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Abstract – Multiple Object Tracking (MOT) is a task for containing detection and association. Plenty of trackers have
achieved competitive performance. Unfortunately, for the lack of informative exchange on these subtasks, they are often
biased toward one of the two and underperform in complex scenarios, such as the inevitable misses andmistaken trajectories
of targets, when tracking individuals within a crowd. This paper proposes TransFiner, a transformer‑based approach to post‑
re ining MOT. It is a generic attachment framework that depends on query pairs, the bridge between an original tracker and
TransFiner. Each query pair, through the fusion decoder, produces re ined detection and motion clues for a speci ic object.
Before that, they are feature‑aligned and group‑labeled under the guidance of tracking results (locations and class predic‑
tions) from the original tracker, inishing tracking re inement with focus and comprehensively. Experiments show that our
design is effective, on the MOT17 benchmark, we elevate the CenterTrack from 67.8% MOTA and 64.7% IDF1 to 71.5% MOTA
and 66.8% IDF1. The code is publicly available at https://github.com/BeenoSun/TransFiner.
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1. INTRODUCTION

Multiple Object Tracking (MOT) refers to linking identi‑
cal detections across frames and primarily exists in the
form of twomainstream paradigms, namely Tracking‑By‑
Detection (TBD) and Joint Detection and Tracking (JDT).
TBD approaches [1, 2, 3, 4, 5] split the MOT into two sep‑
arate stages, including detection and association. JDT,
alternatively, solves the MOT problem in uni ied ways
via constructing a tracking‑related structure [6, 7, 8, 9]
within or adjusting the output objective of the particular
branch [10] of the existing detectors. From an addition‑
ally emerging paradigm, transformer‑based MOT formu‑
lations [11, 12, 13, 14, 15, 16] also inish tracking satis‑
factorily. Nevertheless, these methods still struggle with
intricate scenarios, such as several objects passing each
other and patches of crowded objects, which lead to ei‑
ther high false alarms (or a high miss rate) and degraded
association simultaneously. On the other hand, with a De‑
tection Transformer (DETR) [17], end‑to‑end object de‑
tection is realized through object queries and Hungarian
loss, facilitating individual‑separate detection.

In light of these, we show how to build a generic and tar‑
geted framework for re ining MOT, referred to as Trans‑
Finer, a transformer‑based re inement approach. Unlike
most related work, Detection Re inement for Tracking
(DRT) [18] re ines MOT patch by patch, which indeed im‑
proves detection but hardly promotes association (even
degrades it according to the IDF1 reported in experiments
[18]). We, instead, take a full‑scale approach by enriching
querypairs guidedby theoriginal tracker (Fig. 1c), re ine‑
ment then is a ine‑tuning process for query pairswithout
scope restriction.

(a) Track queries from the previ‑
ous

(b) Track queries from the his‑
tory buffer

(c) Object query pairs enhanced by the original tracker (Ours)

Fig. 1 – Pipelines of preparing queries for the decoder. 1a Track
queries from the previous frame, directly [12, 11] or enhanced by fea‑
tures from the current frame [13]. 1b History buffer is responsible for
producing track queries [14, 15]. 1c Ours. As a post‑re inement frame‑
work, we ill the object query pairs across frameswith encoded features
obtained under customized guidance from the original tracker.

As summarized in Fig. 1, the existing transformer‑based
MOT formulations [12, 11, 13, 14, 15, 16] primarily
accomplish tracking via the tracklet record (e.g., track
query). Instead,weuse freshly initializedquerypairs (i.e.,
separately for detection and association) for every shot.
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With this design, we note that a competitive tracking re‑
inement can be achieved while less affected by the for‑
merly poor tracking predictions.

TransFiner takes originally estimated object locations,
class predictions, and two successive frames as inputs,
predicting detections (frame 𝑡) and association clues con‑
taining motions of center and box (mapping detections
from frame 𝑡 to frame 𝑡−1). These are achieved via Trans‑
Finer’s query pairs plus fusion decoder. The latter consists
of the fusion attention module and dual‑decoder. Specif‑
ically, fusion attention is responsible for the interaction
between query pairs, while the dual‑decoder is assigned
to take care of these two separately.

In order to better utilize information from the origi‑
nal tracker, predictions are categorized into quali ied
and poor ones in terms of their class scores. Together
with learnable label embeddings, TransFiner inishes tar‑
geted re inement with different focuses of query embed‑
dings on various estimations in parallel. During training,
we additionally refer to ground‑truth objects when pre‑
assigning re inement targets to original estimations with
close distance, avoiding instability introduced in layer‑
wise Hungarian matching when re ining.

Experiments show that a tracker re ined by Trans‑
Finer are robust enough to revisit compelling perfor‑
mance. With TransFiner’s re inement, CenterTrack
achieves 71.5% MOTA, and 66.8% IDF1 on the MOT17
benchmark.

2. RELATEDWORK

2.1 Association in tracking
Motion and appearance are two crucial references when
linking detections between frames. Several works rely
solely on motions, guiding objects to the next frame [1,
2, 10, 8, 6] or moving them backward [7, 16] to search for
associated ones. Some [19, 5] take advantage of appear‑
ance features to match interframe objects by computing
similarity scores between feature embeddings. Naturally,
combining both in association [3, 20, 21, 4, 22, 9, 23] is
also widely explored.

Another recent popular trend builds on transformer [24],
packaging the preceding information into high‑level em‑
beddings (e.g., track queries [12, 11, 13, 14, 15]). These
embeddings are then processed togetherwith the current
information [12, 14, 13, 15], or they serve as the initial‑
ization in the latest detection [11], handling association
problems via another detection shot. Our method extends
this trend by injecting freshly aligned and grouped en‑
coded features to query pairs focused on joint prediction
(re inement) of detections and corresponding motions
for association, which is completed in one run. Further‑
more, we package information from centers and boxes
into motions, facilitating precise association even among

crowds.

2.2 DETR and its variants
DETR [17] handles object detection in an end‑to‑end
manner. This bene its from the transformer’s attention
mechanism and the introduction of object query; how‑
ever, unfortunately two dominating factors contribute to
slow convergence of DETR. To be speci ic, several variants
[25, 26, 27] improve the attention module by designing
mechanisms to constrain the interaction ields (e.g., sam‑
pling points [25], additional spatial attention weight [26,
27]), easing the match burden in comparison to the inef‑
icient global search from DETR. Different to this, object
query alignment is studied in [28, 29], with the retrieval
of the queries from encoded features showing effective‑
ness in accelerating convergence.

We build upon deformable DETR [25]. Speci ically for
tracking re inement, we construct a fusion decoder com‑
posed of fusion attention and a dual‑decoder. Two de‑
coders are connected through the fusion attention mod‑
ule, an additionallymasked self‑attentionmechanism, en‑
suring effective intercommunication of query pairs. It is
noteworthy that query pairs are iteratively aligned based
on the inherent variable reference locations. Repetitive re‑
inement is then realized through consecutive updates of
the pairs via decoder layers.

2.3 Re inement
By exploring the joint space of inputs and outputs, re ine‑
ment can generally be divided into multi and single‑step
approaches. The former involves iterative correction [30,
31] and cascaded recti ication [32]. Contrastingly, the lat‑
ter simply attaches an independentmodule to the original
model [33, 34, 35, 36, 18, 37], yielding the re ined results
in a single pass.

MOT re inement focuses on optimizing detections and
associations, and existing methods [37, 18] fall into the
second category outlined above. ReMoT [37] enhances
the tracklets of objects through a split‑then‑merge strat‑
egy, reducing the identity switches, which, however, are
not primary causes of performance degradation. Alter‑
natively, DRT [18] re ines the detection results from am‑
biguous patches, resulting in decent improvements. Nev‑
ertheless, due to the patch‑based nature, the scope of
post‑processing is limited to a prede ined area, mak‑
ing it different from full‑scale re inement and failing to
strengthen association performance effortlessly, over the
original tracker. These inspire the design of TransFiner, a
full‑scale and single‑step approach to re ine MOT on de‑
tection and association.

3. PRELIMINARIES
Original tracker. Generally taking a subset from frames
{𝐼𝑡}𝑇

𝑡=1 (up to the last frame 𝐼𝑇 of a video sequence) as
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Fig. 2 – Re ining tracker via TransFiner. Encoded features 𝐹 𝑡 and 𝐹 𝑡−1 produced by the CNN backbone and encoder, original tracking results, and
plain query pairs serve as inputs for the fusion decoder (i.e., 𝑀 fusion decoder layers). Following the FFN module, query pairs (𝑄𝑡, 𝑄𝑎𝑠𝑠𝑜) from the
fusion decoder transform into detections and motions. For the original results, boxes ignored by post‑processing are in dotted form and are partially
picked for illustration. The dotted CNN and the encoder indicate that weights are shared with the solid ones.

input, original tracker refers to the tracker whose pre‑
dictions are to be re ined. Outputs from the origin are
{ ̂𝑜𝑡

𝑖}
𝐾−1
𝑖=0 , where 𝐾 predictions are extracted from the

post‑processingwith laxer output settings (e.g., lower ob‑
jectness score threshold). Let ̂𝑜𝑡

𝑖 = ( ̂𝑐𝑡
𝑖 , �̂�𝑡

𝑖 , ̂𝑎𝑡
𝑖), ̂𝑐𝑡

𝑖 and �̂�𝑡
𝑖

respectively indicate the classi ication score, as well as
bounding box of object 𝑖 out of the𝐾 predictions in frame
𝑡. ̂𝑎𝑡 represents the association clues (e.g., motions [1, 6,
10, 2, 8] or feature embeddings [19, 22, 5]) linking objects
across frames.

Re inement. Let encoded image features from frame 𝑡
and 𝑡 − 1 be the 𝐹 𝑡 and 𝐹 𝑡−1, respectively. Perform‑
ing re inement on { ̂𝑜𝑡

𝑖}
𝐾−1
𝑖=0 contributes to { ̃𝑦𝑡

𝑖}
𝑁−1
𝑖=0 , where

̃𝑦𝑡
𝑖 = ( ̃𝑐𝑡

𝑖 , �̃�𝑡
𝑖 , ̃𝑎𝑡

𝑖), and 𝑁 is the number of queries in the de‑
coder. ̃𝑎𝑡

𝑖 denotes the motion of object 𝑖 between frames.
Additionally, TransFiner is built upon deformable DETR
[25], whose decoder relies on the initial reference loca‑
tions 𝑖𝑛𝑖𝑡_𝑟𝑒𝑓 to make inal predictions.

4. MOT REFINEMENT DRIVEN BY TRANS‑
FORMER

4.1 Why transformers in re inement
Based on DETR [17] and its derivations [38, 29, 25, 28,
27], we show a transformer’s superiorities over convolu‑
tional neural networks in post‑re inement in the follow‑
ing ways: (1) In DETR‑like methods, stacked decoder lay‑
ers gradually rectify predictions, resembling the re ine‑
ment process. (2) The object query is regarded as the
complex of the corresponding target, the initialization of
which, under the guidance of initial predictions, is in‑
ished with fetching speci ic image features, enabling tar‑
geted re inement. (3) Inspired by training with joint de‑
noising andmatching [38], re inementwith a transformer
can be cast into two parallel processes: denoising quali‑

ied predictions and rematching for the poor ones. In the
following sections, we describe how TransFiner incorpo‑
rates these characteristics.

4.2 Framework of TransFiner upon query pair

A core concept in TransFiner is query pairs (𝑄𝑡, 𝑄𝑎𝑠𝑠𝑜).
𝑄𝑡 detects, and 𝑄𝑎𝑠𝑠𝑜 produces related motions (related
means each pair should take a speci ic object). As shown
in Fig. 2, query pairs propagate within the fusion de‑
coder. Thus, framework of TransFiner can be divided into
three parts: decoder’s inputs, decoding, and decoder’s
predictions over query pairs. For inputs, we package en‑
coded features 𝐹 𝑡 and 𝐹 𝑡−1, original results ̂𝑜𝑡, and plain
query pairs. Decoding, after targeted initialization on
query pairs under ̂𝑜𝑡, focuses on fusing pairs and sepa‑
rately processing queries for detection (𝑄𝑡) and associa‑
tion (𝑄𝑎𝑠𝑠𝑜), separately contributing to target estimations
of frame 𝑡 (i.e., (�̃�𝑡, ̃𝑐𝑡)) and association clues ̃𝑎𝑡 as target
motions of center and box relative to that of the previous
frame.

4.3 TransFiner’s fusion decoder layer
TransFiner’s fusion decoder layer consists of two mod‑
ules including dual‑decoder layer and fusion attention,
which are introduced below.

Dual‑decoder layer. TransFiner provides association
clues ̃𝑎𝑡 in the form ofmotions, i.e., offsets (if ideal) point‑
ing from 𝑏𝑡 to 𝑏𝑡−1 (𝑏 for ground truth boxes). The iterative
bounding box re inement [25]mode of a decoderworks by
iteratively correcting box predictions from the former de‑
coder layer (through recti ications Δ�̃�𝑡 from 𝑄𝑡). We, in‑
side query pairs, extend the mode by simultaneously rec‑
tifying (predicting) the attached bounding boxes in frame
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Fig. 3 – Roadmap of training fusion decoder layers. The fusion decoder layer starts by splitting queries into denoising and rematching groups (in‑
dicated by a dotted line inside subsequent queries). Fusion between query pairs is performed afterward. In detail, the fusion mask blocks intraframe
exchange while selectively allowing communication between frames (white means no mask, gray for partial mask). We use ROIAlign to encode features
guided by �̃�𝑙−1 of layer 𝑙 − 1 (or �̂�𝑡) before decoding. The aligned features are added to query pairs as extra semantic information. Additionally, we train
categorized query pairs in a targeted manner.

𝑡 − 1 (through motions ̃𝑎𝑡 from 𝑄𝑎𝑠𝑠𝑜), that is

�̃�𝑡
𝑙 = Δ�̃�𝑡

𝑙 + (�̃�𝑡
𝑙−1 if 𝑙 > 1 else �̂�𝑡) (1)a

�̃�𝑎𝑠𝑠𝑜
𝑙 = ̃𝑎𝑡

𝑙 + (�̃�𝑡
𝑙−1 if 𝑙 > 1 else �̂�𝑡) (1)b

where 𝑙 (1 ≤ 𝑙 ≤ 𝑀) is the layer index of the fusion de‑
coder. In general, �̃�𝑡 and �̃�𝑎𝑠𝑠𝑜, connected by the motions
̃𝑎𝑡 across frames, separately propagate through the dual‑

decoder structure of the fusion decoder.

Fusion attention is the self‑attentionmechanismwith an
additionally added fusion mask 𝑀𝑎𝑠𝑘𝑓𝑢𝑠𝑖𝑜𝑛. Depicted as
the block with a color ramp from orange to gray in Fig.
3, fusion begins by concatenating the embeddings from
query pairs (i.e., 𝑄𝑡, 𝑄𝑎𝑠𝑠𝑜 ∈ ℝ𝑁×𝑑 𝐶𝑜𝑛𝑐𝑎𝑡⟶ 𝑄𝑓𝑢𝑠𝑖𝑜𝑛 ∈
ℝ2𝑁×𝑑, 𝑑 is the feature dimension). Self‑attention is
then performed on𝑄𝑓𝑢𝑠𝑖𝑜𝑛 constrained by𝑀𝑎𝑠𝑘𝑓𝑢𝑠𝑖𝑜𝑛 ∈
ℝ2𝑁×2𝑁 to focus on the exchange of cross‑frame informa‑

tion. Thus 𝑀𝑎𝑠𝑘𝑓𝑢𝑠𝑖𝑜𝑛 = [𝑚𝑖,𝑗]2𝑁×2𝑁 satis ies

𝑚𝑖,𝑗 =

⎧{{{{
⎨{{{{⎩

0, if (𝑖 − 2𝑁 − 1)
2 ) × (𝑗 − 2𝑁 − 1)

2 ) < 0
and 𝑖%𝑁 = 𝑗%𝑁;

−∞, if (𝑖 − 2𝑁 − 1)
2 ) × (𝑗 − 2𝑁 − 1)

2 ) > 0;
𝛽, otherwise.

(2)

𝛽 is a hyperparameter introduced in the following.

Detailedly, sub‑masks of 𝑀𝑎𝑠𝑘𝑓𝑢𝑠𝑖𝑜𝑛 can be categorized
into two groups, namely 𝑀𝑎𝑠𝑘𝑖𝑛𝑡𝑟𝑎 ∈ ℝ𝑁×𝑁 serving
as the mask of intra‑frame (top‑left and bottom‑right of
𝑀𝑎𝑠𝑘𝑓𝑢𝑠𝑖𝑜𝑛), along with 𝑀𝑎𝑠𝑘𝑖𝑛𝑡𝑒𝑟, in a similar way.
(�̃�𝑡

𝑙 , �̃�𝑎𝑠𝑠𝑜
𝑙 ), following Equation (1)a and (1)b, are moved

from �̃�𝑡
𝑙−1 through query pairs, which require each pair

to pinpoint a speci ic object. It is for this reason that el‑
ements along themain diagonal of 𝑀𝑎𝑠𝑘𝑖𝑛𝑡𝑒𝑟 are empha‑
sized more than others, offering more room for each pair
to determine its target (𝛽 in Equation (2) shows this at‑
tention difference, −10 is our default setting, for more to
refer to the discussion on Table 2). In a nutshell, a fusion
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mask is designed to improve the match between query
pairs while reserving space for retrieving extra informa‑
tion.

4.4 Decoder initialization
Query pairs of the fusion decoder greatly contribute to
the object predictions. Hence, it is straightforward to con‑
sider integrating the original predictions ̂𝑜𝑡 into their ini‑
tialization.

Reference locations. TransFiner ills initial reference lo‑
cations of two recent frames 𝑖𝑛𝑖𝑡_𝑟𝑒𝑓𝑡 and 𝑖𝑛𝑖𝑡_𝑟𝑒𝑓𝑎𝑠𝑠𝑜

with �̂�𝑡 (𝑖𝑛𝑖𝑡_𝑟𝑒𝑓 is the same as �̃�𝑙=0).

Query pairs. Some [28, 29] inject the query embeddings
with encoded features from the regions of interest. As
shown in Fig. 3, we similarly ROIAlign [39] the encoded
features within reference locations �̃�𝑙−1 under layer 𝑙, re‑
sulting in 2𝑁 aligned feature maps. Afterward, extracting
and combining the features from the sampling points of
each feature map yields 2𝑁 distinct feature embeddings,
which are then added to the corresponding query pairs.

4.5 Query denoising and query rematching
Prediction is often categorized as good or bad based on its
accordance with the supposed ground truth. The former
usually takes less effort than the latter under re inement.
In otherwords, a query initialized from the formerusually
has a closely related target, which may suffer from the in‑
stability of theHungarianmatching (i.e., target shift as the
disturbance introduced in re inement, a similar question
discussed in [38]). Hence, we introduce denoising and re‑
matching split (d&r split for short), including inference
and training steps shown in Fig. 3.

Inference. We distinguish a query for denoising or re‑
matching by comparing its objectness score ̂𝑐𝑡

𝑖 from ac‑
cordingly initialized original prediction ̂𝑜𝑡

𝑖 with 𝑡ℎ𝑟𝑜𝑢𝑡
(e.g., 0.4). Afterward, we label queries by assigning the
denoising embedding 𝑞𝑑 to those associated with de‑
cent predictions, i.e., (𝑄𝑡

𝑑, 𝑄𝑎𝑠𝑠𝑜
𝑑 ), and the rematching

embedding 𝑞𝑟 to those related to poor predictions, i.e.,
(𝑄𝑡

𝑟, 𝑄𝑎𝑠𝑠𝑜
𝑟 ). There is a reminder that decoder performs

identi ication over denoising and rematching at the irst
layer.
Training. After conducting the inference step amid
training, we further pre‑determine the matched target‑
prediction pairs among 𝑄𝑑 following

Target [(𝑄𝑡
𝑑)𝑚] = {

𝑏𝑡
𝜎(𝑚), if iou (𝑏𝑡

𝜎(𝑚), ̂𝑏𝑡
𝑚) > 𝑡ℎ𝑟𝑚𝑎𝑡𝑐ℎ;

∅, otherwise.
(3)

𝜎 is the optimal assignment from the Hungarian match
between decent predictions and targets. 𝑡ℎ𝑟𝑚𝑎𝑡𝑐ℎ is the
threshold iltering denoising queries whose initialized lo‑
cations intolerably deviate from targets even with high
objectness scores.

In the subsequent layer‑by‑layer re inement, Hungarian
matching is performed outside the matched 𝑄𝑑, leaving
unmatched 𝑄𝑑 and the entire 𝑄𝑟 to search for the best‑
associated targets in each layer.

5. EXPERIMENTS

5.1 Datasets and evaluation metrics
MOT. In multiple object tracking, MOT benchmarks are
generally used to evaluate the performance of trackers.
We conduct experiments on MOT16 and MOT17 [40],
both including 7 training sequences and 7 test sequences.
The inal results reported in Section 5.3 are obtained
through training on the entire training set (additionally
with the validation set of CrowdHuman [41]) and eval‑
uating on the test set of icially under the private detec‑
tion protocol. For the ablation study, we, following Cen‑
tertrack [7], split the of icial training set into two halves.
The irst half is used for training, while the second is for
validation.

CrowdHuman [41] is a detection dataset illed with col‑
lections of images of the crowd, containing15000 training
images and 4370 validation images, which is widely used
as a pre‑training dataset for the MOT trackers.

Metrics. We demonstrate our results using the pop‑
ular MOT evaluation metrics set CLEAR [42], includ‑
ing Multiple‑Object Tracking Accuracy (MOTA), Identity
Switch (IDS), False Positive (FP), and False Negative (FN).
Additionally, we report the Identi ication F1 score (IDF1)
[43] and the Higher Order Tracking Accuracy (HOTA)
[44], which is the geometric mean of two sub‑metrics
comprising Association Accuracy score (AssA) andDetec‑
tion Accuracy score (DetA).

5.2 Implementation details
Model. We pick CenterTrack [7] as the original tracker
in our experiments. For TransFiner, the backbone net‑
work is ResNet‑50 [45] for its balance of speed and ac‑
curacy, coupled with the twin structure from a six‑layer
encoder and decoder of deformable DETR [25]. The num‑
ber of query embeddings is set to 300. In MOT datasets,
the bounding boxes fully cover the targets, which means
parts of the objects have their box centers outside the im‑
ages, making it suboptimal to directly predict the objects’
centers, widths, and heights. Hence, following the solu‑
tion in [7], we also formulate the box representation set
𝑏 = (𝑥, 𝑦, 𝑎𝑑𝑡𝑝, 𝑎𝑑𝑙𝑓 , 𝑎𝑑𝑏𝑡, 𝑎𝑑𝑟𝑡). The last four respec‑
tively show the non‑negative distance from the center to
the top, left, bottom, and right edge of the bounding box.
This allows more precise estimations even when objects
are heavily cropped.

Decoder initialization. Formalized in Section 3, the
TransFiner’s decoder outputs are { ̃𝑦𝑡

𝑖}
𝑁−1
𝑖=0 , while its ini‑

tialization input is { ̂𝑜𝑡
𝑖}

𝐾−1
𝑖=0 . Obviously, the mismatch be‑
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Fig. 4 – Case study. Examples of CenterTrack (left column) re ined by
TransFiner (right column). Tracks are marked by color. The big black
arrow depicts a tracklet of identical objects across frames. Under Cen‑
terTrack, the pedestrian in the orange box at Frame 555 now appears
in a blue box since Frame 588. TransFiner, on the other hand, handles
the identity switch originally introduced by this target via continuous
trackswith green boxes. Moreover, additional annotations in red denote
objects that CenterTrack ignores, while TransFiner ixes them.
tween 𝐾 and 𝑁 raises the question of how to perform
a one‑to‑one assignment at the beginning of the object
querys’ initialization. Herewe provide a feasible solution.
Following the categorizing standard in Section 4.5, we ad‑
dress this irst by separating ̂𝑜𝑡 into set ( ̂𝑜𝑡

𝑑, ̂𝑜𝑡
𝑟), and there

are respectively 𝐾𝑑 and 𝐾𝑟 elements in ̂𝑜𝑡
𝑑 and ̂𝑜𝑡

𝑟. Next,
we obtain the sequence by linking ̂𝑜𝑡

𝑑 with ⌈𝑁 − 𝐾𝑑
𝐾𝑟

⌉
times repeated ̂𝑜𝑡

𝑟. The sequence is then clipped to that
of length 𝑁 .

Training settings. Images are resized to 672×1184 as in‑
puts. Training loss consists of generally two part: detec‑
tion and association losses. Speci ically, we adopt Hun‑
garian loss [17] as loss for detection boxes �̃�𝑡 in Equa‑
tion (1)a, which has three sub‑losses with coef icients
𝜆𝑐𝑙𝑠(=2), 𝜆𝐿1

(=5), and 𝜆𝑖𝑜𝑢(=2), respectively. For asso‑
ciation loss, we calculate Hungarian loss for association
boxes �̃�𝑎𝑠𝑠𝑜 (from Equation (1)b) under the same setting
as detection losswith coef icients being divided by 5. Due
to GPU memory limitation, the batch size is set to 8, with
gradient accumulation amid every two iterations and sim‑
ulating a 16‑batch setup. Overall, we use 2 NVIDIA RTX
3090 GPUs with batch size 8, optimizer AdamW [46],
and the initial learning rate 2𝑒 − 4. TransFiner is irst
pre‑trained on the CrowdHuman training set [41] for 95
epochs, with the learning rate dropping to 2𝑒 − 5 after 50
epochs. We then train the TransFiner on both MOT [40]
and the CrowdHuman validation set [41] for another 130
epochswith the learning rate decreasing by 10 at the 100‑
th epoch.

5.3 Benchmark results
As a post‑re inement model, we irst discuss the im‑
provement made by applying TransFiner after the origi‑
nal tracker (CenterTrack[7] in our experiments). Thenwe
compare the re ined tracker with recent MOT trackers on
MOT16 and MOT17 [40].

Improvement under TransFiner. CenterTrack of icially
reports results on theMOT17 benchmark, where we have
a detailed look. As shown in Table 1, re inement by Trans‑
Finer shows a comprehensive improvement (+2.1% IDF1
and +3.7% MOTA). This bene its from distinct focuses of
query pairs over targets, contributing to apparent re ine‑
ments on FN (decreasing by 31667), while IDsw virtually
stays intact (from 3039 to 3056). An example is depicted
in Fig. 4.

MOT16 & MOT17. Table 1 demonstrates the results re‑
ported on MOT16 and MOT17 test datasets. In MOT16,
we chie ly compare enhancedCenterTrackwith twoother
transformer‑based trackers, namely PatchTrack [13] and
MeMOT [15], which respectively obtain state‑of‑the‑art
performance in detection and association. Improved Cen‑
terTrack achieves comparative detection performance
(73.0% MOTA and 58.6% DetA), with 0.3% less MOTA
and 1.0% fewer DetA than PatchTracks. Alternatively,
we better associate objects than PatchTrack, relying on
the informative motions from query pairs, but still un‑
derperform MeMOT on IDF1 (67.6 vs. 69.7) and AssA
(52.2 vs. 55.7), possibly due to our local linkage (per‑
forming on two continuous frames). In MOT17, Center‑
Track powered by TransFiner embraces second‑to‑best
tracking ability, surpassing most transformer‑based ap‑
proaches like TransTrack [11], TransCenter [16], Track‑
former [12] and PatchTrack [13]. In addition, Center‑
Track with TransFiner detects well (57.5% DetA) but is
inferior to several SOTA transformer‑based trackers. It
is probably because query pairs restrict the prediction of
objects on the current frame if they are out of scope on the
previous frame.

5.4 Ablation study
We test our design choices with the same model combi‑
nation (CenterTrack and TransFiner) in Section 5.3 on the
train‑val split of the MOT17 training dataset.

Decoder structure. The fusion attention module and
dual‑decoder are layered repeatedly to form the fusion
decoder. Additionally, we receive the single version by
throwing fusion attention and the decoder focusing on
𝑄𝑎𝑠𝑠𝑜. Straightforwardly, re ining with TransFiner built
on singlemerely redetects the objects of the current frame
with speci ic decoder initialization. The results shown in
the blue block of Table 2 suggest that the information fu‑
sion, as well as motion estimations, play a crucial role in
MOT re inement. We observe that the fusion decoder el‑
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Table 1 – Evaluation results onMOT challenge datasets (private detection). TheTF stands for TransFiner. The best result in each column ismarked
in red and in blue for the second best.

Method IDF1 ↑ MOTA ↑ HOTA ↑ DetA ↑ AssA ↑ IDsw ↓ FP ↓ FN ↓
MOT16

TubeTK [47] 62.2 66.9 50.8 55.0 47.3 1236 11544 47502
Chain‑Tracker [48] 57.2 67.6 48.8 55.0 43.7 1897 8934 48350
TraDeS [9] 64.7 70.1 53.2 56.2 50.9 1144 8091 45210
QuasiDense[5] 67.1 69.8 54.5 56.6 52.8 1097 9861 44050
MeMOT [15] 69.7 72.6 57.4 ‑ 55.7 845 14595 34595
PatchTrack [13] 65.8 73.3 54.2 59.6 49.7 1179 10660 36824
CenterTrack+TF (ours) 67.6 73.0 55.1 58.6 52.2 976 10463 37723

MOT17
TraDeS [9] 63.9 69.1 52.7 55.2 50.8 3555 20892 150060
QuasiDense[5] 66.3 68.7 53.9 55.6 52.7 3378 26589 146643
TransTrack [11] 63.9 74.5 53.9 60.5 48.3 3663 28323 112137
TransCenter [16] 62.2 73.2 54.5 60.1 49.7 4614 23112 123738
TubeTK [47] 58.6 63.0 48.0 51.4 45.1 4137 27060 177483
Chain‑Tracker [48] 57.4 66.6 49.0 53.6 45.2 5529 22284 160491
TrackFormer [12] 63.9 65.0 ‑ ‑ ‑ 3258 70443 123552
MeMOT [15] 69.0 72.5 56.9 ‑ 55.2 2724 37221 115248
PatchTrack [13] 65.2 73.6 53.9 59.4 49.3 3795 23976 121230
CenterTrack [7] 64.7 67.8 52.2 53.8 51.0 3039 18498 160332
CenterTrack+TF (ours) 66.8 71.5 54.5 57.5 52.0 3056 29283 128665

Table 2 – Ablation studies on the MOT17 validation set. * means
our default settings. An experimental attempt back refer in Section 5.4
is indicated by ⋆. Baseline is the tracking performance of CenterTrack
[7] under the same experiment settings. We explore design options on
decoder structure (single‑decoder structure fails), re inement tactic
(d&r split boosts re inement, and back refer drags it down), fusionmask
hyperparameter 𝛽 (𝛽 = −10 balances detection and association), and
motion (boxmotion is critical in association). Color blockswith the best
results are bolded.

Ablation Choice MOTA IDF1 HOTA AssA
Single 62.3 59.0 48.6 44.8Decoder structure *Fusion 70.1 74.0 60.6 63.0

w/ ⋆back refer 69.8 71.5 59.2 60.0
w/o d&r split 69.0 72.6 59.8 61.6

w/o d&r embeddings 68.9 72.8 59.3 60.5Re inement tactic
*Vanilla 70.1 74.0 60.6 63.0

0 69.5 71.8 58.8 59.5
‑5 70.5 73.0 60.0 61.1
*‑10 70.1 74.0 60.6 63.0Hyperparameter 𝛽
‑∞ 69.5 73.7 60.1 62.0

*Center+Box 70.1 74.0 60.6 63.0
Center 69.0 67.5 56.6 55.4Motion
% 67.9 65.7 55.5 53.7

‑ Baseline 66.2 69.4 ‑ ‑

evates association signi icantly (15.0% improvements on
IDF1 and ∼20.0% increases on AssA compared with sin‑
gle decoders), indicating motions from query pairs of the
fusiondecoder are robust in linkingobjects across frames.

Re inement tactic. We begin by exploring the initializa‑
tion with back referring. Next, we discuss the ablations
on the d&r split of queries.

To further leverage ̂𝑜𝑡 during initialization of the decoder,
we attempt to extend the locations assignment in Section
4.4 by back referring 𝑖𝑛𝑖𝑡_𝑟𝑒𝑓𝑎𝑠𝑠𝑜 through ̂𝑎𝑡 instead of
putting 𝑖𝑛𝑖𝑡_𝑟𝑒𝑓𝑎𝑠𝑠𝑜 identical to 𝑖𝑛𝑖𝑡_𝑟𝑒𝑓𝑡. Speci ically,
back referring derives the reference locations of the pre‑
vious frame through �̂�𝑡, ̂𝑎𝑡. Here we consider ̂𝑎𝑡 as back‑
ward motions. In this case, back referring is achieved via

𝑖𝑛𝑖𝑡_𝑟𝑒𝑓𝑎𝑠𝑠𝑜 = 𝑖𝑛𝑖𝑡_𝑟𝑒𝑓𝑡 + ̂𝑎𝑡. The effectiveness of back
refer can be seen in the gray block of Table 2, which shows
overall performance degradation. We conclude two rea‑
sons for this: (1) Motions ̂𝑎𝑡 from objects whose object‑
ness scores are uncertain usually have a signi icant bias,
deteriorating re inement by acting as unhealthy noises;
(2) Query pairs and the fusionmask allow for gradual ad‑
justment of position pairs, discouraging excessive loca‑
tions assignment beforehand.

For ablation studies on the d&r split, we drop it from the
vanilla. The second rowof the gray block in Table 2 shows
that this lowers the model performance for, probably,
pushing TransFiner to treat original predictions equally,
without special attention to tough ones. In addition, we
trial d&r split lacking embedding labeling denoising and
rematching queries (i.e., without 𝑞𝑑 and 𝑞𝑟). This, how‑
ever, further degrades TransFiner. Part of the reason is
that little information hints at the queries with different
re inement purposes when functioning.

Hyperparameter 𝛽. The green rows of Table 2 show
optimization performances under various choices of 𝛽.
𝛽 = 0 leads to an obvious decline in association (reducing
IDF1 by 2.2% and 3.5% for AssA from the default setting).
In contrast, detection and association suffer slightlywhen
𝛽 = −∞, dropping from the vanilla by 0.6% MOTA and
0.3% IDF1. Moreover, we observe mild overall improve‑
ment when placing 𝛽 to a moderate value (e.g., −10). An
intuitive illustration is that a suitable value of 𝛽 properly
weighs interactions between queries outside and inside
their in‑couples, where queries are dynamically and con‑
trollably itted.

Motion. Trans iner evaluates motions in the form of cen‑
ters and boxes of objects from the present to the last
frame. According to the yellow chunk of Table 2, we ob‑

ITU Journal on Future and Evolving Technologies, Volume 4, Issue 4, December 2023

©International Telecommunication Union, 2023586



serve a considerable gapwith andwithout boxmotions in
the association (74.0% IDF1 vs. 67.5% IDF1 and 63.0%
AssA vs. 55.4% AssA), considering box motions are more
distinctive in crowded scenarios.

5.5 Limitations and future work
TransFiner performs on local tracking (within adjacent
frames), limiting re inement when the targets are under
long‑term occlusions. To address these, the design of
a prediction error buffer (e.g., contains the TransFiner’s
predictions crossing the border of d&r split), along with a
stronger query interactionmechanism,may help improve
this defect. Still, TransFiner leverages initial trackingnon‑
trivially, and how to better semantically joint inputs (e.g.,
frames) and outputs (i.e., original predictions) space re‑
quires exploration.

6. CONCLUSION
TransFiner is a generic MOT post‑re inement framework.
We consider predicted locations and objectness scores
from the original tracker for re inement. TransFiner fully
exploits initial predictions, locations guide the extraction
of image features for query pairs and scores are used
to group pairs for targeted recti ication. Labeled query
pairs, highly representing original predictions, combine
input and output space for re inement via the fusion de‑
coder, which achieves impressive re inement outcomes
on MOT16 and MOT17 benchmarks.
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