we said previously, the reputation 
values are known by all nodes in the network. A 
well‑known method for sharing data in a distributed 
manner whilst maintaining data integrity is through the 
use of a blockchain [3]. Made popular through its uses 
in many different cryptocurrencies, such as the 
infamous Bitcoin [4], a blockchain brings many elements 
to the table which can be of use. The blockchain employs 
devices known as ”miners” which are responsible for 
the creation, validation and addition of new data in the 
form of blocks, into the chain itself. These miners 
employ a Proof of Work (PoW) technique for block 
validation, ensuring that only valid blocks get input into 
the blockchain, reducing the risk of incorrect data 
injection.
To allow data to traverse multi‑hop networks, many rout‑ 
ting protocols exist, each with their own advantages. 
By incorporating the newly acquired knowledge of node 
reputation thanks to blockchain, intermediate nodes are 
now capable of not only determining the trust-
worthiness of their neighbours, but also inϐluencing 
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their routing abilities. Many routing protocols use 
various metrics to determine the best route to take 
towards the destination which could be inϐluenced by a 
nodes reputation. This is the case of the Ad hoc 
On‑Demand Distance Vector (AODV) routing protocol, 
where the route with the lowest hop count is 
preferred [5]. Being a reactive protocol, route 
discovery is only performed when needed, meaning ac‑ 
curate up‑to‑date reputational values can be used. Du‑ 
ring route discovery, the source node broadcasts a 
Route Request (RREQ) packet, asking for a route 
towards the destination. This packet is relayed by 
each node it encounters, each one increasing the hop 
count by one, until the requested destination is reached. 
The destination then responds back via unicast towards 
the source with a Route Reply (RREP) using the shortest 
route available. By analysing the trustworthiness of each 
node, we can inϐluence the hop‑count to increase the 
corresponding ”length” the more malicious nodes are 
present. As a result, AODV would naturally select the 
shortest route, only here this doesn’t correspond to the 
least number of hops, but the highest trustworthiness 
overall.
In this paper, we propose a consensus‑based module for 
routing protocols using reputation metrics to determine 
the most trustworthy route in the network. The main con‑ 
tributions are as follows:

• Firstly, we perform an analysis of previous work
in the literature around the notion of ”reputation”
as well as different uses of blockchain, in particu‑ 
lar their applications to wireless routing activities.
We also explore the different security improvements
which have been proposed for AODV in recent years.

• Next, we deϐine and propose updated metrics based
on previous work for the computation of nodes’ re‑ 
putation, as well as the addition of a Reputation
Decay system, allowing nodes to be reintegrated
into the network after a certain period of inactivity.
We also explain how a consensus‑based
conϐiguration inspired from the blockchain’s miners
which allows us to grant the network the ability to
adapt and determine these values without prior
knowledge, before sharing the results throughout
the network thanks to blockchain technology.

• We also present how our system can be incorporated
into a reactive routing protocol, in this case AODV as
well as a few updates to the existing protocol, allo‑ 
wing our system to function at peak efϐiciency.

• Finally, we analyse the performance of this new pro‑ 
tocol, called AODV‑Miner, by comparing it to basic
AODV functionality in extensive simulations with
networks of 30 and 100 nodes with varying network
topologies. By pitching both protocols against black
and grey holes with varying degrees of malicious
presence and intentions, we demonstrate a reduc‑ 
tion in packet drop rates by ≈ 48% and ≈ 38% with
30 and 100 nodes respectively.

The rest of this paper is organised as follows: Section 2 
analyses previous work in the areas of reputation, 
blockchain and AODV security and presents the diffe‑ 
rences with our module. Section 3 deϐines our 
system model, before presenting our module and 
AODV‑Miner in Section 4. Then, Section 5 explains our 
implementation and simulation parameters before 
analysing the results in Section 6. Finally, we discuss 
these results and future endeavours in Section 7 before 
concluding this paper in Section 8.

2. RELATED WORK
Our system is based around two distinct elements: 
reputation and blockchain; and it also uses a third in 
our analysis: AODV. Each of these notions are not new 
and have been extensively evaluated in the scientiϐic 
literature. Furthermore, AODV has seen many new 
propositions to upgrade its functionality and security 
since its elaboration. However, as far as we are aware, 
none use a dynamically elected consensus‑based repu-
tation system, derived from blockchain’s miners. In 
this section we present these three elements as well as 
an analysis of some of the improvements they have 
received and their uses in routing activities before 
deϐining our system and its differences.

2.1 Behavioural reputation
Inspired from the human psyche, the notion of reputa‑ 
tion can be applied to an IoT network, where nodes will 
choose a higher, more reputable neighbour over others. 
This is the case of [6] where the authors use trust‑based 
methods to identify nodes in the network, based on their 
previous activities. By evaluating multiple types of ac‑ 
tivities based on node social interactions and QoS, the 
resulting trust proϐiles are evaluated by other nodes be‑ 
fore being adopted. In a similar fashion, [7] integrates 
this functionality into their routing protocol for wireless 
sensor networks, where they compute a trust value per 
node, based upon their previous activities. By analysing 
their sincerity in forwarding data, acknowledging pre-  
vious packets, as well as the nodes’ energy 
consumption, this value is then used to determine the 
most trustworthy candidate to relay the data throughout 
the network. However, reputation and trust metrics 
can be expressed in multiple fashions. For example, the 
authors of [8] evaluates neighbouring behavioural 
patterns using inter‑node cooperation. On the other 
hand, the authors of [9] use a signature‑based 
methodology, validating data integrity and conϐirming if 
data has reached the intended sink.

2.2 Blockchain‑based sharing
The main advantage of the blockchain is its immutability 
[10], which has led it to being used in many other areas, 
such as that of IoT security [11]. However, they possess 
many challenges related to the speciϐic context of the IoT, 
such as resource limitations and data management where
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passing through malicious nodes, allowing them to be 
avoided. Regarding blockchain, the authors of [23] 
propose the protocol BAODV, using blockchain’s hash 
chaining to authenticate nodes and conϐirm data 
integrity. By incorporating the IP address of malicious 
nodes in the discovery messages, BAODV can 
circumnavigate the malicious entities. Another 
approach used in [24] is the construction of a 
blockchain network, allowing the identiϐication of 
routes towards the destination. Each path node is added 
to the blockchain network, avoiding malicious entities 
and identifying the most optimal route to take. In [25], the 
authors unite both elements, using reputation‑based met‑ 
rics to inϐluence routing activities and the blockchain to 
distribute the reputation throughout the network. Their 
approach includes an extension to the reputation metric 
where the length of a route is manipulated depending on 
the node’s reputation, lengthening it if they possess mali‑ 
cious tendencies. In regards to blockchain dissemination, 
the authors also deϐine speciϐic network grids in which 
miners are identiϐied and are responsible for the compu‑ 
tation of the reputation and blockchain distribution. This 
approach allows the type of node to be exploited, privi‑ 
leging powerful nodes for this role over weaker counter‑ 
parts. However, once nodes have been deϐined as miners 
they cannot partake in routing activities, which reduces 
the number of potential relays in the network.

2.4 Our contribution
To deϐine our system, we take inspiration from multiple 
approaches, in particular [25]. However, one major dif‑ 
ference is that our module is not directly integrated into 
a speciϐic routing protocol, but can be adapted to ϐit 
others, inϐluencing and exploiting the route discovery 
and upkeep functionalities. By doing so, we allow the 
ability to dynamically build a route proϐile, meaning no 
prior knowledge of the network or nodes is needed. 
Furthermore, by updating the previously analysed 
reputation‑ based approaches to use this dynamic route 
proϐile, we allow nodes to identify activities which 
distinctly deviate from the expected, the main advantage 
of which is no need for any advanced or heavy 
techniques. We also deϐine a lightweight version of 
blockchain, similar to [17], signiϐicantly reducing its 
role to that of a dissemination tool with lower weight 
and complexity. We also repurpose its miners to 
perform behavioural validation responsibilities, similar 
to [25], however, we include the addition of dynamic 
role selection, allowing nodes to take on the role of 
miners or routers at will. By not deϐining speciϐic roles 
at the start, the network can, therefore, adapt to 
ϐluctuating typologies and also take advantage of new 
nodes with no user intervention needed. This paradigm 
also redeϐines the resource‑intensive PoW process, into a 
consensus‑based validation system, allowing nodes to se‑ 
lect the best results to be shared throughout the network. 
As a result, our new Validation Miners differ signiϐicantly 
from their blockchain counterparts, all the while holding 
key positions in the network.
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power hungry PoW and block storage become a problem. 
That being said, the blockchain has seen its fair share of 
attention in the area of security, such as providing authen‑ 
tication and trust services to the IoT [12] and increasing 
data integrity and authenticity [13]. Since our interests 
revolve  around  routing,  we  concern ourselves with 
the   different   methods  employed  to  increase  routing 
security [14].
An example is the work performed by the authors of [15]. 
Here the blockchain stores information related to data 
transmission, allowing all nodes to participate in deter‑ 
mining the ”legality” of the exchanges. In [16], the au‑ 
thors use blockchain to store and share the status of the 
network in real time to enhance the routing process. By 
checking the list of transactions, nodes can determine 
the most efϐicient route, thus avoiding congested areas 
and nodes. This technology has also been used in un‑ 
maned aircraft systems as in [17], improving both 
routing activities and authentication. Here, a 
lightweight blockchain deployment is used, providing 
each drone with identiϐication and authentication 
information. The authors of [18] propose a novel routing 
protocol based on blockchain contractual methodology. 
By using the ledger to store smart contract addresses 
indicating when routing is needed, routes can be offered 
and determined when needed.

2.3 AODV routing protocol
AODV‑related security has been an interest in the litera‑ 
ture for some time since its original conception. Indeed, 
AODV is susceptible to multiple types of attacks [19] tar‑ 
geting packet control ϐields, such as source and destina‑ 
tion IP or sequence numbers, as well as hop‑count for‑ 
ging. As a result, the authors of [19] propose an 
intrusion detection system capable of detecting and 
countering these vulnerabilities by comparing the 
network’s activities to predeϐined speciϐications where 
any deviation is considered malicious. The authors of 
[20] take a different standing point, directly targeting
certain vulnerabilities in an effort to enhance the overall
security. Their intrusion detection model allows the
detection of multiple attacks, such as denial‑of‑service,
impersonation or a compromised node, which is then
isolated from network activities by the Intrusion
Response Models. In all, their approach is capable of
increasing the routing efϐiciency, rendering AODV more
robust, as the slight cost of a higher overhead. In [21],
the authors use advanced numerical analysis to increase
the security of AODV during routing. By using methods
such as cryptography or numerical sequences, they are
able to increase the overall performance when subjected
to black‑hole attacks.
Reputation‑based metrics and blockchain have also been
used in line with AODV. Indeed, in [22], the authors ex‑ 
tend the AODV‑UU protocol to incorporate reputation‑ 
based metrics, identifying malicious and trustworthy
nodes. By integrating the reputation value directly into
the discovery process, it is possible to identify paths
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Fig. 1 – Communication range of node 𝑛𝑖

3. SYSTEM MODEL AND THREAT
TAXONOMY

Our system is based around speciϐic models and threat in‑ 
formation. In this section we explore both our network 
and validations models, before taking a look at our threat 
taxonomy.

3.1 Network model
We consider an interconnected wireless network sce‑ 
nario with 𝑁 static nodes, each possessing a ϐixed trans‑ 
mission range. Each node has at least one other node in 
communications range, called a neighbour, forming a par‑ 
tial mesh topology, an example is shown in Fig.1. We can 
see that node 𝑛𝑖 possesses a ϐixed transmission range, en‑ 
compassing two other nodes, its neighbours. These in‑ 
terconnections allow any one node to contact all others in 
the network, resulting in both stable connections and 
durable routes. As we can see in the ϐigure, multiple 
nodes can be in range of multiple others. By using the 
wireless medium, we accept that it is possible for 
inevitable transmission overlaps to occur, resulting in 
areas of collision. Our choice of using AODV as a base for 
our system means that the nodes already take on certain 
characteristics which are useful to our system. For a 
reactive protocol to function correctly, all participating 
devices must be capable of receiving any routing‑related 
trafϐic at any given time. As a result, we consider that 
all nodes remain in an active listening state, constantly 
analysing all passing packets waiting for a potential 
AODV discovery message. Our nodes also possess the 
ability to decide on their own role per participated 
route, making them either a routing node (forwarding 
information along the corresponding route), or a 
validation miner (observing and conϐirming the routing 
activities of neighbouring routing nodes for the same 
route). Both roles are mutually exclusive for each route, 
meaning a miner cannot participate in routing activities, 
as this would be a conϐlict of interest. With the additional 
ability of being able to participate in multiple routes 
simultaneously, the nodes can, therefore, take on 
multiple roles.

Mining a route
Mining a block

Node is 𝑀𝑖𝑛𝑒𝑟

Route
expired?

Data
packet to
analyse?

Get Expected 
action from 𝑅𝑉 𝑇
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yes

no

Aggregate
actions into
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Own block
invalid

STOP
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final block

Insert into
blockchain

STOP

Compare blocks

Received
block
valid?

STOP

no

yes

yes

no

yes

no

yes

Fig. 2 – Validation ϐlowchart

3.2 Validation model
As stated previously, each and every node has the abi‑ 
lity to become a validation miner and, as a result, parti‑ 
cipate in validation activities. The role of these miners is 
twofold, illustrated in Fig.2:
1. They are responsible for validating routing be‑

haviour between their neighbours, which we deϐine
as ”mining a route”.

2. They conϐirm and distribute the resulting be‑
havioural analysis throughout the network in
blockchain form, which we deϐine as ”mining a
block”.

To reach their ϐirst objective, mining a route, the miners 
must possess the ability to validate the behaviour of 
their neighbours. This is achieved by allowing all nodes to 
overhear and analyse passing RREP packets, from which 
each miner can extract the expected forward (𝑠𝑟𝑐 → 𝑑𝑠𝑡) 
and reverse (𝑑𝑠𝑡 → 𝑠𝑟𝑐) hops. These are then added to 
their respective Route Validation Tables (RVTs), allowing 
the miners to verify all passing data packets along the cor‑ 
responding route, thus immediately detecting when a de‑ 
viation occurs. Upon overhearing a network transaction, 
the miner classiϐies the resulting communication as either 
Good or Bad, depending if the activity was expected or not.

©International Telecommunication Union, 2023

Staddon et al.: A consensus-based approach to reputational routing in multi-hop networks 

139



S

1

2

3

4

5

6

7

8

9

D

RREQ

RREQ

RREQ RREQ RREQ

RREQ

RREQ

RREQ

RREQ
RREQ

RREP

RREP

RREP

RREP

RREQ

RREQ

Fig. 3 – AODV discovery process

actions during forwarding. Table 1 presents a brief 
taxonomy of threats which can be fully, or partially 
detected. It is important to note that some threats also 
possess passive variants. Contrary to their active 
cousin, these threats hide in the background and do not 
impact day‑to‑day operations and are generally consi-
dered to be reconnaissance related, such as packet 
snifϐing or eavesdropping [26]. Since these are 
impossible to detect in our context, only active threats 
are considered.

3.3.1 Routing threats

Possibly the most important action in a multi‑hop net‑ 
work is the act of routing itself. As a result, it is important 
to reduce and eliminate any threat which seeks to impact 
network performance. By not transmitting towards the 
expected next hop, a malicious node can either transmit 
to the wrong next hop, or not transmit it at all. For ex‑ 
ample in Fig.3, node 7 can use Packet Redirect (RTE07) to 
deviate a packet from node 5 packet to node 4 instead of 
the destination. In the same idea, by destroying all pac‑ 
kets with a black‑hole attack (RTE03) or only some with a 
grey‑hole‑type attack (RTE04, RTE01 & RTE06), data will 
never reach the destination. In either case, any deviation 
from the next expected hop will result in immediate de‑ 
tection by the miners. This also functions with other at‑ 
tacks, such as a sinkhole (RTE02) or wormhole (RTE05) 
attack, which can use another medium to reroute data, 
such as nodes 7 and 3 being connected using a cellular 
connection, thus elongating the route taken. In any case, 
since no corresponding transmission is detected by the 
miners, this activity is considered malicious. It is impor‑ 
tant to note, however, that some of these attacks can im‑ 
pact multiple aspects of the network. For example, a sink‑ 
hole attack manipulates routing tables to force trafϐic to 
transit through it, allowing it free access to the data. Al‑ 
though our system is capable of detecting deviations in 
expected routing, it is not currently specialised in detec‑ 
ting manipulations of AODV route discovery itself.
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A more in‑depth distinction between the two activities is 
presented below. Fig.1 depicts this process where since 
nodes 𝑛𝑗 and 𝑛𝑘 are in 𝑛𝑖’ s transmission range, 𝑛𝑖 is in a 
position to overhear all of their messages. All activities 
are accumulated and stored for each neighbouring node 
of the mined route. As stated previously, with wireless 
transmission comes the possibility of collisions or jam‑ 
ming attacks. As a result, it is possible that miners end up 
in the overlapping transmission zones, meaning they 
cannot correctly perform their activities. Since this is a 
general wireless issue, we address this problem for the 
miners to the best of our ability, through the possibility of 
multiple miners per route. This means that multiple mi‑ 
ners can overhear and validate the same nodes, 
decreasing the chance of all being jammed, increasing the 
efϐiciency and resiliency of our system.
Once the route expires from the routing tables, the mi‑ 
ners transition into their second activity: conϐirmation 
and dissemination, visible on the right of Fig.2. To begin, 
each miner aggregates all results for each node in 
communications range for that route into a temporary 
block. These blocks are shared amongst surrounding 
miners which all partake in the conϐirmation process. 
As a result, only blocks conϐirmed by consensus are 
deemed valid and disseminated throughout the network 
via the blockchain. We use blockchain here as it provides 
a secure means for both conϐirming and sharing the 
different blocks. However, our lightweight version, 
although following the basic blockchain principal, differs 
in certain aspects. The main difference is the adaptation 
of the Proof of Work for block conϐirmation, where here 
miners simply compare the received block with their 
own, only responding if a difference has been detected. 
This approach keeps the notion of consensus, where the 
most common block will be kept, all the while reducing 
network trafϐic between miners. As a result, a miner 
having transmitted their block and not received a 
response deems their own block valid, incorporating it 
into the  blockchain  and disseminating throughout the 
network. The resulting blocks permit all nodes to 
update the reputation for all participating nodes. It is, 
however, important to note that our current model 
omits possible threats towards the validation process it‑ 
self. This choice was motivated by our desire to demon‑ 
strate the feasibility of our security module, before fur‑ 
ther analysing and proposing advanced security protocols 
to prop up this vulnerability.

3.3 Threat taxonomy
Threat detection in our system is reduced to a binary 
operation, since all miners possess the knowledge of the 
expected route. Explicitly, if a routing node transmits a 
valid data packet towards the correct next hop for its 
destination, then it has performed a Good action. Any 
other action is considered Bad and, therefore, identiϐied 
as a malicious activity. As such, our system is capable of 
detecting multiple types of active threats, simply by their 



Table 1 – System active threat taxonomy

Threat
Type

Threat ID Threat Description

Routing

RTE01 On‑Off Attack Random activation, dropping all or selectively drop‑
ping packets then randomly deactivate, causing peri‑
ods of no attack where all packets are transmitted

RTE02 Sinkhole Trick other nodes to route trafϐic to a central point, al‑
lowingmodiϐication, dropping or forwarding at will to
original destination or external device

RTE03 Black‑hole All messages passing through a black‑hole device are
dropped, no exceptions

RTE04 Grey‑hole Somemessagespassing througha grey‑hole device are
dropped, either randomly or by speciϐic criteria

RTE05 Wormhole All messages passing through a wormhole device
are captured and forwarded to another location in‑
side/outside the network

RTE06 Selective 
Forwarding

Similar to grey‑holes, packets are forwarded or
dropped based on speciϐic criteria, or simply at ran‑
dom

RTE07 Packet 
Redirect

Redirect passing trafϐic to wrong destination, or
wrong next hop

Data DTA01 Message
Modiϐication

Changing the content of passing messages, either at
random or corresponding to speciϐic criteria, chang‑
ing the end result of the transmitted data

DTA02 Replay Capture a passing packet and replay it with or without
modiϐication at a later date

Node
NDE01 Byzantine Multiple nodes are compromised and behave in an ar‑

bitrary manner causing network disruption
NDE02 Node 

Capture
A node is compromised, granting ability to impact and
control the network

NDE03 Malicious
Node

A node is compromised, transmitting false informa‑
tion to the network

NDE04 False Node A new node is added to the network, potentially re‑
placing existing node, injecting false data, as well
as disrupting routing or spreading malicious code to
other nodes, taking over them or destroying them
from the inside

3.3.2 Data threats

When sharing data, especially using the wireless medium, 
data integrity and privacy become an issue. Our taxon‑ 
omy presents two data‑based threats which can be de‑ 
tected. The ϐirst concerns Message Modiϐication (DTA01) 
which directly impacts data integrity by modifying the 
packet’s payload or even header. The second concerns 
the retransmission of previously sent messages, known 
as Replay (DTA02). To counter these threats, miners keep 
records of passing messages, allowing them to detect sud‑ 
den changes to data integrity and resurfacing of previ‑ 
ously encountered packets. Furthermore, since miners 
can only function when a route is present, if a packet is 
retransmitted after the route has expired and no other is 
active, it is immediately discarded and considered mali‑ 
cious.

3.3.3 Node‑based threats

When nodes are left to their own devices without re‑ 
gular maintenance or surveillance, tampering becomes 
a threat. In many cases, gaining access to existing 
devices, or injecting a new node (NDE04) into a network 
provides surveillance capabilities to the malicious party. 
Although these threats are not detectable in our context, 
four active node‑based threats are, however, they are 
only detectable in certain conditions. For example, if 
node 7 in Fig.3 aims to impact routing efϐiciency, then all 
deviations  will  be  detected  by  the  miners, which is 
the  case of Byzantine attacks (NDE01). Captured, 
malicious or even new nodes (NDE02, NDE03 & NDE04) 
can also be detected when acting upon the routing 
process or through modifying messages. However, if 
their goal is to legitimately inject invalid data into the 
network, then these threats are not detected.
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4. CONSENSUS‑BASED ROUTING
In this section, we present a consensus‑based routing 
module using reputation metrics, implemented on top of 
the AODV protocol called AODV‑Miner.

4.1 Behavioural analysis
To be able to accurately identify the activities of a rout‑ 
ing node, their behaviour must be analysed. As explained 
previously, the miners possess the knowledge of the ex‑ 
pected neighbouring hops for a speciϐic route. By extrac‑ 
ting and analysing the overheard transmissions, the 
miners are capable of detecting different threats. If a 
threat is detected, the transmission is labelled as 
malicious, thus impacting the reputation of the 
transmitting node.

4.1.1 Node reputation
The reputation of a node represents their trustworthiness 
in the network. As a result, it is calculated for the list of 
good and bad actions. These binary actions, are deter‑ 
mined from the behavioural analysis, differentiating ex‑ 
pected and non‑modiϐied transmissions as good and any‑ 
thing else as bad. As a result, the more actions there are 
in either category, the more the reputation will tend to‑ 
wards the corresponding value. In short, the greater the 
amount of good actions, the higher the reputation, and 
vice versa.

𝑆𝑔𝑜𝑜𝑑𝑛 =
𝑊𝑛
∑
𝑖=1

𝑔𝑜𝑜𝑑 𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑛𝑖 (1)

𝑆𝑏𝑎𝑑𝑛 =
𝑊𝑛
∑
𝑖=1

𝑏𝑎𝑑 𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑛𝑖 (2)

Wedeϐine𝑆𝑔𝑜𝑜𝑑𝑛
and𝑆𝑏𝑎𝑑𝑛

as the sumof good and bad ac‑
tions respectively for node 𝑛, as computed in (1) and (2).
We also deϐine 𝑊𝑛 as the size of the action window time
frame, corresponding to the number of previous actions
taken into account during the calculation. By increasing
or decreasing this value, we can inϐluence the precision
of the calculation. This allows the miner to take into ac‑
count only the actions of the last exchange, or all actions
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during the last𝑊𝑛 exchanges. With this, we can open up
the nodes history, allowing the network to have a longer
or shorter memory when it comes to nodes’ actions.
Armed with the quantity of good and bad actions during
the time frame, we can calculate the nodes’ reputation.
Reputation𝑅𝑛 ∈ [0, 1], is expressed as a sigmoid function,
where the exponent 𝛿𝑛 ∈ [−1. 1] represents the weighted
value of the relation between𝑆𝑔𝑜𝑜𝑑𝑛

and𝑆𝑏𝑎𝑑𝑛
, calculated

in (1) and (2).

𝑅𝑛 = 1
1 + 𝑒−𝛿𝑛

(3)

𝛿𝑛 = 𝛽 ×
𝑆𝑔𝑜𝑜𝑑𝑛

− 𝛼× 𝑆𝑏𝑎𝑑𝑛

𝑆𝑔𝑜𝑜𝑑𝑛
+ 𝛼× 𝑆𝑏𝑎𝑑𝑛

(4)

We deϐine two variables for the calculation of 𝛿𝑛,  the 
ϐirst of which is 𝛽 = 8 which corresponds to the 
sensitivity factor inϐluencing the sigmoid function, as 
presented in [25]. The second, 𝛼,  is the weight of 
malicious actions upon the reputation. By changing this 
value, we can increase or decrease the impact of bad 
actions in relation to good actions. As a result, it is 
possible to increase or decrease the consequences of 
misbehaving nodes, making the network more or less 
tolerant. Fig.4 presents the evolution of a node’s 
reputation based upon the value of 𝛼.  As we can see, the 
higher the value, the higher the impact on the overall 
reputation and the more unforgiving the network 
becomes. This illustrates the impact of a node becoming 
malicious, where the more malicious actions are per‑ 
formed, the more the reputation will decrease. Further‑ 
more, thanks to 𝛼,  we can specify the impact of these ac‑ 
tions, allowing the reputation to respond quickly to vari‑ 
ations and changes in the node’s behaviour.

4.1.2 Reputation decay
As presented in Section 3.3, certain threats can pertain to 
malicious access or corruption of legitimate nodes. Once 
their activities have been detected, a bad reputation is 
inevitable, resulting in the node no longer being used 
during routing. However, once a node has been isolated 
from the network, the attacker no longer has any use 
for it. 
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In many cases, the malicious party will move to a better po‑ 
sition to continue their attack, leaving the compromised 
node alone. Since a node’s reputation only evolves when 
they participate in routing activities, there is no way to re‑ 
integrate this node back into the network. To counter this 
issue and permit reintegration, we propose a new metric 
called Reputation Decay. Over time when the node does 
not participate in routing activities, their reputation will 
slowly decay towards the neutral value of 0.5. This will 
increase the chances of a node being used once more for 
routing, allowing it to clear its name. However, this de‑ 
cay does not change the number of good and bad actions 
performed by the node, but serving simply as a means for 
granting it a second chance. It also allows nodes which 
possess a very good reputation and have not been used 
for a while, to decrease back towards the neutral 0.5 as 
well.
We deϐine 𝑅𝑑𝑛𝑡 

as the reputation decay of node 𝑛  at   time 𝑡,  
𝜆 as the decay factor, 𝑡 1 𝑅  as  the  half‑life  of  the reputation
and 𝑅𝑛𝑡 

as the resulting decayed reputation of node 𝑛 at 
time 𝑡.

𝑅𝑑𝑛𝑡
= (𝑡 − 𝑡𝑅𝑛

) × ( 𝜆
𝑡 1

2𝑅
) (5)

𝑅𝑛𝑡
= 𝑅𝑛 −𝑅𝑑𝑛𝑡

(6)

By varying the value or the function of 𝜆, we can inϐluence
the rate of decay, allowing the convergence towards 0.5 to
occur sooner or later. Fig.5 shows the evolution of the de‑
cay rate from a base value of 1 towards the neutral 0.5,
with a half‑life of 𝑡 1

2 𝑅
= 15𝑚𝑖𝑛with various decay meth‑

ods. For the rest of our analysis, we kept a half‑life of 15
minutes and decided on a linear decay functionwith a de‑
cay value of 𝜆 = 0.25. As a result, a node’s reputation will
return to neutral from either an extreme of 1 or 0, after
2 × 𝑡 1

2𝑅, corresponding here to 30 minutes.

4.2 Protocol integration
With the ability to calculate the reputationof a nodebased
upon its actions, it is necessary for it to be integrated into
the AODV routing protocol. Being a reactive routing pro‑
tocol, discovery is performed onlywhen needed, meaning
it can take advantage of the existing reputations. How‑
ever, for the reputation to inϐluence the choice of route,
modiϐications to the existing AODV packet structure is
necessary. Furthermore, with new additions to the dis‑
covery process, we canprovide the necessary information
for theminers to accurately and reliably perform their ac‑
tivities.

4.2.1 Link cost
As explained previously, AODV determines the best route
based on the number of hops thanks to the RREQ hop‑
count ϐield, thus discarding longer routes and keeping
only themost direct possible. However, in our context it is
necessary to exchange the length of the route and instead
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use its reliability factor. As performed in [25], we replace 
the hop‑count ϐield with a metric called link‑cost. This al‑ 
lows the nodes to calculate the ”cost” of using a certain 
neighbour, based upon that neighbour’s current reputa‑ 
tion. With this metric, we can differentiate and separate 
good nodes from bad ones by simply increasing the link‑ 
cost the lower the node’s reputation. Upon receiving an 
RREQ or RREP packet, the node calculates the sender’s 
reputation, along with its potential decay. It then deter‑ 
mines the link‑cost corresponding to the ϐinal reputation, 
increasing the value of the link‑cost ϐield accordingly. By 
updating this ϐield, no modiϐications are brought to the 
overall functionality of AODV, where the route with the 
lowest hop‑count is selected, only here the value corre‑ 
sponds to the most reliable route. This allows the route to 
contain as fewer malicious nodes as possible, all the while 
facing a trade‑off of longer routes for increased route in‑ 
tegrity.

𝐶𝑛 = ⌊(1 − 𝑅𝑛𝑡 
) × (𝐶𝑚𝑎𝑥 − (𝐶𝑚𝑖𝑛 − 1)) + 𝐶𝑚𝑖𝑛⌋ (7)

We deϐine 𝐶𝑛 as the link‑cost between the current node 
and the node 𝑛, with 𝑅𝑛𝑡 

corresponding to the reputa‑ 
tion of said node at time 𝑡. As 𝑅𝑛𝑡 

is normalised between

2
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0 and 1,  it is necessary to expand and adapt the resul‑ 
ting link‑cost. We, therefore, deϐine 𝐶𝑚𝑖𝑛 and 𝐶𝑚𝑎𝑥 as the 
minimum and maximum values possible for this cost. By 
setting 𝐶𝑚𝑖𝑛 = 1, we assure that even with an excellent 
reputation, the link‑cost ϐield will always be incremented 
by one, thus removing the risk of inϐinite cost calculation 
loops. Finally, the resulting value is then decreased to the 
nearest natural number, less than or equal to the calcu‑ 
lated value. Since AODV’s hop‑count ϐield is only one byte 
in width, the value of the link‑cost must be adjusted ac‑ 
cordingly. With an overall maximum potential network 
cost of 255, we can calculate the maximum possible link‑ 
cost 𝐶𝑚𝑎𝑥 based upon the number of potential nodes in 
the network.

𝐶𝑚𝑎𝑥 = 255
𝐿𝑚𝑎𝑥

− 1 + 𝐶𝑚𝑖𝑛 (8)

With 𝐿𝑚𝑎𝑥 corresponding to the maximum possible 
route length (i.e., number of nodes traversed), we can 
adjust the precision of the link‑cost metric. For example, 
with 𝐿𝑚𝑎𝑥 = 32,  we could accommodate a maximum 
value of 8,  whereas 𝐿𝑚𝑎𝑥 = 64 would only allow for four 
individual values. By proposing an adaptable scaling 
function, we can increase or decrease the precision of the 
link‑ cost metric in relation to the number of nodes. Also, 
by tying this value into AODV itself with the 
NET_DIAMETER parameter, we can provide a seamless 
integration between the two. However, although AODV 
allows each node to customise the value of 
NET_DIAMETER accordingly, our method needs the value 
of 𝐿𝑚𝑎𝑥 to remain constant throughout the network, or 
risk a route being dropped for cost overϐlow. For the rest 
of our analysis, we decided on 𝐿𝑚𝑎𝑥 = 64,  which 
corresponds to the maximum TTL value widely used in 
networking, resulting in our routes containing at most 
64 nodes. Fig.6 shows the calculated link‑cost values for 
the different reputational values previously presented in 
Fig.4. Fig.7 illustrates the discovery process of 
AODV‑Miner. By comparing this with Fig.3, we can see 
the differences where node 5 exhibits malicious 
tendencies. Since AODV selects the shortest route 
possible in terms of hops, the RREPs will always transit 
via node 5 for a maximum of 4 hops compared to 5 hops 
via the other routes, putting the data at the mercy of our 
bad guy. By adding the link‑cost into the equation, we can 
inϐluence the route selection process, thus avoiding the 
malicious entity. This is visible in Fig.7 where each node 
possesses a link‑cost (𝑙𝑐) . Since node 5 is malicious, we 
assume it has received a low reputation, resulting in a 
high link‑cost of 4.  This high value causes an increase of 
the total route cost, bringing it up to 6 from the source 
node to node 7.  In this case, the top route is the winner, 
with a total cost of 5 from source to destination, making 
it the most efϐicient and trustworthy route.
Thanks to the quick reactions of the reputation metric, 
the link‑cost can also adapt in a timely manner, immedi‑ 
ately inϐluencing the selection of the next route. Indeed, 
since the validation process takes place after a route has 
expired, the updated reputations only enter into play the

next time the node is needed. This means that as long as
the route remains active, the malicious node can impact
the routing activities, however, the more actions it per‑
formed the more severe the consequences. It is also im‑
portant to note that by artiϐicially lengthening the route
used depending on each node’s reputation, we do not ex‑
plicitly isolate nodes from routing. Our method simply
encourages the protocol to seek another route towards
the destination avoiding themalicious entities asmuch as
possible. However, in some cases, no alternative routes
exist, and the malicious node is utilised, thus impacting
the network security. Further study into these two points
can help reinforce the network security, and is also one of
our current directions.

4.2.2 RREP 2‑Hop

So that the miners can achieve their goals of route valida‑
tion, they must know to whom the packets must be sent.
ByoverhearingpassingRREPs,miners can construct their
view of the expected route towards the destination, but
also back towards the source, adding the hops to the cor‑
responding RVTs. Unfortunately, although overhearing
RREP packets allows the miners to construct parts of the
route, they are missing some elements of the big picture.
Indeed, since RREPs only serve to inform node 𝑛 − 1 to
transmit towards 𝑛, the miners are only aware of the ex‑
pected exchange between these nodes. This information
is insufϐicient, as in many cases node 𝑛 is not the desti‑
nation and will, therefore, need to transmit its data on‑
wards. However, it its current state, the miners are in‑
capable of prediction to whom this packet will go, mean‑
ing they are incapable of validating the behaviour. This
problem is illustrated in Fig.8a, where we can see that
ourminer can only overhear the communications coming
from node 𝑛𝑖. As a result, the RREP packet only informs
on the reverse route back to the source through 𝑛𝑖−1, and
not the forward route towards 𝑛𝑖+1.

To remedy this, we propose an amelioration to the RREP
packet format, allowing us to include the information for
the next hop. This new packet format, called RREP‑2Hop
is presented in Fig.9. We can see the addition of the new
2Hop section, containing the IP andMAC addresses of the
node’s next hop. By providing the MAC addresses of the
next hop, the miners can complete their RVTs and achieve
their goals. By also taking advantage and incorporating
the corresponding IP address, each node can also con‑
struct2HopRoutes in their routing tables, if they sodesire.
Aswecan see inFig.8b, this newadditionallows theminer
to determine the forward route from 𝑛𝑖 towards 𝑛𝑖 + 1,
allowing full validation to take place. So as to allow our
solution to be adapted to existing AODV routing, we also
incorporated a Miner Flag into the packet header. This
allows the system to differentiate and identify the RREP
packets, allowing the choice to function with or without
our addition.
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4.3 Behavioural validation
To be able to determine the reputation and inϐluence the 
route selection, there are a few steps which need to be 
performed. In this section, we present the miners them‑ 
selves, taking a look at how they perform their different 
roles. However, before they can perform their activities, 
the miners themselves must be selected and differenti‑ 
ated from the routes’ routing nodes.

4.3.1 Miner selection
As stated previously, we provide the ability for all net‑ 
work nodes to determine their own role per route. How‑ 
ever, nodes cannot take on both roles of miner and router 
at the same time for the same route as this could result 
in a conϐlict of interest. This is because a routing node 
cannot objectively analyse their own behaviour, or that of 
the node which has transmitted the information to them. 
Furthermore, by separating the roles between multiple 
nodes, we reduce the probability that the potential ma‑ 
licious node could also impact the validation phase, sub‑ 
sequently corrupting the reputation table. The selection 
process is performed during the AODV route phase, al‑ 
lowing all miners to be identiϐied and possess all rout‑ 
ing information needed to perform route validation once 
the route becomes active. As presented previously with 
the deϐinition of RREP‑2Hop, miners use RREP packets 
to gather the necessary hop information. Upon receiv‑ 
ing an RREP packet, the node ϐirst analyses the destina‑ 
tion address. If the RREP is destined for them, then they 
identify themselves as part of the route, processing the

packet information as normal and constructing the diffe‑ 
rent routes in its routing table, using the 2Hop address 
if desired. On the other hand, if the RREP is not destined 
for them, then the node enters an internal validation 
phase. They ϐirst check if they are not already a router 
for the route, in which case the RREP is immediately 
dropped without further analysis. If not, then the 
destination  link‑layer  address  is  extracted  from  the 
packet header and the 2Hop MAC address from the 
RREP‑2Hop payload. Both addresses are then used to 
construct the reverse and forward Routing Validation 
Table entries for the node which transmitted the RREP.

4.3.2 Routing analysis and validation
Once the route discovery has completed, the route can 
begin transmitting data. The selected miners then begin 
to ”mine their route” by observing and analysing all data 
trafϐic originating from neighbour nodes. To accurately 
analyse the data exchange, the miners utilise their for‑ 
ward and reverse RVTs. Each table contains the ordered 
list of expected hops in transmission range of the miner. 
These tables, visible in Fig.8b, allow the miner to verify 
that all packets follow the same hop ordering. This allows 
us to detect any redirecting attacks where the destination 
does not conform to the table entry, or packet destruction 
where the hop list is not traversed completely. However, 
it is important to note that as presented previously, we 
are only able to validate data originating from the route’s 
source towards the route’s destination and not interme‑ 
diate exchanges taking advantage of the routing table en‑ 
tries.
For each packet received, the miners process the data to 
determine its authenticity, as presented in Algorithm 1. 
During the analysis, the miners verify the packet’s desti‑ 
nation as well as its integrity, allowing it to identify if the 
transmitting node has malicious tendencies. The veriϐi‑ 
cation phase stays active as long as the route itself is in 
use. Upon expiration, the miners ϐirst check their passing 
packet buffer, identifying packets currently in transit. If 
the buffer contains data, then the last associated node is 
considered to have not transmitted the data onwards and, 
therefore, increasing the number of bad actions. Once all 
actions have been totted up, the miners all drop their RVTs 
for the route and enter their ϐinal phase of block conϐirmation.
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Algorithm 1Miner route validation run at miner𝑚 upon
reception of pkt(llsrc,lldst,src,dst)
1: if New packet detected then
2: Create new 𝑏𝑢𝑓𝑝𝑘𝑡 entry with ℎ𝑎𝑠ℎ𝑝𝑘𝑡
3: set 𝑏𝑢𝑓𝑝𝑘𝑡 as valid
4: else Previous malicious activity detected ; Exit ;
5: end if
6: 𝑅𝑇𝐸 = Get route entry for [𝑠𝑟𝑐 → 𝑑𝑠𝑡]
7: 𝑅𝑉 𝑇 = get validation tables from𝑅𝑇𝐸 for 𝑙𝑙𝑠𝑟𝑐
8: if 𝑅𝑇𝐸 &𝑅𝑉 𝑇 both empty then
9: ▷ No route validation table, Malicious behaviour

10: Increment 𝑏𝑎𝑑𝑙𝑙𝑠𝑟𝑐; Set 𝑏𝑢𝑓𝑝𝑘𝑡 as invalid
11: else
12: 𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑝𝑘𝑡 = get the next hop from𝑅𝑉 𝑇
13: if 𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝑝𝑘𝑡 ≠ 𝑙𝑙𝑑𝑠𝑡 then ▷ 𝑙𝑙𝑑𝑠𝑡 is not the

next expected hop ‑ Malicious behaviour
14: Increment 𝑏𝑎𝑑𝑙𝑙𝑠𝑟𝑐; Set 𝑏𝑢𝑓𝑝𝑘𝑡 as invalid
15: else ▷ Valid behaviour
16: Increment 𝑔𝑜𝑜𝑑𝑙𝑙𝑠𝑟𝑐
17: end if
18: end if

4.3.3 Block conϔirmation and dissemination
To allow consensus‑based conϐirmation, the miners must
ϐirst create their ownblock containing thenumberofgood
andbad actions for each and all routing nodeswhich it has
mined. The block is then broadcast up to a maximum dis‑
tance of 2 hops, allowing it to reach only nodes in prox‑
imity which are potentially miners for the route. Upon
receipt of such a block, the miner proceeds with two cal‑
culations. Firstly, they analyse the number of good and
bad actions contained in the block, calculating the num‑
ber differences with their own block. If this value is too
high, the block is considered to be invalid and the miner
transmits their own block as a response. However, if no
differences are detected, the miner then performs an ef‑
ϐiciency evaluation to determine if the block is more ef‑
ϐicient than its own. This is achieved by calculating the
percentage of nodes in common in the received block, 𝑃𝐵
versus the miner’s own block 𝑃𝑀 , with 𝐵 corresponding
to the list of nodes in the received block and 𝑀 those in
the mined block.

𝑃𝐵 = |𝑀 ∪ 𝐵|
|𝐵| (9) 𝑃𝑀 = |𝑀 ∪ 𝐵|

|𝑀| (10)

The miner only transmits its own block in this case if it is
deemedmore efϐicient, in other words if 𝑃𝐵 < 𝑃𝑀 where
𝑃𝑀 is considered to possess more nodes overall and a
higher percentage of shared nodes. Since miners can cor‑
rupt the results of this exchange, the process relies on a
consensus where responses from miners overrule previ‑
ously transmitted blocks. To stop validation loops, min‑
ers can only transmit their own block once, allowing the
last block to correspond to the majority. If the received
block is considered more efϐicient, the miner then identi‑
ϐies all commonnodes as ”overridden”, meaning they have
been conϐirmed by another more efϐicient block. This al‑

lowsminers to detect if they possess a nodewhich has not
been validated by otherminers, allowing them to retrans‑
mit their own block containing only the missing nodes
for validation. As a result, the last blocks to be received
and not overruled are considered both valid and more ef‑
ϐicient since they possess the largest quantities of nodes
possible, without overlappingwith other blocks. The only
task left is purely blockchain related, where the miners
hash the contents of their blocks, inserting the hash of the
last received blockchain block, then inserting it into the
blockchain by broadcasting it throughout the network.
This allows all network nodes to extract the list of good
and bad actions for each node, knowing that the block is
valid.

5. IMPLEMENTATION AND SIMULATION
As stated in the previous section, each node contains two
RVTs, storing the ordered list of forwardhops, towards the
destination, and reverse hops, back towards the source.
The nodes also possess a Packet Buffer, containing a list
of packet hashes as calculated by miners along with their
next expected hop. This allows theminers to detectmodi‑
ϐications to thepackets, aswell as serving as a reminder as
to which hop is next expected for this packet. The nodes
also own a Node Reputation Table, which contains the list
of good and bad actions for each node as extracted from
the blockchain. These actions are input into Eq. (1) ‑ (4)
to calculate the node’s current reputation. The number of
actions stored in this table is inϐluenced by the size of the
reputation window𝑊𝑛 as shown in Eq. (1) and (2).
Since our implementation revolves around a lightweight
version of the blockchain, its functionalities are emulated.
Thismeans that the chain itself is not stored on the nodes,
but only disseminated and analysed by the network. By
not storing the received blocks, we save on node mem‑
ory, which we can put to other uses such as reputation
values or the behavioural validation itself. Upon receipt
of a new block from the blockchain, each node calculates
the block’s hash, allowing them to verify the integrity of
each subsequent block. When a route discovery is trig‑
gered, each node accesses the Node Reputation Table en‑
try for the RREQ or RREP‑2Hop sender and calculates the
corresponding reputation. The node then determines the
time since the last use of the corresponding node and ap‑
plies the reputation decay function (5) as needed. The re‑
sulting reputation is then fed to the link‑cost function (7),
providing the corresponding cost for using said node. By
comparing the link‑cost ϐield of received RREQs, we can
make sure to propagate only the lowest values onwards,
thus eliminating potentially malicious routes as the dis‑
covery process advances. However, with the addition of
this metric, it is possible that on occasion the calculated
link‑cost is lower than the previous. This is due to a ϐield
overϐlow after a signiϐicant number of hops and as a re‑
sult the corresponding RREQ can be discarded as it can
be considered too malicious. By only propagating RREQs
with low link‑cost values, we can assure that the destina‑
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Table 2 – Simulation parameters

Parameter Setting
Area Varying
Number of nodes (𝑁) Varying
Malicious Activity Varying
Malicious Weight (𝛼) Varying
Distribution Random uniform
Transmission Range 50m
Max Length (𝐿𝑚𝑎𝑥) 64
Window Size (𝑊𝑛) 5
Reputation Decay Linear
Initial Reputation 0.5
Number of Simulations 100
Simulation Duration 15 min.
Messages per Transmission 5
Transmission Interval 1 min.

tion only receives the most reliable routes possible. Fur‑
thermore, contrary to the approach in [25], here the des‑
tination node does not wait for the most reliable route
before responding towards the source, thus providing all
possible routes for the source itself to choose thebest pos‑
sible option. In our implementation, upon receipt of an
RREQ, the destination waits for a small period of time be‑
fore transmitting the RREP back towards the source. If
any subsequent better RREQs are received, the destina‑
tionwaits oncemore before transmitting the correspond‑
ing RREP. Once the RREPs return to the source node, the
node alsowaits for a slightly longer time period for poten‑
tial other RREPs to arrive, before transmitting along the
most efϐicient route. Any subsequent RREPs update the
route as transmissions are occurring, without impacting
network operations.

5.1 Simulation settings
For our analysis, AODV‑Miner was implemented using
the Contiki‑NG [27] operating system and subsequently
simulated using their Cooja simulator. Table 2 presents
the general parameters used throughout our simulations.
The simulated Cooja nodes possess a wireless interface
using the IPv6 net‑stack running a 6LoWPAN network
layer and a non‑beacon‑enabled always‑on CSMA radio.
Although CSMA allows us to reduce the probability of col‑
lisions, it does not remove it entirely, especially concern‑
ing nodes which are list listening and overhearing trans‑
missions. Since this problem can impact AODV and data
transmissions as much as our Miners, we rely on the un‑
derlying network protocols, as well as our multi‑miner
validation approach to reduce the possible consequences.
Similarly, the always‑on radio permits the nodes to re‑
main in the necessary active state, needed for both AODV
and the validation miners. Their on‑board systems are
initialised using individually‑generated seeds, allowing
each node to possess a different random generator, all the
while providing precise calibration of parameters. The
different malicious nodes are distributed throughout the
network using a random distribution function, only im‑

pacting data trafϐic whilst leaving AODV‑related commu‑ 
nications unscathed for the analysis of the routing proto‑ 
col. For ease of analysis, we simulate the network against 
two types of threats: black‑holes and grey‑holes. As pre‑ 
viously explored in Section 3.3, although we are capable 
of detecting many threats, our detection system revolves 
around the same methods: deviation from expected ac‑ 
tivities. As a result, black‑holes allow us to simulate com‑ 
plete data destruction, whereas grey‑holes allow us to 
vary the probability of destruction, allowing more or less 
packets to transition through the network. This means 
that even with only two attacks, we can hypothesise that 
the results would be similar with the other attacks, since 
their consequences and subsequent detection would be 
the same.
During our analysis, we used two network topologies, 
pitching AODV‑Miner against its older brother AODV. The 
ϐirst contains 100 nodes in an area of 300m×300m 
whereas the second contains only 30 nodes, in a smaller 
area of 150m×150m. This allows us to test our system in 
two different situations, where the possible route length 
signiϐicantly increases, as well as the number of poten‑ 
tial malicious nodes. In both situations, we transmit ϐive 
random data packages every minute, allowing the net‑ 
work time to perform route discovery, packet routing and 
blockchain dissemination.

6. RESULTS
Our simulations allowed us to evaluate and analyse the 
overall functionalities and efϐiciency of our approach. By 
varying the topological layout, we could verify that our 
methodology would be able to handle different‑sized net‑ 
works. We start our analysis by evaluating the functiona‑ 
lity of the reputation metric, before taking a gander at 
the routes themselves. Finally, we analyse how our 
method holds up against varying degrees of malicious 
activities, simulating both black‑hole and grey‑hole 
attacks.

6.1 Reputation analysis
Fig.10a shows the evolution of a node’s reputation over 
time with varying degrees of malicious intentions. By 
using 𝛼 = 2,  we double the weight of malicious acti‑ 
vities in relation to 𝑔𝑜𝑜𝑑 actions. This can be observed 
with 25% malicious activities, where the resulting repu‑ 
tation resides around the neutral 0.5 mark. As a result, 
the greater the malicious activities, the lower the repu‑ 
tation, with 75% and 100% practically indistinguishable. 
Furthermore, we can also notice that the reputation is 
established immediately after the ϐirst route expires, 
round about the 1 minute mark. We can also see that, 
although the values ϐluctuate, they remain in the same 
overall area throughout the simulation.
By varying the value of 𝛼,  presented in Fig.10b, we can 
observe its impact on the reputation. In this ϐigure, we 
analyse the evolution of the reputation for 25% malicious 
activities. We can verify this by comparing the results of
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Fig. 10 – Evolution of node reputation

𝛼 = 2 with the 25% malicious activities from Fig.10. Im‑ 
mediately, we can conϐirm our hypothesis of the impact 
of 𝛼 as we can clearly observe that the greater the value, 
the lower the reputation. This is also true in the opposite 
direction, with the corresponding results for lower 
values of 𝛼 ϐinding themselves closer to the perfect 
reputation of 1. In essence, by acting on this variable we 
can actively inϐluence the weight of all 𝑏𝑎𝑑 behaviour, 
instantly punishing a node for misbehaving, granting 
them forgiveness more swiftly.

6.2 Route analysis
By analysing the routing efϐiciency, we can determine if 
AODV‑Miner can reach its goal of isolating as many mali‑ 
cious nodes as possible from the determined routes. 
Figures 11 and 12 compare these results against the 
standard AODV protocol in a network of 30 and 100 
nodes respectively. Firstly, we analyse the number of 
packets dropped (|𝑃 𝑎𝑐𝑘𝑒𝑡𝑠𝑆𝑒𝑛𝑡|−|𝑃 𝑎𝑐𝑘𝑒𝑡𝑠𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑|) , 
visible in Fig.11a and Fig.12a. We can immediately see 
that there is a reduction in lost packets, with an overall 
increase in efϐiciency of 48% with 30 nodes, and 38% 
with 100 for  a network with 10% malicious activities. 
Furthermore, these results are corroborated in Figures 
11b and 12b, where we can see that AODV‑Miner 
possesses a higher overall throughput than AODV for 
both typologies, whatever the percentage of malicious 
nodes. It is to be noted that not all drops can be 
prevented, since the reputation is computed on the ϐly, 
leaving time for malicious entities to cause mayhem. It is 
also possible that in some cases, traversing a node with 
a link‑cost of 4, is still considered more efϐicient than ϐive 
nodes with a cost of 1. However, there is a consequence to 
this increase in efϐiciency. Indeed, Fig.11c and 
Fig.12c show a trade‑off, where we may indeed 
have better efϐiciency, but at the cost of longer routes. 
In our network with only 30 nodes this difference is 
minimal, however, by increasing the number of 
nodes we can see an increase in the number 

of hops. This is not the only cost of our implementation. 
Another is linked to the activities of the miners, since 
block validation and distribution increases the number 
of packets exchanged throughout the network. Our ϐinal 
analysis in Fig.11d and Fig.12d demonstrates this 
increase, with both 30 and 100 node typologies 
possessing a signiϐicantly higher overhead, ending up 
around the 80% mark. Although this may seem high, it is 
a necessary evil to ensure that a higher percentage of data 
reaches its destination unscathed.
Thanks to these results, we can conϐirm that our method 
allows us to isolate and avoid malicious nodes, increasing 
the probability of data reaching its destination. Fig.13 il‑ 
lustrates this process in networks of 30 and 100 nodes, 
both with 25% exhibiting black‑hole characteristics, rep‑ 
resented with thick outlines. By superimposing the com‑ 
puted reputation for all nodes, as well as the most used 
route by both AODV and AODV‑Miner, we can visualise 
this increase in performance. In both networks, we can 
see that AODV attempts to take the shortest most direct 
route possible per its programming, which unfortunately 
results in encountering a malicious node. In contrast, 
AODV‑Miner is capable of discovering a free trustworthy 
route between the source and destination, avoiding ma‑ 
licious entities. As we can see by the colour gradient, 
nodes have been attributed both high and low reputa‑ 
tions, depending on their activities during routing. By 
analysing Fig.13a, we can see that a total of eight nodes 
have been attributed reputations higher than the neutral 
0.5, whereas three others have received low reputations. 
As stated previously, it is a necessary evil to allow mes‑ 
sages to be lost to allow for the malicious activities to be 
detected and the reputation computed. This means that 
in this scenario, three determined routes ended with all 
their data being lost before AODV‑Miner was able to adapt. 
Of course, this effect is ampliϐied the larger the network, 
and consequently the more malicious nodes are present. 
In contrast, Fig.13b presents a signiϐicant sixteen nodes 
possessing a high reputation and seven with low values, 
four more than the smaller network. We can also see a
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Fig. 11 – Routing efϐiciency between AODV‑Miner and AODV with a network of 30 nodes

cluster of four malicious nodes in the centre of the net‑ 
work separating the source from the destination, all of 
which have been detected and subsequently avoided. One 
ϐinal note is that, as is the case with AODV, the route se‑ 
lected may on occasion change due to various reasons. We 
can see this with the fact that in both ϐigures, there are 
nodes which have good reputations, and yet are not part 
of the most used route. This is possible where some RREQ 
messages are lost due to collisions, forcing the network 
to select an alternate route, or simply arriving too late to 
change the selected route.

6.3 Threat adaptation
The ϐinal aspect of our analysis concerns the ability of 
our system to adapt to different threat types. In this con‑ 
text, we pitch the AODV‑Miner against varying degrees of 
packet drops in a grey‑hole attack. Some grey‑hole at‑ 
tacks use packet selection to decide which data to destroy 
and which to let pass, also called Selective Forwarding 
(RTE06 in Table 1). In our case, we use internal probabi‑ 
lity functions to decide which packet to drop on each 
malicious node, each initialised with a different seed 
allowing different values of probability between them. 

Fig.14 shows an analysis of these activities for a 
network of 30 nodes and Fig.15 for a network of 100 
nodes.
If we turn our attention to the analysis of the 30 node 
topologies, Fig.14 shows the different throughput levels 
of AODV against AODV‑Miner with varying numbers of 
malicious nodes, based on the grey‑hole probability in 
use. We also extend this analysis by comparing the 
results with different values of 𝛼,  thus showing its 
impact on the determination of the reputation and 
consequently the routing efϐiciency. We can see that in 
general, AODV‑Miner performs well, keeping an overall 
throughput higher then the corresponding values of 
AODV. Naturally, the more nodes turn to the dark side, 
the harder it is for AODV‑Miner to determine a free route, 
which we can see with the very slight increase in 
network efϐiciency. Fig.14a shows the results where 
𝛼 = 0.5 corresponding to a very forgiving network where 
malicious activities have half the impact of good 
activities. This means that a node needs to perform twice 
the amount of bad activities than good to warrant a 
decrease in its reputation. This can be conϐirmed in the 
results with 10% and 25% malicious nodes possessing a 
malicious probability of 50%, where the throughput 
drops slightly since on average the nodes drop every 
other packet they receive. However, the moment the 
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Fig. 12 – Routing efϐiciency between AODV‑Miner and AODV with a network of 100 nodes
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Fig. 13 – Visualisation of route reputation after 15 mins. with 25%malicious nodes

percentage of packets dropped is higher than a ratio of 
1 ∶ 1,  the throughput rises once more, increasing even 
higher when all packets are being destroyed, reaching the 
same value as 25% malicious probability. In contrast, 
Fig.14b represents the case where good and bad activities 
possess the same weight, 𝛼 = 1.

Here we can see that, for 10% malicious nodes, the 
throughput decreases only slightly the higher the 
malicious probability, simply due to the need for packets 
to be dropped before the reputation can be computed. 
The rest of the results decrease in throughput
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Fig. 14 – Throughput comparison between AODV‑Miner and AODV with a network of 30 nodes subjected to grey‑hole attacks

the higher the probability, all the while remaining slightly
higher, or on par, with the results from Fig.14a. However,
we can already identify a slight decrease in throughput
when all packets are being dropped when compared to
theprevious ϐigure. Fig.14c shows the ϐirst analysiswhere
malicious activities possess a higher weight to good, with
𝛼 = 2. Comparing with 𝛼 = 0.5, here nodes need to per‑
form twice the amount of good actions than bad, to sta‑

bilise their reputation once more. We can observe that,
contrary to the previous analyses, there is a distinct de‑
crease in reputation the higher the malicious probability,
all thewhile remaining higher or equal to AODV. However,
once more we can see that once more, the throughput for
100% of packets being dropped is lower than the previ‑
ous values of 𝛼. On the other hand, due to the increase in
malicious weight, the initial throughput with only 25% of
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nodes exhibiting malicious tendencies is higher than be‑
fore. As a result, the higher the value of𝛼, themoreweight
is accorded to bad actions and the faster AODV‑Miner can
react. That being said, there is a point where we reach
peak efϐiciency, and the throughput cannot increase any
higher and even starts to decrease slightly. This is the case
of Fig.14d and Fig.14e with 𝛼 = 5 and 𝛼 = 10 respec‑
tively. We can see that the values remain extremely sim‑
ilar, with in some cases 𝛼 = 10 presenting slightly lower
results than 𝛼 = 5, amplifying the previous observations
for 100%malicious probability. However, as stated previ‑
ously, when the vast majority of the network has become
one with the enemy, there is only so much that can be
done to try and combat the issue. This is the case with
75% of nodes exhibiting malicious habits, where the re‑
sults for all ϐive values of 𝛼 are extremely close with very
low throughput levels.
By analysing the results fromnetworks of 100 nodes, pre‑
sented in Fig.15, we can analyse and strengthen our hy‑
potheses. First off, we can see that in general the larger
network size has resulted in general decrease in through‑
put level, due to the presence of more malicious nodes,
as illustrated in Fig.13b. By beginning our analysis once
more with 𝛼 = 0.5 in Fig.15a, we can see the same
pattern as previously, where the throughput drops be‑
tween 25% and 50%malicious probability with 10%ma‑
licious nodes, only to rise once more, this time surpass‑
ing the throughput with 25% probability. This is also the
case with 25% malicious nodes, although the increase is
more subtle than the 30 node network in Fig.14a. How‑
ever, here we can see that for 25% malicious probabil‑
ity, the corresponding throughput is lower than that of
AODV for all percentages of malicious nodes. This rein‑
forces our hypothesis that a low value of 𝛼 makes the
network more forgiving, meaning it takes longer to de‑
tect and isolate malicious nodes, resulting in them being
used more often, dropping more packets. Furthermore,
whereas AODV on occasion will change routes depend‑
ing on which RREP returns ϐirst and the potential RREQ
losses, AODV‑Miner would continue to use the node, since
it would receive a good reputation, as previously demon‑
strated in Fig.10b. Increasing the value of 𝛼 consequently
increases the overall throughput, although some paral‑
lels with the low value of 𝛼 can still be made. This is the
case for 𝛼 = 1 in Fig.15b, where a similar phenomena
can be observed with 10% malicious nodes, all the while
possessing a generally higher throughput. By looking at
the values for 25%malicious probability, we can see that
AODV‑Miner is once again higher than AODV, reinforcing
our previous hypothesis. Increasing the inϐluence of bad
actions, visible in ϐigures 15c, 15d and 15e demonstrates
the advantages but also disadvantages of higher values.
If we turn our attention to the results for 25% malicious
probability, we can see the corresponding throughput in‑
creases the higher the value of 𝛼, also visible in the other
two ϐigures. However, the higher the malicious probabil‑
ity, themore the associated throughput seems to struggle,
decreasing slightly the more 𝛼 rises, similarly to the net‑

work of 30 nodes. This can be explained by the fact that
malicious nodes are detected quicker, the higher the vale
of 𝛼, explaining the increase in throughput for 25% ma‑
licious probability. This advantage allows AODV‑Miner to
determine new routes constantly once a malicious node
has been detected. Furthermore, with a malicious proba‑
bility of 25%, on average 1 packet in 4 is dropped, mean‑
ing it is possible that for every four packets transmitted
along the same route, up to four malicious nodes can be
detected, increasing the efϐiciency of AODV‑Miner. As a
consequence, the higher the malicious probability, the
longer it takes to detect and circumnavigate malicious
nodes. In the previous example, amalicious probability of
50%would produce a drop rate of 1 in 2, meaning that for
four packets we could potentially detect only three, fur‑
ther decreasing to two for 75%, ending up with only a
single node when black‑holes are used. This means that
it would take AODV‑Miner potentially four times longer
to identify malicious nodes when they drop all packets
when compared to grey‑holes dropping only 25%. This
delay would consequently manifest in a lower through‑
put, as more malicious nodes need to be encountered di‑
rectly to identify a route. Finally, as already examinedpre‑
viously, a network where 75% of all nodes are beyond
hope, even by changing the route constantly in an effort
to reach the destination, it is highly unlikely to ϐind a clear
route. This is illustrated by the fact that AODV‑Miner re‑
sults in a lower throughput for 25%malicious probability
than AODV, where the signiϐicant presence of malicious
nodes simply hinders the overall performance.

7. DISCUSSION AND FUTUREWORK
As we have presented previously, AODV‑Miner has pro‑
vided some overall good results. By providing an analy‑
sis against various degrees of grey‑holes, we have demon‑
strated the adaptability of our protocol and its abil‑
ity to cope with different attack scenarios. However,
we are aware that this analysis possesses some limi‑
tations. Firstly, our system revolves around an emu‑
lated lightweight blockchain, basically assimilated to a
dissemination tool only. This was motivated to allow us
to concentrate further on the validation miners them‑
selves and their activities related to behavioural analy‑
sis. Blockchain storage is a well‑known challenge when
it comes to the IoT, where many applications are turn‑
ing towards cloud computing strategies to store their data
[28]. This means that the blocks themselves in our case
are not stored on the nodes due to the inherent hard‑
ware limitations of IoT devices. Instead, the information
is simply extracted and used to update the Node Reputa‑
tion Tables, before forwarding the blocks onwards. Our
consensus‑based validation metric also responds to the
speciϐicities of IoT devices, reducing computation and en‑
ergy consumption inherent to thePoW concept. Secondly,
we only concern ourselves with malicious nodes inϐiltrat‑
ing the routing process. This choice was motivated by
our interest to demonstrate the efϐiciency of our module
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Fig. 15 – Throughput comparison between AODV‑Miner and AODV with a network of 100 nodes subjected to grey‑hole attacks

against such attacks, without the risk of further compro‑
mise by a malicious party. However, the protection of the
validationprocess itself is one of our current interests and
we are proposing an extension to this module to secure
the PoW against malicious miners.

Our consensus‑based reputation system has been pro‑
posed and evaluated using AODV, since it provides both
a simple and efϐicient platform for analysis. However,

our approach has been realised in such a way that it can
be applied to every platform respecting certain require‑
ments. Indeed, many new protocols have emerged since
its elaboration, each with their own advantages and secu‑
rity integrations. Our next step would be to fully analyse
the advantages and functionality of our systemwith these
new protocols, by integrating our consensus‑based repu‑
tation system into the route decision‑making process it‑
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self. By comparing these results with our AODV baseline,
we can evaluate in a more in‑depth context the efϐiciency
and functionality of our system. Furthermore, by deploy‑
ing our system on real devices, we can extrapolate real‑
life results from the idealistic simulation environment, as
well as evaluate the impact of the implementation itself.
Through this experimentation, we can extend our study
to encompass further criteria, such as the impact of the
overhead on the energy consumption and lifespan of the
devices themselves.

8. CONCLUSION
In this paper, we introduced a secure consensus‑based
routing method using node reputation metrics to iden‑
tify themost trustworthy route available. The consensus‑
based validation technique employed allows us to accu‑
rately separate malicious nodes from the masses, avoid‑
ing them in subsequent communications. Furthermore,
by using blockchain as amethod for distributing the com‑
puted reputation throughout the network, we assure that
all nodes receive the correct and valid reputation values
for the entire network. Finally, with the application of
a reputation decay functionality, we provide the ability
for the network to heal itself by reintroducing repaired
and salvaged nodes without user intervention. By im‑
plementing our module in an AODV‑like routing protocol,
AODV‑Miner, and analysing the overall efϐiciency in multi‑
ple scenarios with different network topologies and com‑
plexities, we can demonstrate the adaptive capabilities
of our network. Through extensive simulations, we have
not only proved the increase in security and efϐiciency of
AODV‑Miner in relation to AODV, but also the importance
of reputation‑based routing inmulti‑hop networks. How‑
ever, a signiϐicant increase in overhead forms a necessary
trade‑off in the strive for increased integrity and security
in routing activities.
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