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Abstract – High accuracy and high stability are key elements of the lane detection algorithm in an 
autonomous driving system. Traditional algorithms are having difficulty extracting detailed features due to 
the complex geometric structure and background interference of lanes in real scenarios. Therefore, this 
paper proposes a Multiscale Aggregated Attention Fusion (MAAF) network, which integrates attention 
mechanisms to improve the accuracy and robustness of lane detection. Firstly, the Recurrent Feature-Shift 
Aggregator for Lane Detection (RESA) is improved to increase the effective sensory field and improve the 
efficiency of feature aggregation. Then, the ECANet attention module is used to extract features across 
channels, enhancing the model's focus on lane details. Finally, a spatial attention mechanism is incorporated 
to make the network more attentive to lane features, acquire more semantic information, and reduce the 
influence of background interference and clutter. Experimental results show that this method achieves 
96.84% and 76.5% metrics on the TuSimple and CuLane datasets, respectively, surpassing the baseline 
network. Furthermore, it demonstrates good generalization and robustness, enabling accurate lane 
detection in complex road environments. 

Keywords – Attention mechanism, deep learning, feature aggregation, lane detection, mixed dense hole 
convolution. 

1. INTRODUCTION

Lane detection is one of the key technologies in 
autonomous driving [1], attracting extensive 
attention from scholars at home and abroad, and its 
real-time performance and accuracy are crucial to 
the stability of autonomous driving systems. The 
development of lane detection is expected to drive 
the further development of autonomous driving 
technology. Advanced assisted driving systems 
typically utilize perceptual layer data such as lidar, 
high-accuracy positioning, and mapping to provide 
additional information, but lane detection is still an 
integral component. 

Lane detection algorithms offer the advantages of 
real-time, high accuracy, and independence 
compared to mapping applications [2]. Lane 
detection algorithms can perform lane detection in 
real-time video streams, provide instant lane 
information, and can still accurately detect lane 
positions and shapes by analyzing images even 
when there is no network connection or map data 
available. In contrast, lane information for mapping 
applications is based on pre-stored map data and 
relies on the availability of external data, which may 

be limited by data accuracy and update frequency. 
However, lane detection algorithms can also be 
affected by the environment and the shape of the 
lane, and it is crucial to choose a suitable technical 
solution considering the specific application 
scenario and requirements. 

Traditional lane line detection mainly relies on 
manual feature extraction and heuristic methods 
[3], which can be roughly divided into two methods 
based on road features and road models, 
respectively, to extract color features, texture 
features, or multifeature fusion of lane lines as a 
straight-line model and curve model [4]. However, 
its extracted features are limited and cannot be 
applied to complex scenarios, which is gradually 
replaced by deep learning-based methods. 
Therefore, they are gradually replaced by deep 
learning methods, which are usually based on pixel-
by-pixel prediction methods and consider lane 
detection as a semantic segmentation problem [5-
7]. These methods use an encoder-decoder 
framework, which first applies a Convolutional 
Neural Network (CNN) as an encoder to extract 
semantic information into the feature maps, and 
then uses an upsampling decoder to restore the 
feature maps to their original sizes and perform 
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pixel-by-pixel prediction. However, due to the 
elongated nature of lane lines and the insufficient 
number of labeled lane line pixels, these methods 
have difficulty in extracting subtle lane features and 
may ignore the shape ahead or there may be a high 
correlation between lanes, resulting in poor 
detection performance. For complex driving 
scenarios, the low-quality features extracted by 
conventional CNNs tend to lose subtle lane features. 
To solve this problem, some methods try to pass 
spatial information in the feature map but the 
operation of passing sequential information leads to 
a significant increase in the number of parameters 
and computation of the algorithm. 

The lane detection task needs to consider the 
diversity in size and shape of lane markings. 
Additionally, lane markings are a small proportion 
of the foreground in the image, and there are 
various challenges such as lane markings being 
worn out, obscured, or affected by rain and snow. 
All these factors present significant challenges for 
achieving high accuracy in lane detection.  

To extract more structural and spatial features of 
lane markings, this paper proposes a Multiscale 
Aggregated Attention Fusion network (MAAF) that 
incorporates the attention mechanism, which 
improves on RESA by expanding the feature fusion 
process by using a hybrid continuous null 
convolution to enlarge the receptive field, which 
moves cyclically in multiple directions of the feature 
map to achieve feature aggregation in both 
horizontal and vertical directions. Meanwhile, a 
Joint Attention (JATT) module is proposed to be 
connected in parallel with the improved RESA 
module to realize cross-channel information 
interaction while improving the algorithm's 
attention to lanes, and to reduce information loss 
while improving the fusion of global features. The 
F1-measure metric on the public dataset CuLane is 
76.4%, which can accomplish the lane line detection 
task in complex environments, and reaches 30+fps 
on the RTX3090 graphics card, which meets the 
real-time requirements. 

2. RELATED WORK

The methods for lane detection can be divided into 
traditional methods and deep learning-based 
methods, with the development of intelligent 
transport, lane detection methods based on radar 
and other high-precision devices also being 
proposed. Traditional methods mainly include 
algorithms such as edge detection [8-9], color 

segmentation [10-11], Hough transform [12], 
Kalman filtering [13], and curve fitting [14]. Li et al. 
[15] proposed an adaptive lane detection method
using the Canny operator for edge detection,
combined with the Hough transform and Otsu
algorithm, to solve the problem of poor results of
traditional algorithms at night. M Aly et al. [16]
proposed an efficient method for lane detection,
which uses selective directional Gaussian filtering,
RANSAC, and other methods. This method can
detect all lanes in still images under various
conditions and achieve a running speed of 50Hz.
Traditional methods are faster but due to the
diversity of lanes and the complexity of the
environment, their accuracy does not meet the
requirements, and they are difficult to adapt to
challenging real-world scenarios and cannot be
deployed for use on vehicles.

Deep learning-based methods have better 
robustness and can adapt to more complex 
scenarios. Yu et al. [17] combined traditional 
methods with deep learning methods to decompose 
the inverse perspective mapping process into 
multiple successive microscopically-single-strain 
transform layers and refine the interpolated feature 
maps by subsequent convolutional layers, thus 
reducing artifacts and improving accuracy. Hou et al. 
[18] proposed a lightweight lane detection network
(SAD) based on a self-attentive distillation module
but the accuracy is low in complex scenarios. Pan et
al. [19] proposed SCNN, which achieves better lanes’
spatial structure feature extraction by slicing
features and performing feature propagation across
rows and columns. Zheng et al. [20] continued the
idea of SCNN, optimizing the iterative manner of
propagation across rows and columns, and
proposed a new feature aggregation module RESA,
which has a lower computation time and better
performance. Qin et al. [21] proposed the UFSD
algorithm, viewing the lane detection task as a
classification problem on rows and using a larger
receptive field, enabling it to handle complex
scenarios and achieve a speed of 300+ fps. Feng et
al. [22] proposed a lane detection method based on
curve parameters, using a parameterized Bezier
curve model for end-to-end detection and
proposing a feature inversion fusion method based
on deformable convolution, resulting in a model
with small parameters and high detection accuracy.

PEAK et al. [23] proposed a lidar lane detection 
algorithm based on the K-Lane dataset, which 
showed good performance even under various 
lighting conditions and severe occlusions. BAI et al. 
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[24] proposed a deep neural network model
combining lidar and camera sensors for direct
output of lanes in 3D space to solve the problem of
existing methods where the image is in the three-
dimensional space with low accuracy. Lidar-based
lane detection techniques perform lane detection by
reflectance thresholding or by clustering, which is
too dependent on fixed parameters and is only
suitable for fixed scenarios. And it is limited by the
small dataset, and the development of the
technology is slow.

3. LANE DETECTION NETWORK
FRAMEWORK

The lane detection task is a task highly dependent 
on the surrounding environment clues. Even if a 
lane is obscured, it is still possible to infer using 
other lanes or the positions of other vehicles. To 
improve the ability of the lane detection network to 
extract effective information in complex scenes, this 
paper proposes a multiscale feature information 
aggregation network with a fusion attention 
mechanism by focusing on the feature information 
of different receptive fields. The network structure 
is shown in Fig. 1. The network consists of an 
encoding network, a feature information 
aggregation network, and a decoding network. The 
encoding network uses the ResNet [25] network to 
perform preliminary feature extraction on the input 
image. The feature information aggregation 
network (MAAF) not only aggregates feature 
information from different receptive fields in four 
directions, but also enables feature information 
interaction across channels, focusing more on the 
position of the lanes and reducing the interference 
from the background area during the detection 
process. In the decoding network, the feature map 
is restored to the original size through upsampling, 
and then the lanes are predicted using convolution 
operations. 

This paper adds a global average pooling branch 
before decoding in the network to fully utilize the 
high-level semantic information of lane existence. 
This branch takes the output of MAAF as input to 
determine whether the lanes exist. The global

MAAF

Input Encoder Decoder Result

Avg_pool

1 0 1 1

Fig. 1 – Overall structure of the network 

average pooling layer has a smaller computational 
complexity and parameter quantity than the fully 
connected layer. By averaging the points on the 
feature map, it can capture useful details and 
eliminate useless noise, making the network focus 
more on the positions where the lanes exist and less 
on the positions where the lanes don't exist. By 
introducing the high-level semantic information of 
lane existence, the lanes can be better located, and 
the accuracy and robustness of lane detection can 
be improved. In addition, the global average pooling 
layer can also reduce the risk of overfitting and the 
number of parameters and complexity of the model, 
thereby improving the optimization and 
generalization ability of the model. 

3.1 Multiscale feature information 
aggregation network with attention 
mechanism fusion 

Traditional convolutional semantic segmentation 
networks based on traditional standards are no 
longer applicable to long and thin targets like lanes. 
Currently, some methods use information 
propagation or self-attention mechanisms to 
enhance the transmission of feature information 
between lanes, thereby improving the accuracy of 
lane detection. Inspired by the REcurrent Feature-
Shift Aggregator (RESA) and Global Attention 
Mechanism (GAM) [26] attention mechanisms, this 
paper designs a multiscale feature information 
aggregation network with a fusion attention 
mechanism, effectively improving the extraction of 
lanes’ detail features and reducing background 
interference. The structure is shown in Fig. 2. The 
backbone network extracts the feature map 𝑋 ∈
𝑅𝐶×𝐻×𝑊 of the original image at a size of 1/8. First, 
feature map X is simultaneously inputted into the 
channel attention module (ECANet) [27] and the 
sliced feature fusion module (IMRESA), enhancing 
the features in the channels and spatial dimensions, 
respectively. The channel attention ECANet 
captures lane information between different 
channels, while IMRESA aggregates lane features in 
the spatial dimensions. Finally, spatial attention 
highlights the key positions of the lanes, making the 
model pay more attention to the target regions in 
the image that play a decisive role in segmentation 
while ignoring the interference from background 
regions. 

3.2 Multiscale slice feature aggregation 
module 

The traditional convolution method performs 
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convolution calculations in the channel direction 
and accumulates the results. However, this 
approach has greatly limited receptive fields. 
IMRESA, on the other hand, uses mixed dilated 
convolutions in the width and height dimensions. 
This module uses one 3x3 regular convolution (with 
a dilation rate of 1) and three dilated convolutions 
with dilation rates of 2, 5, and 9. Compared to 
traditional convolutions, dilated convolutions add 
zeros to the convolution kernels to increase the 
distance between them, thus enlarging the 
receptive field of each kernel. After K iterations, the 
feature maps not only receive feature information 
from each location but also aggregate information 
from different receptive fields.  

The feature map 𝑋 ∈ 𝑅𝐶×𝐻×𝑊  represents the 
features extracted by the encoding network, where 
C , H , and W  represent the number of channels, 
number of rows, and number of columns of the 
feature map X , respectively. The IMRESA branch 
first slices the feature map horizontally and 

vertically into H and W slices, and 𝑋𝑐,𝑖,𝑗
𝑘  represents

the feature map at the kth iteration, with indices c, i, 
and j  indicating the channel, row, and column 
indexes, respectively. F  is the continuous dilated 
convolution, k  is the iteration count, ReLU is the 
non-linear activation function, α  is the weight for 

feature information aggregation, and 𝑍𝑐,𝑖,𝑗
𝑘

represents the feature map element after the mixed 

continuous dilated convolution. 𝑋𝑐,𝑖,𝑗
𝑘′

 represents

the updated feature map element. The calculation 
formula for the entire process is as follows: 

𝑍𝑐,𝑖,𝑗
𝑘 = ∑ 𝐹𝑚,𝑐,𝑛 ∙ 𝑋𝑚,(𝑖+𝑠𝑘) 𝑚𝑜𝑑 𝐻,𝑗+𝑛−1

𝑘
𝑚,𝑛 (1) 

𝑍𝑐,𝑖,𝑗
𝑘 = ∑ 𝐹𝑚,𝑐,𝑛 ∙ 𝑋𝑚,𝑖+𝑛+1,(𝑗+𝑠𝑘) 𝑚𝑜𝑑 𝑊

𝑘
𝑚,𝑛  (2) 

𝑋𝑐,𝑖,𝑗
𝑘′

= 𝑋𝑐,𝑖,𝑗
𝑘 + 𝛼𝑅𝑒𝐿𝑈(𝑍𝑐,𝑖,𝑗

𝑘 ) (3) 

𝑠𝑘 = 2𝑘，𝑘 = 0,1, … , 𝐾 − 1 (4) 

K represents the total number of iterations. When 
iterating horizontally, 𝐾 = ⌊𝑙𝑜𝑔2𝑊⌋ , and when 
iterating vertically, 𝐾 = ⌊𝑙𝑜𝑔2𝐻⌋. 𝑠𝑘  represents the 
step size of the k-th iteration. "D", "U", "L", and "R" 
represent the four directions: down, up, left, and 
right, respectively. After K iterations of feature 
aggregation in four different directions and scales, 
each pixel of the original feature map X will receive 
feature information from different positions and 
receptive fields of other pixels. 

The actual process of feature aggregation includes 
four directions: down, up, left, and right. Fig. 3 takes 
the example of aggregating from left to right 
(IMRESA_R) to explain how each slice can obtain 
information from the entire feature map after K 
iterations. First, the feature map is divided into W 
slices vertically, denoted as 
{𝑋0, 𝑋1, 𝑋2, … , 𝑋𝑤−2, 𝑋𝑤−1}. The iteration count is 4. 
In the first iteration, with k = 0, the step size 𝑠1 is 
set to 1. 𝑋1  receives feature information from 𝑋0 , 
𝑋𝑤−𝑖  receives feature information from𝑋𝑤−𝑖−1, and 
𝑋0  receives feature information from 𝑋𝑤−1 . In the 
second iteration, with k = 1, the step size 𝑠2 is set to 
2. 𝑋2  receives feature information from 𝑋0 , 𝑋𝑤−𝑖

receives feature information from 𝑋𝑤−𝑖−2 , and
similarly, 𝑋0  receives feature information from
𝑋𝑤−2 . After two iterations, 𝑋2  has received
information from 𝑋1  and 𝑋0 , while 𝑋0  has already
received information from 𝑋𝑤−1  in the first
iteration. Therefore, at this point, 𝑋2  has already
received feature information from 𝑋1, 𝑋0, and 𝑋𝑤−1. 
Finally, after K  iterations, each 𝑋𝑖  will receive 
feature information from the entire feature map, as 
shown in Table 1. 

D1

 
Dk U1 Uk L1 Lk R1 Rk

K iterations

U

Avg_Pooling

XC×W×H

U

C×1×1 C×1×1

Sigmoid

Con1vd

7×7 conv7×7 conv Sigmoid

Fig. 2 – Feature aggregation network structure 
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X0 X1 X2 X3 X4 ... Xw-3 Xw-2 Xw-1

  s0=1  s1=2

Fig. 3 – IMRESA_R iteration process 

Table 1 – Feature information obtained by 𝑋7 after k 
iterations 

𝒌 𝒔𝒌 𝐅𝐞𝐚𝐭𝐮𝐫𝐞𝐬 𝐫𝐞𝐜𝐞𝐢𝐯𝐞𝐝 𝐛𝐲 𝑿𝟕 

0 𝑠0=1 𝑋6 

1 𝑠1=2 𝑋4, 𝑋5,𝑋6 

2 𝑠2=4 𝑋0, 𝑋1, 𝑋2,𝑋3,𝑋4, 𝑋5,𝑋6 

3.3 Multidirectional mixed continuous cavity 
convolution 

Compared with traditional convolution, dilated 
convolution fills in zeros in the convolution kernel 
of the original convolution to increase the distance 
between convolution kernels. This enlarges the 
receptive field of each convolution kernel, improves 
the network's receptive field, allows the network to 
learn more global information, better distinguishes 
the relationships between each pixel and feature, 
and improves model accuracy. However, dilated 
convolution has the drawback of kernel 
discontinuity, which means not all points in the 
feature map will participate in the convolution 
calculation, resulting in the risk of losing feature 
information, especially for objects with thin and 

continuous structural features like lanes. Hybrid 
Dilated Convolution (HDC) [28] can effectively solve 
this problem.  

In this study, multiple experiments were conducted 
on the convolution method and different dilation 
rates. Hybrid dilated convolution with dilation rates 
of 1 and 2 was used for top-down aggregation, while 
dilation rates of 5 and 9 were used for bottom-up 
aggregation. Similarly, hybrid dilated convolution 
with dilation rates of 1 and 2 was used for left-right 
aggregation, and dilation rates of 5 and 9 were used 
for right-left aggregation. Performing hybrid dilated 
convolution in all four directions not only provides 
a larger receptive field but also ensures that the 
features at each position can participate in the 
calculation during the iteration process, without 
losing the structural feature information of lanes. 

In each iteration, IMRESA divides the feature maps 
into H and W slices in both horizontal and vertical 
directions, and then performs feature aggregation 
in the "D", "U", "L", and "R" directions. Taking 
feature aggregation in the "IMRESA_D" and 
"IMRESA_U" directions as an example, as shown in 
Fig. 4, the feature maps are divided into H  slices 
represented as {𝐻0, 𝐻1, 𝐻2, … , 𝐻ℎ−2, 𝐻ℎ−1 }. First, 
aggregation is performed from top to bottom, 
where feature slice 𝐻ℎ−1  undergoes continuous 
dilated convolutions with dilation rates of 1 and 2, 
and then the result is feature fused with feature 
slice 𝐻ℎ−2 . Then, aggregation is performed from 
bottom to top, where feature slice 𝐻ℎ−3 undergoes 
continuous dilated convolutions with dilation rates 
of 5 and 9, and then the result is feature fused with 
feature slice 𝐻ℎ−2 . Similarly, the same mixed 
continuous dilated convolutions are used for 
feature fusion in the two vertical iterative directions.

rate = 1

rate = 2

H

W

C

.

.

.

rate = 9

rate = 5

H

W

C

.

.

(a) IMRESA_U (b) IMRESA_D

Fig. 4 – Multidirectional mixed continuous hole convolution 
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Con1vd

7×7 conv7×7 conv
Sigmoid

Fig. 5 – Joint attention module 

3.4 Joint Attention Module (JATT) 

In the image, the lane is the foreground, with a small 
proportion of pixel points, so the background has a 
significant impact on the recognition of lanes. To 
improve the accuracy of network recognition, this 
paper improves the GAM attention module and 
proposes a new joint attention module JATT, which 
consists of channel attention and spatial attention 
in series. JATT first uses channel attention to 
interact with channel-wise information in the 
feature map and then uses spatial attention to 
enhance the focus on the lanes area. 

The JATT module proposed in this paper is 
composed of ECANet channel attention and spatial 
attention modules in series, as shown in Fig. 5. In 
the ECANet channel attention module, the input 
feature map  𝑋 ∈ 𝑅𝐶×𝐻×𝑊  is first average-pooled, 
the feature map is converted from a 𝐶 × 𝐻 × 𝑊 
matrix to a 𝐶 × 1 × 1 vector. Then, an adaptive one-
dimensional convolution kernel size is calculated. 

ECANet channel attention achieves information 
interaction between feature maps across channels 
by using one-dimensional convolution. The model 
has a relatively small complexity. The input feature 
map is represented as 𝑋 ∈ 𝑅𝐶×𝐻×𝑊 . First, the 
computed convolution kernel size is applied to the 
one-dimensional convolution. This allows layers 
with larger channel numbers to have more 
thorough cross-channel interaction, thereby 
obtaining channel weights for each feature map. 

Finally, the normalized weights are multiplied 
channel-wise with the feature map obtained 
through IMRESA aggregation, resulting in a 
weighted feature map. The calculation formula for 
this process is shown in equation (5): 

𝑀𝑐(𝑋) = 𝜎(𝐹1,𝑘(𝑎𝑣𝑔(𝑋))) (5) 

Where 𝑀𝑐(𝑋)  represents the feature map 

generated by ECANet attention, 𝐹1,𝑘  represents a 

one-dimensional convolution, and 𝑎𝑣𝑔  represents 
global average pooling. The calculation formula for 
the one-dimensional convolutional kernel of size k 
is as shown in equation (6): 

𝑘 = |
𝑙𝑜𝑔2 𝐶

2
+ 1| (6) 

To make the model pay more attention to lane 
features, the feature map X1  generated from 
channel attention is used as input for spatial 
attention, which mainly focuses on the positional 
information of lanes within the image. It selectively 
enhances each spatial feature through weighted 
selection. X1  is the input feature. Using a 7×7 
convolution kernel, the number of channels in the 
feature map is reduced, and then it is restored using 
another 7×7 convolution kernel. Finally, the 
resulting feature map is normalized to obtain 
𝑀𝑠(𝑋1). 𝑋1 and 𝑀𝑠(𝑋1) are then multiplied together. 
This process can be represented by equation (7): 

𝑀𝑠(𝑋1) = 𝜎{𝐹7,7[𝐹7,7(𝑋1)]} (7) 

In the equation, 𝜎 represents the 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 function, 
and 𝐹7,7  corresponds to a 7 × 7  convolution 

operation. 

By combining the attention mechanism with the 
slice feature aggregation module, the model can 
effectively enhance the fusion of global features and 
increase its focus on lane details, while reducing 
interference from background and other 
information. 

4. EXPERIMENT

To validate the performance of the algorithm 
proposed in this paper, experiments were 
conducted on the TuSimple and CuLane public 
datasets. Detailed information on both datasets is 
provided in Table 2. 
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Fig. 6 – Proportions of different classes in the CuLane dataset 

4.1 The TuSimple dataset 

The TuSimple dataset is an autonomous driving 
dataset for real highway scenarios, with a total size 
of approximately 20G. The dataset includes lanes 
from highways in good weather or moderate 
weather conditions, with relatively simple scenes. 
There are 3626 images used for training and 2782 
images used for testing. The evaluation metrics 
include False Positive (FP), False Negative (FN), and 
accuracy. The calculation formula for accuracy is 
given by equation (8)： 

𝑎𝑐𝑐𝑢𝑟𝑎𝑟𝑦 =
∑ 𝐶𝑐𝑙𝑖𝑝𝑐𝑙𝑖𝑝

∑ 𝑆𝑐𝑙𝑖𝑝𝑐𝑙𝑖𝑝
(8) 

The 𝑆𝑐𝑙𝑖𝑝 represents the total number of lane points, 

and the 𝐶𝑐𝑙𝑖𝑝  represents the number of correctly 

predicted lane points. 

4.2 The CuLane dataset 

The CuLane dataset was proposed by the SCNN 
paper and captured using six different vehicles in 
different lane environments in Beijing. The total 
duration of the dataset exceeds 55 hours, with a size 
of approximately 40 GB. It includes various types of 
lanes such as urban, rural, and highways, and the 
lane markings are divided into nine categories: 
normal, crowded, night, no line, shadow, arrow, 
dazzle light, curve, and crossroad. The ratios for 
each category are shown in Fig. 6. The dataset 

consists of 88,880 images for training, 9,675 images 
for validation, and 34,680 images for testing. 

In the CuLane dataset, each lane is considered as a 
line with a width of 30 pixels. The accuracy of 
predictions is assessed using the Intersection over 
Union (IoU) metric, with a threshold of 0.5. The 
main evaluation metrics in the experiment are F1-
measure, precision, and recall. Precision is 
calculated using equation (9): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
(9) 

The formula for calculating recall rate is equation 
(10): 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
(10) 

The calculation formula for F1-measure is 
expressed as equation (11): 

𝐹1 =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
(11) 

TP stands for true positive, FP stands for false 
positive, and FN stands for false negative. 

4.3 Experimental setup 

This experiment uses the Ubuntu 18.04 operating 
system. The GPU used for training is an RTX 3090 
and the deep learning framework used is PyTorch 
1.8.1. Before experimenting, relevant 
hyperparameters need to be set. The SGD optimizer 
is used with a momentum of 0.9 and a weight decay 
coefficient of 1e-4. For the TuSimple dataset, the 
learning rate is set to 0.02 with a batch size of 4. For 
the CuLane dataset, the learning rate is also set to 
0.02 but with a batch size of 8. Before training, 
image preprocessing is performed, and the image 
size is adjusted to 288 pixels × 800 pixels for the 
TuSimple dataset and 368 pixels × 640 pixels for the 
CuLane dataset. 

4.4 Experimental result analysis 

This article conducts experiments on two public 
lane datasets and compares them with other 
popular lane detection methods such as SCNN, SAD, 
LaneNet [27], Enet [28], UFSA, RESA18, RESA-34, 
and RESA-50.

Table 2 – Description of TuSimple and CuLane datasets 

Dataset Resolution Total Training Testing Complexity Lines 

TuSimple 1280×720 6408 3626 2782 simple ≤5 

CuLane 1649×590 133235 98555 34680 complex ≤4 

27.70%

23.40%20.30%

11.70%

2.70%

2.60%

1.40%

1.20%

9.00%

Noramal

Croweded

Night

No line

Shadow

Arrow

Dazzle light

Curve

Crossroad

©International Telecommunication Union, 2023 625

Wang et al.: The lane detection algorithm based on multiscale aggregated attention fusion network



 

The use of three backbone networks, ResNet18, 
ResNet34, and ResNet50, with the identifiers -18, -
34, and -50 respectively, are considered. Since the 
TuSimple dataset has simpler scenarios, the models 
chosen are also simpler, whereas on the CuLane 
dataset some models are added that work better for 
complex scenarios. The experimental results on the 
TuSimple dataset are shown in Table 3. When the 
ResNet34 backbone network is selected, the 
accuracy of this method reaches 96.84%, 
surpassing the highest RESA-34. In addition, the 
values of FP and FN are compared on the TuSimple 
dataset, and the FP value of this method is 
significantly reduced. This indicates that this 
method can avoid misjudgment of non-lane as lanes, 
thus achieving higher accuracy in lane detection 
tasks. The experimental results on the CuLane 
dataset are shown in Table 4, where FP is used as 
the evaluation metric in the crossroad scenario, and 
the F1-measure is used in other scenarios. This 
method obtains the best performance in all 
scenarios. Compared with RESA-50, the 
improvement in the shadow scenario reaches 4.4%, 
the overall accuracy improves by 1.0%, and MAAF-
50 can achieve 35fps on the RTX3090 graphics card. 
These results demonstrate the effectiveness and 
real-time performance of this method. 

To demonstrate the effectiveness of our method 
more intuitively, Fig. 7 shows the qualitative 
experimental results of MAAF-50 on the CuLane 
dataset. The first column shows the lane detection 
results obtained by RESA-50, the second column 
shows the lane detection results obtained by MAAF-
50, and the third column shows the ground truth 
annotation images for the lanes. Note that the 
crossroad's images were not originally labeled with 

ground-truth. From the images, the proposed 
multiscale feature information aggregation 
network with the fused attention mechanism in this 
paper can correctly detect lanes in different 
scenarios and lane shapes, such as crowded, night, 
shadow, and no line, which proves that the 
algorithm proposed in this paper has good 
robustness. 

4.5 Ablation experiment 

To verify the reasonableness and effectiveness of 
the proposed improvements, this paper uses 
ablation experiments on the CuLane dataset using 
the RESA-50 model as the baseline. First, each 
module proposed in this paper was gradually added, 
and the effectiveness of each part was verified. The 
detailed results of the experiments are listed in 
Table 5, where JATT represents the joint attention 
mechanism, Conv represents the dilation rate of 1,2, 
5, and 9 for the dilation convolution, and Avg_pool 
represents the global average pooling. The 
experimental results show that the addition of each 

Table 3 – Comparison results of different algorithms on the 
TuSimple dataset 

Network Accuracy (%) FP FN 

SCNN 96.53 0.0617 0.0180 

LaneNet 93.38 0.0780 0.0224 

ENet 93.02 0.0886 0.0734 

RESA-18 96.70 0.0395 0.0283 

RESA-34 96.82 0.0363 0.0248 

MAAF-18 96.79 0.0270 0.0291 

MAAF-34 96.84 0.0253 0.0265 

Table 4 – Comparison results of various algorithms on the CuLane dataset 

Category SCNN SAD ENet UFSA RESA-34 MAAF-34 RESA-50 MAAF-50 

Normal(%) 90.6 89.9 88.4 90.7 91.9 92.7 92.1 92.8 

Crowded(%) 69.7 68.4 67.0 70.2 72.4 73.6 73.1 74.4 

Night(%) 66.1 64.3 61.4 66.7 69.8 70.9 69.9 70.8 

No line(%) 43.4 42.1 42.9 44.4 46.3 48.7 47.7 48.8 

Shadow(%) 66.9 67.8 63.4 69.3 72.0 74.0 72.8 77.2 

Arrow(%) 84.1 83.1 81.9 85.7 88.1 88.8 88.3 88.9 

Dazzle light(%) 58.5 59.7 57.4 59.5 66.5 67.8 69.2 70.6 

Curve(%) 64.4 66.2 62.6 69.5 68.6 70.3 70.3 72.3 

Crossroad(FP) 1990 1982 2768 2037 1896 1610 1503 1364 

Total(%) 71.6 70.6 68.8 72.3 74.5 76.0 75.3 76.3 
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Fig. 7 – Detected results of the algorithm in the CuLane dataset 
in this article 

part in RESA improves the F1-measure, especially 
for the scenarios of no line, shadow, and curve, 
where the improvement is particularly significant. 
This indicates that the proposed method in this 
paper can better extract lane features and 
effectively utilize the thin and continuous structural 
features of lines. 

To verify the improved rationality proposed in this 
article, the CBAM attention module, the GAM 
attention module, and the improved joint attention 
module were selected for experimental comparison, 
shown in Table 6. The experiments were all based 
on the RESA-50 baseline framework. RESA-GAM 
represents the combination of the GAM attention 

module with RESA-50, RESA-CBAM represents the 
combination of the CBAM attention module with 
RESA-50, and RESA-JATT represents the use of the 
proposed joint spatial attention module in this 
article. 

This study also conducted experiments using 
different groups of dilation rates to verify the 
effectiveness of mixed dilated convolutions with 
dilation rates of 1, 2, 5, and 9. MAAF-Con1 
represents the use of dilated convolutions with 
rates of 1, 2, 5, and 9 in each iteration. MAAF-Con2 
represents the use of dilated convolutions with 
rates of 1, 2, 3, and 4 in each iteration. MAAF-Con3 
represents the use of dilated convolutions with 
rates of 1, 2, 4, and 8 in each in each iteration. The 
experimental results are shown in Table 7. 

The above experimental results indicate that 
compared to CBAM and GAM attention mechanisms, 
the proposed joint attention mechanism in this 
paper demonstrates a stronger ability to extract 
channel and spatial features. In addition, using 
dilated convolutions with dilation rates of 1, 2, 5, 
and 9 in the iterative process can effectively 
increase the receptive field and ensure that each 
slice obtains feature information from other slices 
in each iteration. 

5. CONCLUSION

To enhance the effective receptive field of the 
network while preserving feature continuity and 
detail, this paper proposes a multiscale feature 
information aggregation network with a fusion 
mechanism. First, the RESA module is optimized 
through an iterative process, and combined with 
ECANet channel attention and spatial attention to 
enhance the network's focus on the lane while 
increasing the network's ability to extract lane 
features. 

Table 5 – Effectiveness experiment of improvement points 

RESA-50 Conv JATT Avg_pool No line(%) Shadow(%) Curve(%) F1-measure(%) 

√ 47.7 72.8 70.3 75.3 

√ √ 48.0 73.3 70.6 75.5（+0.2） 

√ √ √ 48.4 75.1 71.6 75.9（+0.6） 

√ √ √ √ 48.8 77.2 72.3 76.3（+1.0） 

Table 6 – Attention mechanism experimental results 

Network RESA-50 RESA-GAM RESA-CBAM RESA-JATT 

F1-measure(%) 75.3 75.7 75.2 76.3 

Table 7 – Experimental results of void convolution rate 

Network MAAF-Con1 MAAF-Con2 MAAF-Con3 

F1-measure(%) 76.3 75.4 76.0 

Normal 

Crowded 

Night 

No line 

Shadow 

Arrow 

Dazzle light 

Curve 

Crossroad 
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The algorithm in this paper achieves an accuracy of 
96.84% on the TuSimple dataset and a 
comprehensive F1 score of 76.3% on the CuLane 
dataset, reaching 77.2% in shadow scenes. 
Compared to other efficient lane networks, the 
algorithm in this paper effectively improves the 
accuracy of lane detection tasks in complex scenes. 
To further reduce the number of parameters and 
calculations and improve the inference speed of the 
model, future research will optimize the iterative 
steps of feature fusion according to the computing 
power and characteristics of embedded platforms 
and implement lightweight processing of the 
network. 
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