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Abstract – Hearing loss signiϔicantly impacts daily life, leading to communication difϔiculties, social isolation, and increased
risk of accidents. This can cause frustration, anxiety, and depression. The use of sound indication devices improve the quality
of life for individuals with hearing impairment by providing them with a means to detect sounds in their environment. We
have developed Vibe, a device that alerts a user to speciϔic sounds (a baby’s cry, an alarm, a door knock, a vehicle horn, or
a spoken name) in their environment. Our device uses EdgeML, a form of machine learning, to perform tasks locally on the
device rather than relying on cloud‑based services. This approach has the advantage of reduced latency and improved privacy.
The EdgeMLmodel was trained on a locally collected dataset, for better applicability to the Indian environment. Devices such
as Vibewill help individuals with hearing impairment navigate their surroundings safely and conϔidently, leading to increased
independence and improved mental health.
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1. INTRODUCTION

People with hearing impairments will rely on different
methods to indicate sounds in their environment. A com‑
mon method is the use of visual cues, such as hand ges‑
tures or facial expressions, to indicate important sounds.
For example, if someone hears a knock on the door, they
might wave their hand to get the attention of a person
with hearing impairment and then point to the door to in‑
dicate that someone was there. Animals have also been
trained to assist individuals with hearing impairments
[1]. Service dogs assist peoplewith disabilities by alerting
them to important sounds in their environment. These
dogs serve as both companions and ears for their own‑
ers, providing themwith a greater sense of independence
and safety. However, training service dogs requires sig‑
niϐicant resources, including time and money [2]. Hence,
there is also interest in developing automatic sound de‑
tection systems that can replace or supplement the role
of service dogs.

One of the key challenges in developing good audio local‑
ization and detection devices is ϐinding algorithms that
can accurately classify environmental sounds, despite
variations in the recording conditions and the presence
of background noise [3]. Recent advancements in edge
machine learning (EdgeML) have made it possible to per‑
form sound classiϐication on low‑power devices such as
smartphones and wearable devices. EdgeML enables on‑
device processing, reducing the need for data transfer and
increasing privacy. Additionally, it can help overcome
challenges related to limited connectivity and resource‑
constrained environments [4].

Our work begins with collecting diverse environmental
sound data, in an Indian environment, including sounds

commonly experienced by the hearing‑impaired. We pro‑
cess the data using a spectrogram and Mel‑Frequency
Cepstral Coefϐicients (MFCCs) [5]. We then label the pre‑
processed data with the corresponding environmental
sound class. Finally, we choose a suitable lightweight
machine learning model and train it using the labeled
dataset, optimizing its accuracy anddeploying it into edge
device [6]. These steps have been proposed and validated
in the remaining portions of this work.

2. LITERATURE STUDY
The initial step of environmental sound classiϐication in‑
volves gathering data. There are a number of openly
accessible audio datasets available to researchers. ESC‑
50, ESC‑10, Ultrasound8k, and BDlib datasets have been
usedextensively in environmental sound classiϐication re‑
search using machine learning. These datasets contain
high‑quality audio recordings of environmental sounds,
and their annotations provide ground‑truth labels that
are essential for supervised learning models. Self‑
collected sound samples can be useful for speciϐic re‑
search projects, but they may require more effort for
processing and analysis. Additionally, the quality of the
recordings and the accuracy of the annotations may vary,
which can affect the performance of machine learning
models. Therefore, using established datasets like ESC‑
50, ESC‑10, Ultrasound8k, andBDlib can providemore re‑
liable and consistent results.

Piczak [7] utilized the ESC‑50 dataset and achieved recog‑
nition accuracy of approximately 81% among untrained
human participants, while baseline methods achieved a
mean accuracy of 44%. Meanwhile, Toffa et al. [8] pro‑
posed an alternative approach for sound classiϐication,
combining texture feature Local Binary Pattern (LBP)

ITU Journal on Future and Evolving Technologies, Volume 4, Issue 4, December 2023

© International Telecommunication Union, 2023 
Some rights reserved. This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/. 

More information regarding the license and suggested citation, additional permissions and disclaimers is available at: 
https://www.itu.int/en/journal/j-fet/Pages/default.aspx 



with audio features. They evaluated the effectiveness of
this approach using support vector machines, random
forest, and k‑nearest neighbor on the ESC‑10 and ESC‑50
datasets.

In Piczak’s work [7], using a standard classiϐier yielded
an accuracy of 73%, with a separate human benchmark
accuracy of 96%. Thwe and War [9] used the ESC‑10
dataset for the classiϐication of sound events using time‑
frequency representations like spectrograms and multi‑
support vector machines. Salamon and Bello [5] used the
ultrasound8Kdataset and compared a holistic framework
with a solo feature approach based on PCA‑enhanced log‑
scaled mel‑spectrogram patches. Their baseline classiϐi‑
cation accuracywas 68%, while the average classiϐication
accuracy was 73.6%.

Divya et al [10] proposed to support individuals with
hearing impairments with an Internet of Things (IoT) ap‑
proach. Their system used a microphone to capture au‑
dio signals, which was then processed using digital signal
processing techniques such as ϐiltering and ampliϐication.
The processed signals were transmitted wirelessly to a
smartphone application, which provided visual feedback
in the form of text, images, or vibration. The authors eval‑
uated the system using a dataset of audio recordings of
speech and environmental sounds. The system achieved
high accuracy in recognizing speech and environmental
sounds, demonstrating its potential for supportingpeople
with hearing impairments. In a similar study, Garcia‑Ortiz
and Rodriguez [11] propose a mobile‑based solution for
sound recognition and classiϐication to support individ‑
uals who are deaf or hard of hearing. The study used a
dataset of environmental sounds, whichwas collected us‑
ing a smartphone app. The dataset included 14 classes
of environmental sounds, with a total of 300 recordings.
The methodology of the study involved processing the
audio recordings using a Convolutional Neural Network
(CNN) architecture to classify the sounds into their re‑
spective categories. The CNN architecture was optimized
using the Adam optimizer, and the model trained using
a cross‑entropy loss function. The model was then de‑
ployed on a mobile device for real‑time sound recogni‑
tion. The authors evaluated the model’s performance us‑
ing a test dataset and achieved an accuracy of 83.33% in
sound recognition.
Table 1 – Comparison between different types of open‑source datasets

Dataset Labels Classes Duration of
the sample

Publication
year

Ultrasound8k 8732 10 ≤ 4s 2014
BDlib 120 12 ≤ 10s 2015
ESC‑50 2000 50 ≤ 5s 2015
ESC‑10 400 10 ≤ 5s 2015
Ultrasound 1302 10 ≤ 4s 2014

ProtoSound, introduced by Jain et al [12], allows Deaf and
Hard of Hearing (DHH) users to customize a sound recog‑
nition model by recording a few examples of the sounds

they want to recognize. This enables DHH users to cre‑
ate personalized and ϐine‑grained categories that are tai‑
lored to their individual needs. The model was evaluated
on two real‑world sound datasets and showed signiϐicant
improvement over state‑of‑the‑art sound recognition sys‑
tems. In addition, it was deployed on a mobile device
and evaluated by 19 hearing participants, who found that
it accurately learned sounds across diverse acoustic con‑
texts. In previous work on the Sound‑Watch [13], Jain
et al utilized a VGG Lite architecture to underscore the
signiϐicance of carefully considering the number of lay‑
ers in a deep CNN model. While additional layers can en‑
hance accuracyby capturingmore features from the train‑
ing data, an excessive number may led to increased com‑
plexity and memory usage, potentially resulting in over‑
ϐitting. Jain et al reported a latency of approximately 6
seconds on the edge device and the deployment on the
market‑available Ticwatch ProAndroidwatch (with spec‑
iϐications of 4×1.2GHz, 1GB RAM) costing around 15,000
rupees. Their work highlighted potential challenges re‑
lated to misclassiϐications, latency, and privacy concerns.
Additionally, their ϐindings were based on a relatively
small participant pool, which could limit the generaliz‑
ability of the results.

VisAural [14] is a wearable sound localization device for
people with impaired hearing. It uses an array of head‑
mounted microphones to detect the direction of a sound
and places LEDs at the periphery of the user’s visual
ϐield to guide them to the source of the sound. VisAural
was evaluated with nine people with hearing impair‑
ments, and the results showed that itwas effective inhelp‑
ing them locate sounds. One of the main limitations of
VisAural is that it takes a few seconds for VisAural to de‑
tect the direction of a sound and update the LEDs. This
can be a problem in situations where the user needs to
quickly locate a sound, such as when an ambulance is ap‑
proaching, or a car honking.

Tara Matthews et al [15] devised a prototype peripheral
visualization system tailored for non‑speech audio, em‑
ploying a blend of color, motion, and spatial cues to rep‑
resent distinct sound events. Through auser study involv‑
ing ten deaf participants, the systemdemonstrated an im‑
pressive 82% accuracy in identifying speciϐic sound oc‑
currences. Users also reported a high level of ease in in‑
terpreting the visualizations, with no discernible interfer‑
ence in their ability to carry out concurrent tasks. How‑
ever, we note that the evaluation was conϐined to a small‑
scale study with deaf participants, highlighting the need
for further research to gauge the system’s effectiveness
in broader real‑world settings. Additionally, the system
was restricted to a limited set of sound events, and lacked
the capability to ascertain the direction of sound sources,
highlighting a need for further algorithmic development
in this regard.

Finally, Liu et al [16] presented UbiEar, a smartphone‑
based acoustic event sensing and notiϐication system for
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hard‑of‑hearing people. UbiEar uses a lightweight Deep
Convolution Neural Network (DCNN) to enable location‑
independent acoustic event recognition on commodity
smartphones. It also includes a set of mechanisms for
prompt and energy‑efϐicient acoustic sensing. UbiEarwas
evaluated in a controlled experiment with 86 hard‑of‑
hearing students. The results showed that UbiEar can
achieve an average accuracy of 91.2% in acoustic event
recognition, even in noisy environments. UbiEar was also
found to be energy‑efϐicient, consuming only 0.1% of the
battery life per hour. However, the device was only eval‑
uated in a controlled environment with a limited set of
sounds.

Table 2 summarizes the different spectral approaches and
datasets used by researchers. Their work has accuracy
ranging from 70‑90%. Therefore, the choice of a suit‑
able dataset depends on the purpose of the sound clas‑
siϐication task, and the accuracy of classiϐication can be
improved by selecting appropriate methodologies and al‑
gorithms. Instead of relying on pre‑existing datasets, we
gathered our own data for training the machine learning
model. This was necessary because the characteristics of
sound samples in our speciϐic region of India are distinct
from those found in widely available datasets. The neces‑
sity of using a self‑collected dataset is explained in detail
in Section 5. For example, the Indian vehicle horn differs
signiϐicantly from a foreign vehicle horn, both in percep‑
tion and in the presence of a lot of ambient noise.

Our current research focuses on a tailored solution for in‑
dividualswith hearing impairments (DHH).We aim to de‑
velop a highly efϐicient and cost‑effectivemodel thatmini‑
mizes resource requirements while maximizing portabil‑
ity and accessibility. Through the integration of EdgeML
techniques, we aim to create a solution that not only con‑
serves resources but also signiϐicantly lowers costs. Our
priority lies in achieving the lowest possible latency and
power consumption, ensuring that our technology seam‑
lessly integrates into daily life.

3. DATA COLLECTION AND
PREPROCESSING

This section outlines the procedures and techniques used
for data collection and includes details about the research
design, participants or subjects,materials andequipment,
and statistical procedures. Contributions from Clarke
School for the Deaf and Balavidyalaya School, both in
Chennai, have helped guide our device development for
individuals with hearing impairments, including those
who are deaf‑blind. Clarke School’s input gathered from a
sample size of 20 individuals, emphasized the importance
of capturing essential auditory cues such as doorbells,
horns, a baby crying, ϐire alarms, ambulances, and alarm
clocks. The user interaction also highlighted the need for
waterprooϐing the device and incorporating both vibra‑
tion and visual indicators. Similarly, the insights fromBal‑

Table2 – Comparison of different datasets, methodologies and accuracy

Authors Used Dataset Method Accuracy
Feature extraction Algorithm

Mustaq and Su[[17]] ESC‑50 Mel
spectrogram DenseNet 84.66%
Log‑Mel

spectrogram 78.55%
Ultrasound

8K
Mel

spectrogram DenseNet 88.52%
Log‑Mel

spectrogram 84.74%

ESC‑10 Mel
spectrogram DenseNet 81.25%
Log‑Mel

Spectrogram 71.25%

Nicolae‑Cat˘
alin Ristea.[[18]] ESC‑50 Spectrogram

Separable
transformer
architecture

91.13%

SCV2 Spectrogram 98.51%
Salamon and
Bello.[[3]]

Ultrasound
8k MFCC Deep CNN 79%

Koutini et al.[[19]] ESC‑50 Spectrogram
CNN with

MLP
classiϐier

96.8%

Open Mic ‑
DCASE 20 76.3%

Martı́n‑Morató
et al [[20]] ESC‑30 Spectrogram

CNN with
SoundNet
Network

Architechture
77%

Urbansound
8k 73.96%

DCASE2017
T4 ‑

Zhang, Z et al
[[21]] ESC‑50 Log‑gammatone

spectrogram
Convolutional

RNN 86.5%
ESC‑10 94.2%
DCASE
2016 88.9%

Luz et al
[[22]]

Urbansound
8K Mel‑spectrogram

CNN with SVM
and Random

Forest
Classiϐier

96.8%

ESC‑10 86.2%
Das et al
[[23]]

Urbansound
8K Mel‑spectrogram CNN with

SVM 84.2%
David Elliott et al

[[22]] ESC‑50 Mel‑spectrogram CNN 67.71%
Ofϐice sounds 95.31%

avidyalaya, derived from a sample size of 15 individuals, 
including alumni, underscored the signiϐicance of iden‑ 
tifying various sounds, including morning alarm clocks, 
pedestrians approaching from behind, doorbells, vehicle 
horns, and potential safety hazards like gas leaks or over‑ 
ϐlowing tanks. These speciϐic sound classes were con‑ 
sidered during our initial data collection, aligning closely 
with the input received from both schools.

We have used the house of quality, shown in Fig. 1, to ϐi‑ 
nalize the speciϐications of the device. This methodology 
helped us prioritize user needs and translate them into 
technical speciϐications [24]. User requirements included 
factors such as lightweight design, comfort, customiza‑ 
tion options, affordability, user‑friendliness, power in‑ 
dication, battery backup features, visual indicators, and 
haptic feedback (vibration). Technical requirements were 
delineated to address attributes like size, battery life, 
Bluetooth connectivity, display, mobile application in‑ 
tegration, power consumption, production cost, power 
switch, haptic feedback, and sound recognition. Rela‑ 
tionships between customer and technical requirements 
were then assessed, quantifying the strength of their con‑ 
nection on a scale of 0 to 10. Additionally, importance 
ratings were calculated to ascertain the overall signiϐi‑ 
cance of each technical requirement, factoring in the 

©International Telecommunication Union, 2023 669

Velmurugan et al.: Vibe – With people with hearing impairment



priority of the associated customer requirement. The 
current state of each technical requirement was 
evaluated, providing a clear understanding of the 
existing status in relation to the desired objectives. 
The direction of improvement was indicated by 
arrows, guiding the development process towards 
enhancements, degradation, or maintenance of current 
attributes.

Fig. 1 – House of quality

Weused the Android sound recording app called Around‑
Sound [25] to collect sound samples under environmen‑
tal conditions. Table 3 describes the details of our self‑
collected dataset. Preprocessing of sound samples in‑
cludes three stages: subsampling, de‑noising, and silence
portion detection and removal, following the algorithm
structure in Fig. 2.

Table 3 – Self‑collected dataset for ϐive classes

Class Duration Samples per class
Baby cry ≃5s 100
Vehicle horn ≃5s 100
Alarm ≃5s 100
Door Knock ≃5s 100
Calling Name ≃2s 40

3.1 Subsampling
Sound samples were recorded at a sampling rate of
44.1 kHz using AroundSound. To reduce the computa‑
tional complexity of training a neural network and the
memory requirements of the training and deployment
process, we subsampled the data to 16kHz [26]. Authors

Fig. 2 – Structure of an algorithm

from various studies [27, 28] identiϐied that a lower sam‑
pling rate can help prevent overϐitting, a common issue in
machine learning where the model becomes too speciϐic
to the training data and performs poorly on new data.

3.2 De‑noising
Sound samples often contain noise; in our case, it is
mostly ambient noise (including trafϐic noise, people talk‑
ing, and wind), which would negatively impact the per‑
formance of a machine learning model. Turget’s work
[29] focused on removing any distracting sounds from
collected baby crying sounds and emphasizing speciϐic
points during the preprocessing stage. This pre‑emphasis
can done using spectral subtraction, Wiener ϐiltering, and
adaptive ϐiltering [30, 31]. The goal is to improve the
Signal‑to‑Noise Ratio (SNR) of the sound ϐile. One ap‑
proach is to use bandpass ϐilters, keeping only a range
of frequencies, to remove noise from sound ϐiles before
training the model [32, 33]. We used SciPy, a scientiϐic
Python library, to design bandpass ϐilters that removes
the noise in an identiϐied frequency range for each sound
class. The BPF ϐilter is designed with the following upper
and lower limit frequency ranges.

• Vehicle horns: 2.5 kHz ‑ 4.1 kHz
• Baby cry : 500 Hz ‑ 1500 Hz
• Alarm : 2 kHz ‑ 4 kHz
• Door Knock : 100 Hz ‑ 200 Hz
• Human voice: 200 Hz ‑500 Hz
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Fig. 3 – Sequential process of methodology

3.3 Silence detection and removal
Removing silent portions from the recorded sound ϐiles
before training a neural network also helps improve the
accuracy of the model prediction [34]. Silent portions in
the sound ϐiles are often caused by background noise, in‑
terference, or gaps between sound events. They reduce
the Signal‑to‑Noise Ratio of the sound ϐiles and make it
more difϐicult for the neural network to distinguish be‑
tween different sound events. Silence removal can also be
donemanuallywith thehelp of the truncate silence option
in Audacity [35].

4. METHODOLOGY
The approach we follow for our proposed machine
learning‑based environmental sound classiϐication sys‑
tem is shown schematically in Fig. 3. It involves several
steps, including data collection and preprocessing, fea‑
ture extraction, labeling, model training, evaluation, and
deployment to edge devices.

4.1 Spectrogram feature extraction
We use a spectrogram to extract features from prepro‑
cessed data samples [36]. We compute the Short‑Time
Fourier Transform (STFT) of the audio signal, dividing
the signal into overlapping frames and applying a Fourier
transform to each frame [37]. The variation in frequency
content of the audio signal over time is thenpresentedas a
2‑D ϐigure. Spectrogram parameters are the settings that
can be adjusted to control the appearance and quality of
the spectrogram. The key parameters used are,

• Window size: 1000ms
• FFT size: 128
• Frequency range: 0‑8kHz
• Noise ϐloor: (‑52dB) It is used to specify the mini‑
mum amplitude threshold for audio samples in the
dataset. Any samples below this threshold will be

considered as noise and discarded during training
and testing.

Fig. 4 represents the spectrogramof the alarmsound sam‑
ple; the frequency of the sample falls within the range of
2 to 4 kHz. The strength of each frequency component
is represented by varying intensities of the colors. Here,
red in color areas represents stronger frequency compo‑
nents. These extracted features from the sample can then
be used as inputs to the next stage, i.e., training a convo‑
lutional neural network.

Fig. 4 – Spectrogram of a ringing alarm.

4.2 Neural network architecture
Our proposed neural network architecture is composed
of multiple layers, each with its own set of functions and
purposes implemented using Python. Our self‑collected
dataset was divided into training (80%) and test (20%)
sets randomly. We used external sounds to validate the
particular class. We designed a six‑layer Convolutional
Neural Network (CNN) with an input layer and a reshape
layer, followed by two 1D convolution or pool layers. We
also included a dropout layer with a rate of 0.5 to re‑
duce overϐitting [38]. The function of each NN layer is de‑
scribed as follows.
1. Input layer (6,435 features): The input layer is the

ϐirst layer of the neural network; this layer will take
the preprocessed audio samples as input

2. Reshape layer: Input audio signals are ϐirst trans‑
formed into a spectrogram. The resulting spectro‑
gram is a 2D matrix of frequency bins and time
frames. However, the input to the neural network
must be in the form of a 3D tensor, where the third
dimension represents the number of input channels
(i.e., mono or stereo audio)[39][40].

3. 1D convolution/pool layer (8 neurons, three kernel
size, one layer): 1D convolutional layer with eight
neurons and a kernel size of 3 would take as in‑
put a 1D tensor (i.e., a vector) and apply eight ϐil‑
ters, each with a size of 3, to produce eight feature
maps. The output would be a 3D tensor with di‑
mensions (batch_size, sequence_length ‑ 2, 8), where
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batch_size is the number of samples in a batch and
sequence_length is the length of the input sequence.

4. Dropout layer: A dropout layer with a rate of 0.25 is
addedafter the ϐirst dense layer. During each training
iteration, 25% of the neurons in the ϐirst dense layer
will be randomly dropped out [38].

5. 1D convolution/pool layer (16 neurons, three ker‑
nel size, one layer): A 1D convolutional layer with
16 neurons and a kernel size of 3 would take as
input a 1D tensor (i.e., a vector) and apply 16 ϐil‑
ters, each with a size of 3, to produce 16 feature
maps. The output would be a 3D tensor with dimen‑
sions (batch_size, sequence_length ‑ 2, 16), where
batch_size is the number of samples in a batch and
sequence_length is the length of the input sequence.
Adding a 1D pooling layer after the convolutional
layer would further reduce the dimensionality of the
output feature maps. A typical choice for the pooling
operation in a 1D CNN is to use the maximum value
in each sliding window of pool [41, 42].

6. Output layer: This is responsible for producing the
ϐinal output of the network based on the input data,
and uses a softmax activation function [43]to pro‑
duce a probability distribution over the different
classes in the classiϐication problem. The class with
the highest probability is then selected as the pre‑
dicted output of the network.

4.3 Edge device architecture
We have adopted an RP2040‑based Arduino microcon‑
troller with an inbuilt MEMS‑type omnidirectional micro‑
phone for our work. The RP2040 is suitable for edge ma‑
chine learning applications due to its low cost, low power
consumption, and high performance. It has 264KB of
RAM, and a dual Arm Cortex‑M0+ core that can run at up
to 133 MHz, with enough processing power to handle ML
models [44]. The features of our edge device are:

• Wearable: designed as a wearable watch, as shown
in Fig. 6.

• Haptic and visual feedback: speciϐic vibrations to
match a few pretrained sounds. An OLED display
shows what sound has been captured and predicted.

• Sensitivity range : ∼ 5m
• Operating time: ∼ 28 days per charge
• Deep sleep mode: sound activity/threshold‑based
wake‑up

• Customizable: custom sounds can be added through
Over The Air (OTA) conϐiguration.

5. USING REGION‑SPECIFIC DATASETS
To demonstrate the necessity of a self‑collected dataset,
we conducted an experiment with the primary objec‑
tive of assessing the performance difference between our

Fig. 5 – Wearable edge device architecture

Fig. 6 – Wearable device design

self‑collected datasets from the Indian region and open
datasets available in the urban sound library. Initially, we
trained our model using an Urbansound8K dataset com‑
prising car horn and siren sounds [45]. Subsequently,
we evaluated the model’s performance using Indian car
horns and siren sounds. The confusion matrix provided
in Table 4 illustrates the classiϐication results. Notably,
the overall accuracy of themodel is found to be only 33%.
Further analysis reveals variations in the F1 scores for
different sound classes. Speciϐically, for the ’Car Horn’
class, the F1 score is 0.54, indicating a relatively better
performance compared to other classes. However, for
the ’Noise’ class, the F1 score is considerably low at 0.1,
suggesting a signiϐicant challenge in accurately classify‑
ing this sound category. Additionally, the ’Siren’ class ex‑
hibits an F1 score of 0.34, indicating room for improve‑
ment in its classiϐication performance.
Table 4 – Confusion matrix ‑ Classiϐication results of Indian sounds
trained on the Urbansound8k dataset.

Actual / Predicted Car Horn Noise Siren
Car Horn 42.20% 53% 3.20%
Noise 0.00% 100% 0.00%
Siren 12.90% 0% 21.10%
F1 Score 0.54 0.1 0.34

The ϐindings of this experiment underscores the impor-
tance of utilizing region‑specific datasets for training and

©International Telecommunication Union, 2023672

ITU Journal on Future and Evolving Technologies, Volume 4, Issue 4, December 2023



testing sound classiϐication models. The low accuracy and 
varying F1 scores highlight the need for a self‑collected 
dataset tailored to a speciϐic region, in our case India, 
which can potentially lead to improved model perfor‑ 
mance and accuracy in sound classiϐication tasks. We em‑ 
phasize the signiϐicance of dataset selection and its im‑ 
pact on the effectiveness of sound indication devices em‑ 
ploying 1D CNN‑based machine learning.

Additionally, our approach allows for customization in 
noise handling based on speciϐic use case requirements. 
By adopting this method, we overcame the limitations of 
the UrbanSound8k library, where noise was artiϐicially 
added in the background. This approach substantially 
boosts the performance and precision of our sound classi‑ 
ϐication model, especially in noisy settings, ultimately en‑ 
hancing the relevance and reliability of our research out‑ 
comes.

6. DEPLOYMENT: CHALLENGES AND OPTI‑
MIZATION TECHNIQUES

We have used the CMSIS‑NN, a neural network inference
library optimized for execution on Arm Cortex‑M proces‑
sors [46]. This library offers a range of functions for tasks
such as loading and executing CNN models, as well as
conducting common operations like convolution, pooling,
and activation. We encounter multiple challenges when
deploying trained CNN algorithms on the RP2040 pro‑
cessor due to its constrained resources. Firstly, a CNN
model often exceeds the RP2040’s limited memory ca‑
pacity, necessitating techniques like quantization, prun‑
ing, and knowledge distillation to reduce their size. Ad‑
ditionally, the RP2040’s relatively slow processing speed
results in prolonged execution times for a CNN model,
prompting us to optimize model architecture and employ
efϐicient neural network operations. Finally, despite be‑
ing a low‑power processor, running a CNN model on the
RP2040 can still lead to signiϐicant power consumption,
drivingus to implement strategies such asdynamicpower
management and efϐicient operation implementations to
mitigate this issue. We employed a variety of techniques
to optimize the model architecture. This encompassed
the use of smaller kernels, a reduction in the number
of layers, and the implementation of more efϐicient ac‑
tivation functions. We discovered that the utilization of
strides convolutions and depth‑wise separable convolu‑
tions substantially decreased the computational cost of a
model without compromising accuracy.

7. RESULTS AND DISCUSSIONS
We have evaluated the performance of our model using
various metrics such as a confusion matrix, accuracy, and
F1 score. To assess the model’s performance, in Case‑
I, we trained a machine learning model with ϐive classes
of datasets that included noise and silence. In Case‑II,

we used two categories of datasets after performing de‑
noising and removing the silent portion. Evaluation met‑
rics for the Case‑I and ‑II are discussed in terms of their
accuracy and performance.

7.1 Evaluation metrics for Case‑I
We ϐirst trained amachine learningmodel using a dataset
of 500 audio samples collected from ϐive different classes
(baby cry, alarm, door knock, vehicle horn, and spoken
name) of environmental sounds. Each category contains
100 samples, along with noise and silent segments. A
confusion matrix is shown in Table 5, summarizing the
performance of the classiϐication algorithm. Rows rep‑
resent the actual class, while the columns represent the
predicted class. The percentages indicate the propor‑
tion of samples correctly classiϐied as each class with off‑
diagonal elements gives an indication of error in classi‑
ϐication. The model correctly classiϐied 91.7% of alarm
sounds but wrongly classiϐied 1.7% as a baby’s cry, 6.7%
as adoor knock, and0%as a vehicle hornor spokenname.
Table 5 – Case‑I: Confusion matrix for classiϐication of ϐive classes of
sound samples with noise and silence segments

Alarm Baby Cry Door knock Vehicle horn Spoken Name
Alarm 91.7 % 1.7% 6.7% 0% 0%
Baby Cry 0% 98.6% 1.4% 0% 0%
Door knock 1.8% 0% 98.2% 0% 0%
Vehicle Horn 0% 1.9% 26.4% 71.7% 0%
Calling Name 0% 12.8% 1.2% 4.6% 81.4%

The F1 score is calculated using the precision and recall
for each class. Precision is the proportion of true posi‑
tives (TP) among all predicted positives (TP + FP), while
recall is theproportionof truepositives (TP) amongall ac‑
tual positives (TP + FN). For example, we can calculate the
precision, recall, and F1 score for each alarm class as fol‑
lows, and similarly, it will be calculated for other classes
as well.

Precision =
TP

TP+ FP =
91.7

91.7 + 1.7 + 6.7 + 0 + 0
= 0.89

Recall = TP
TP+ FN =

91.7

91.7 + 0 + 1.8 + 0 + 0
= 0.98

F1 Score = 2× Precision · Recall
Precision+ Recall = 0.93

With Case‑I methodology we achieved the maximum ac‑ 
curacy of 88.3% with the prediction.

7.2 Evaluation metrics for Case‑II
Adding noise as a separate category to the training data 
can make an ML model more robust with sound classiϐi‑ 
cation [47, 48]. In Case‑II, we trained the ML model with 
only two classes of sound samples after performing de‑ 
noising and removal of the silent portion. In the Case‑I 
study, we observed that with a separate noise class, the 
model may mis‑classify noise as a meaningful sound, lead‑ 
ing to better predictions.
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Table 6 – Case‑II: Confusion matrix for classiϐication of three classes of
sound samples without noise and silence segments

Vehicle horn Siren Noise
Vehicle horn 98.3 % 1.7% 0%
Siren 4.2% 95.8% 0%
Noise 0 0% 100%
F1 score 0.97 0.97 1.0

From Table 6, we observed that the confusion matrix 
of Case‑II shows that the classiϐier has performed well 
for vehicle horn and siren classes, with high accuracy 
rates of 98.3% and 95.8%, respectively. Also, reducing 
the number of classes can potentially increase the 
accuracy of the ML model with prediction. A few 
technical glitches observed from the results shown in 
Table 5 e.g. ambient noise was recognized as vehicle 
horn and a door knock not at all recognized by the 
device.

7.3 Experimental test setup
In this, the experimental test shown in Fig. 7 was con‑ 
ducted in a closed room under normal ambient noise level 
conditions, i.e., 45 dB SPL. We placed table‑top wireless 
speakers at various locations inside the room and played 
different sound samples from multiple trained classes to‑ 
wards the device from mobile to evaluate its performance.

Fig. 7 – Experimental setup

The objective of this experiment was to test the device’s
ability to predict and detect sounds accurately, as well as
to determine if any time delay was present. Keeping the
sound source 5 feet away from the device at different lo‑
cations allowed us to evaluate the device’s ability to de‑
tect and recognize sounds from various directions since
we used an omnidirectional microphone.

The variation in prediction times arises from the tailored
design of the 1D Convolutional Neural Network (CNN) ar‑
chitecture for distinct sound classes. The ”Alarm” class
beneϐits from an optimized architecture that efϐiciently
extracts its speciϐic features, leading to faster recogni‑
tion. In contrast, other classeswith unique spectral signa‑

tures require different conϐigurations, potentially involv‑
ingdeepernetworksor alternative structures, resulting in
longer prediction times. This tailored approach ensures
optimal responsiveness to each class’s intricacies.

To assess the reliability of the device’s sound recognition
capabilities, a measure of conϐidence level was incorpo‑
rated into the experimental setup. The conϐidence level
of ”High”, ”Medium” or ”Low” denotes the degree of cer‑
tainty the device assigns a particular class label to a given
audio stimulus. As a metric it provides insights into the
robustness of the recognition process.
Table 7 – Experimental setup results: device performance for different
classes of sounds with prediction

Stimuli played Conϐidence
level

Recognised
class

Prediction
time

Baby cry High Baby cry 5‑10 sec
Alarm Medium Alarm 2‑5 sec
Vehicle horn Low Vehicle horn 5‑10 sec
Door Knock Medium Door knock &

Vehicle horn 5‑10 sec
Calling a name High Recognised 5‑10 sec

8. CALIBRATION AND DEPLOYMENT
We conducted ϐield tests of the devicewith three Deaf and
Hard of Hearing (DHH) users, obtaining valuable feed‑
back regarding its performance, battery life, and user
comfort. Calibration of the device was done in the follow‑
ing ways:

• Sensitivity adjustment: The current sensitivity of the
PDM microphone is approximately ‑42 dB FS (deci‑
bels full scale). This means it will produce an output
voltage of 1 V peak‑to‑peak for an input Sound Pres‑
sure Level (SPL) of 94 dB. The sensitivity was var‑
ied by adjusting the gain of themicrophone ampliϐier.
The gain is typically speciϐied in decibels (dB).

• Threshold setting: A threshold is deϐined to specify
the minimum sound level (typically around 45 deci‑
bels) required to activate the indicator. This thresh‑
old was tailored to suit the user’s speciϐic needs and
preferences.

• Filtering and signal processing: Implementing a ϐil‑
ter that passes only the frequencies of interest. This
can be done, for example, to ϐilter out background
noise and isolate the sound of a speciϐic class.

Currently,weare in theprocess of initiating apilot deploy‑
ment in collaboration with Clarke School for the Deaf and
Balavidyalaya school, both in Chennai. In this phase, we
will evaluate the performance of our system in live edu‑
cational environments and gather feedback directly from
end users. Additionally, we are working on a compre‑
hensive deployment plan that includes strategies for sys‑
tem calibration, user training, and ongoing support. This
will ensure that our technology is seamlessly integrated
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into educational settings and maximize its effectiveness
for DHH students.

9. LIMITATIONS AND FUTUREWORK
Our results demonstrated that our approach can achieve
competitive results for speciϐic sound classiϐication. One
potential limitation of our work is the size and diversity
of the dataset used for training and testing the model,
which is limited to only 500 audio samples in Case‑I and
a limited number of classes in Case‑II. The model’s per‑
formance is evaluated using traditional metrics like accu‑
racy and F1 score. It would be beneϐicial to use additional
metrics, such as Area Under the Curve (AUC), to evalu‑
ate the model’s performance more comprehensively. We
observed a somewhat poorer performance in noisy envi‑
ronments, as loud background noise made it difϐicult for
the system to identify and classify the target sound ac‑
curately. In very noisy environments, the sound classi‑
ϐication system would sometimes mistakenly classify the
background noise as the target sound.

In future work, we plan to explore different architectures
andhyperparameters to improve theEdgeML,mainlypre‑
dicting vehicle horns in heavy trafϐic situations. We will
also collect more data to increase the diversity and size of
our dataset. Finally, our model with edge devices will be
customizable by users for their speciϐic needs.

10. CONCLUSION
Our study has demonstrated the feasibility of using ma‑
chine learning algorithms for environmental sound clas‑
siϐication on a wearable platform for individuals with
hearing impairments. Our approach achieved high accu‑
racy in recognizing various environmental sounds, pro‑
viding users with real‑time feedback and enhancing their
awareness of the surrounding environment. This technol‑
ogy has the potential to signiϐicantly improve the quality
of life for individuals with hearing impairments, enabling
them to interact more effectively with the environment
and the people around them. Further research can focus
on improving the accuracy of the classiϐication algorithm,
exploring additional features for sound analysis, and in‑
tegrating the platform with other assistive technologies.
Overall, this study provides a promising direction for fu‑
ture research and development of wearable platforms for
individuals with hearing impairments.
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Table 8 – Abbreviations and their deϐinitions

Abbrev. Deϐinition
CNN Convolutional Neural Network
DCNN Deep Convolutional Neural Networks
ESC Environmental Sound Classiϐication
LBP Local Binary Pattern
MEMS Micro Electro Mechanical Systems
MFCC Mel‑Frequency Cepstral Coefϐicients
MLP Multi‑layer Perceptron classiϐier
OLED Organic Light‑Emitting Diode
PCA Principal Component Analysis
SNR Signal to Noise Ratio
SPL Sound Pressure Level
STFT Short Time Fourier Transform
VGG Visual Geometry Group
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