
A DYNAMIC PROGRAMMING SCHEDULE TRADING OFF QUALITY AND STABILITY IN TASK
ALLOCATION FOR ENERGY‑NEUTRAL INTERNET OF THINGS DEVICES HARVESTING SOLAR

ENERGY

Antonio Caruso1, Stefano Chessa2, Soledad Escolar3, Fernando Rincón3, Juan Carlos López3
1Dept. of Mathematics and Physics ”Ennio de Giorgi”, University of Salento, Lecce, Italy, 2Computer Science Department,

University of Pisa, Pisa, Italy, 3School of Computing Science, University of Castilla‑La Mancha, Ciudad Real, Spain

NOTE: Corresponding author: Antonio Caruso, antonio.caruso@unisalento.it

Abstract – Energy neutrality in an energy harvesting Internet of Things (IoT) device ensures continuous operation of the 
device by trading performance with energy consumption, and a way to achieve this is by adopting a task‑based model. In 
this model, the device embeds several alternative tasks with different ratio energy‑cost/quality and a scheduler that, depend‑ 
ing on the current energy production and battery level, runs at any time the best task to maximize the performance while 
guaranteeing energy neutrality. In this context, this work proposes a novel scheduling algorithm that takes into account also 
the stability of the device, by minimizing the leaps of quality between two consecutive tasks in the scheduling. We show by 
simulation and by experiments on a low‑power IoT platform that the proposed algorithm greatly improves the stability of the 
device with respect to the state‑of‑the‑art algorithms, with a marginal worsening of the overall quality of the tasks executed.

Keywords – Internet of Things, multi‑objective scheduling problem, scheduling stability, solar energy harvesting

1. INTRODUCTION

Energy harvesting of solar power [1] is a common solu‑
tion to power Internet of Things (IoT) devices in outdoor
environments, due to the reliability of harvesters (solar
panels) and to the great power density provided by this
source. However, even this solution may not be suf icient
to guarantee continuous operation of a device as there is
no guarantee on the amount of energy that can be har‑
vested over time. In this condition, the simple solution of
over‑sizing the solar panel and the battery results in in‑
creased costs and environmental impact of the device [2].
A promising alternative, consists of the energy‑neutral
design of the device [1], which can dynamically trade de‑
viceperformance (and thus thequalityof its output,what‑
ever it is) with power consumed (its load). Its objective is
to let the device consume less energy than that produced
by the harvester over each reference time frame (in the
case of solar energy harvesting this time frame is usually
one day, following the natural cycle of the sun). In the
seminal work [1], energy neutrality was achieved by act‑
ing on the duty cycle of the device to modulate the load to
match the forecast of the energy production throughout a
day. For example, if the device operates as a sensor, in‑
creasing the duty cycle improves the quality of sampling
and increases the power consumption, while decreasing
the duty cycle reduces the quality of sampling and de‑
creases the power consumption.
The concept of energy neutrality gave rise to a rich and
intense research [3, 4, 5, 6, 7, 8, 9, 10]. In particular, we
introduced a task‑basedmodel [11]; in this model the de‑
vice embeds several alternative versions of the program
to run (called tasks), each characterized by a different
pro ile in terms of power consumption and quality of its

output. In this way, energy neutrality can be achieved
by inding a suitable schedule of the tasks throughout a
day that also maximizes the overall quality. As the con‑
sequent optimization problem is NP‑Hard, the irst ap‑
proaches [12, 13, 4, 14] adopted greedy‑based strategies
to implement the optimization. More recent work [5,
15] made further progress by introducing a dynamic pro‑
gramming algorithm that solves the optimization prob‑
lem and that, despite its nature, can be implemented ef‑
iciently even in low‑power devices.
The current work its this trend of research by addressing
the problem of stability of the task schedule found by the
optimization algorithm. This problemariseswhen theop‑
timal task schedule contains very large quality leaps be‑
tween two consecutive tasks. These leaps occur due to
the needof achieving the energyneutrality constraint, but
they may be a problem from the point of view of the us‑
ability of the device because they make its output widely
variable making it more dif icult to interpret/manage by
the user. Consider for example a device that operates as
a sensor: a schedule may contain two consecutive tasks,
one operating at maximum duty cycle (and thus at a max‑
imum sampling rate) and the next with the lowest duty
cycle (and thuswith a very low sampling rate), whichmay
not be the best option from the point of view of analy‑
sis/use of the sensed data.
Our approach, of which a preliminary version appeared
recently in [16], formalizes the problem of optimal
task scheduling as a multi‑objective scheduling prob‑
lem, which aims to (i) maximize the overall task qual‑
ity and to (ii) minimize the leaps between consecutive
tasks. Since with this formulation the problem requires
powerful machines on edge/cloud servers to be solved,
we introduce a relaxation of the problem where these

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024

© International Telecommunication Union, 2024 
Some rights reserved. This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/. 

More information regarding the license and suggested citation, additional permissions and disclaimers is available at: 
https://www.itu.int/en/journal/j-fet/Pages/default.aspx 



two objectives (maximization of quality and minimiza‑
tion of leaps) are combined into one single objective that
takes both into account. We also show that, with this re‑
laxed formulation, the problem can be solved by using a
dynamic programming algorithm that can be ef iciently
tuned to be executed even on very low power IoT devices.
We also present simulative and experimental results ob‑
tained with a low‑power IoT device of the Arduino class
to show that our approach signi icantly reduces the leaps
as compared to the state of the art, and that this reduc‑
tion comes with a very small penalty in terms of quality
of the overall schedule. Note that the present work sig‑
ni icantly extends the preliminarywork presented in [16]
in the state of the art and in the evaluation section, by ex‑
tending the simulations andby adding a novel experimen‑
tal part conducted over real IoT devices.
Summarizing, the main contributions of this work are:

• a novel multi‑objective scheduling problem for en‑
ergy harvesting IoT devices thatmaximizes the qual‑
ity of the scheduling and minimizes the leaps among
consecutive tasks;

• a (novel)relaxed formulation of the multi‑objective
scheduling problem that combines both objectives
into one single objective function;

• a novel dynamic programming algorithm that solves
the relaxed problem even on low‑power devices;

• an experimentation over Arduino class devices that
shows the feasibility of the approach and that shows
the reduction in terms of number of leaps in the
scheduling with respect to the state of the art.

The rest of the paper is organized as follows: Section 2
presents the state of the art, Section 3 explains the model
of energy harvesting, sections 4 and 5 introduce the opti‑
mization problem and the scheduling algorithm, respec‑
tively, Section 6 presents the simulation results and Sec‑
tion 7 draws the conclusions and future work.

2. RELATEDWORK
In a seminal work Kansal [1] introduced the condition
for energy neutrality. It states that, given a certain refer‑
ence time period, the battery level at the end of the period
must always be greater than or equal to the battery level
at the beginning of the period. To satisfy this condition,
there exist four major strategies: Dynamic Voltage and
Frequency Scaling (DVFS), duty cycle adaptation, sensing
and sampling rate adaptation and task scheduling. A re‑
view of these techniques can be found in [9, 10], while re‑
cent speci ic surveys on task scheduling for energy neu‑
trality are in [17, 18].
Speci ically, we have contributed to this last categorywith
severalworks that propose algorithms devoted to ind the
optimal scheduling thatmaximizes the utility of the appli‑
cations running on top of the devicewhile keeping the en‑
ergy neutrality condition, and a real testbed for them [3,

15]. We also considered progressively richer scenarios,
from a simple one with one energy harvesting device [11,
14] to scenarios involving more devices connected to a
gateway or sink, that also has an energy harvesting ca‑
pability [12, 13, 4]. In a recent work [5] we introduced
a scheduling algorithm based on dynamic programming
that inds the optimum scheduling, and we proved that
this algorithm is even feasible in very low‑power devices
by considering the limited resolution of these devices in
sampling the battery charge and the power production of
the photovoltaic panel.
Similar to [5, 19], other work has addressed the problem
of optimization of the tasks scheduling under different
scenarios [20]. In [6] a Mixed Integer Linear Program‑
ming (MILP) formulation is devoted to the optimization
of the quality of security of the tasks scheduled under
energy‑constraints on a battery‑powered MultiProcessor
SoC (MPSoC). The security may be achieved by a set of
cryptographic algorithms, each one with a time overhead
and an energy consumption, and a quality associatedwith
the service. The experimentation results show how the
algorithm proposed saves energy and improves quality of
security for MPSoC compared to other approaches. In [7]
the IoT devices, powered by renewable energy, make a
computational of loading using resource‑rich fog servers
(which are powered by the grid), and propose a strategy
for the optimization of real‑time tasks executed on the fog
aimed at maximizing both the system QoS and the QoS of
individual real‑time applications. The experimental re‑
sults demonstrate an improvement of the overall and in‑
dividual application QoS by up to 101.93% and 59.30%,
respectively. The work in [8] describes an approach in
two‑stages for real‑time electricity pricing and schedul‑
ing. To this end, an optimization strategy for IoT device
scheduling modeled as a 0‑1 Knapsack problem is pro‑
posed (i.e. the device can be or not be scheduled). The
authors leverage our work in [19] to de ine an energy‑
harvesting environment where the devices may also buy
electricity when their harvester does not provide enough
power. Their results demonstrate that the accepted re‑
quests ratio of the energy‑harvesting scenario is up to
20% greater than the ratio of the scenario where the en‑
ergy harvesting is not applied, due to the fact that the en‑
ergy consumption of a device per time slot is reduced by
the harvested energy, and thus more requests can be ac‑
cepted. In [21] the authors present and evaluate differ‑
ent approaches for solar power energy prediction suit‑
able for the application in IoT devices harvesting solar
power. They show that using public weather forecast and
solar angles derived by the deployment position and ori‑
entation can improve the energy budget of the devices by
more than 20%.
In Table 1 we summarized the major ’features’ presented
in the papers discussed above. This paper starts with the
algorithm presented in [5], in particular we observed a
critical limit of the optimal computed schedule. In some
scenarios, when the production of the solar panel drops
for some reason, the optimal schedule is comprised of a

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024

©International Telecommunication Union, 202414



Table 1 – A comparison of different topics studied in the related works. The four papers in the last columns are survey papers.

[1] [11] [12] [13] [14] [4] [5] [19] [15] [3] [20] [6] [7] [8] [21] [9, 10] [17, 18]

Survey paper •
Greedy‑algorithm • • • • • •
Model of solar prediction • • • • • • • • • • • • • •
Dynamic programming • • • • • • •
Adaptive duty‑cycle •
Tasks scheduling • • • • • • • • • • • • •
Tested on device • • • • • •
MultiNode scheduler • • • •
Statistical approach • • • • • • •
Security model •
IoT‑fog‑cloud game • •

sequence of tasks with an abrupt change in quality from
consecutive times. This kind of strong oscillations in the
quality of tasks, even in the case of an optimal sched‑
ule cannot be desirable if the designer prefers a grace‑
ful degradation of the quality over time. We decided,
that a new approach that provides a more progressive
degradation of the behavior and quality of the tasks ex‑
ecuted on the device across the time was required, and
presented a preliminary work on it in [16]. The trade‑
off between quality and stability is already studied in the
theory of scheduling, but it seems, for the author’s knowl‑
edge, that has never been addressed before in the case of
energy‑neutral scheduling in energy harvesting Internet
of Things.

3. MODEL OF ENERGY HARVESTING DE‑
VICES

An energy‑harvesting system [22] comprises four major
elements: a harvester, a power converter, a load, and an
energy storage. A solar harvester is a panel that embeds
photovoltaic modules that convert sunlight into electric‑
ity by means of the photovoltaic effect. The output power
of a solar panel depends on the the surface 𝑆 of the panel
itself, on the irradiance 𝐷 (i.e. density of incident power
on the surface of the panel), and on the ef iciency of the
energy converter 𝜇 (i.e. the percentage of conversion of
the irradiance into electrical power). A power converter
is an electronic device that regulates the power emitted
by the harvester to avoid uncontrolled luctuations in the
output voltage and in the output current that may cause
damage to the powered device. The load is the computa‑
tional device of the system that demands energy to carry
on its operations. It is usually composed by a microcon‑
troller unit, one radio unit for wireless communications,
one or several sensors, and an external memory for per‑
manent data storage. Finally, the energy‑storage provides
an energy buffer to sustain the load when the harvester
provides insuf icient power. In general, the energy stor‑
age is a rechargeable battery, but in some cases it may
be replaced by capacitors or super‑capacitors as primary

or secondary energy storage because of their longer life‑
times and larger range of operating temperatures.

4. SCHEDULING PROBLEM

We consider a low‑power IoT device equipped with a
micro‑controller, memory, wireless interface and a set of
sensors/actuators and an energy harvesting subsystem
comprising a rechargeable battery (of maximum capacity
𝐵𝑚𝑎𝑥) and a solar panel. We assume that the minimum
charge of the battery that lets the device operate is 𝐵𝑚𝑖𝑛
and we denote with 𝜂 the charging ef iciency of the bat‑
tery (this accounts for loss of energy due to its conversion
and battery charging process).
In order to optimize the use of the battery and thus to
achieve energy neutrality, the device is programmed in
order to modulate the load (that is, its energy consump‑
tion), so to consume, within a prede ined time frame, the
same amount of energy that it produces. Considering that
the solar energy has a natural cycle of 24 hours, we take
this time frame to be exactly 24 hours.
In order to modulate the load of the device, we adopt
the same approach of [5]. In particular we assume that
the device is preloaded with a set of 𝑁 alternative tasks
𝒯 = {𝑡1, … , 𝑡𝑁} each characterized by a different en‑
ergy consumption 𝑐𝑖, 𝑖 ∈ [1, 𝑁] and quality of service
𝑞𝑖, 𝑖 ∈ [1, 𝑁]. For example, different tasks may imple‑
ment the functionality of the device sampling at differ‑
ent frequencies, they may execute a lighter/more com‑
plex data aggregation or they may communicate less/‑
more frequently with the base station. It is important to
stress that in our model the tasks are alternative, that is,
they all implement an equivalent functionality but with
different performances (and thus with different qualities
of service and energy consumption).
Still to the purpose of load modulation, the device also
embeds a scheduler that selects the tasks to be executed
in order to guarantee the energy neutrality of the device.
We stress that, even in IoT devices that are really con‑
strained inmemory or computational capacity, it is possi‑

Caruso et al.: A dynamic programming schedule trading off quality and stability in task allocation 
for energy-neutral Internet of Things devices harvesting solar energy

©International Telecommunication Union, 2024 15



ble to build a very small scheduler, see for example FUSIX1
a small Unix‑like OS implementation for the Raspberry
Pico. In particular, the scheduler assumes that the 24
hour time frame is divided into 𝐾 time slots of the same
duration 24ℎ/𝐾 . At the beginning of each day the sched‑
uler produces an energy‑neutral assignment of the tasks
to each slot based on the expected energy production in
each slot across the day.
Considering that the expectation on the energy produc‑
tion in each slot may not be met, if the device is deviat‑
ing from the energy neutrality target then the scheduler
can be executed again to recompute the assignment of
the tasks to the remaining slots in the day. Note that the
scheduler executes an optimization: on the one hand it
shouldmeet the energyneutrality constraint, on the other
hand it has to maximize the overall quality of the assign‑
ment.
Note that, if we consider values of 𝐾 from 12 to 288 (that
we consider reasonable for low‑power IoT devices) the
duration of a slot (and thus the actual scheduling of the
tasks) ranges from 2 hours to 5 minutes, which is much
higher than a classical OS scheduler. Hence, we con‑
sider it a high‑level scheduler that works jointly with the
usual low‑level scheduler running every fewmilliseconds
to support interrupts, device asynchronous events, and
other usual OS activities. In this light, the concept of task
presented in thiswork can also be interpreted differently;
a high‑level task can be mapped to different low‑level
tasks with the constraints that when they are scheduled
in a time slot their total energy requirements and qual‑
ity are expressed by the high‑level task cost and quality,
respectively.
For each 𝑖 ∈ [1, 𝐾], let 𝑒𝑖 be the expectation for the en‑
ergy to be produced in slot 𝑖, 𝐵𝑖 be the energy charge of
the battery at the beginning of slot 𝑖, 𝑏𝐾+1 be the battery
charge at the end of the last slot, and let 𝑥𝑖𝑗 be a Boolean
variable which is 𝑥𝑖𝑗 = 1 iff task 𝑡𝑗 (with 𝑗 ∈ [1, 𝑁]) is as‑
signed by the scheduler to slot 𝑖. Given assignment 𝑥𝑖𝑗 for
all 𝑖 ∈ [1, 𝐾]; 𝑗 ∈ [1, 𝑁], we denote with ̂𝑞𝑖 the quality of
the task assigned to slot 𝑖 andwith ̂𝑐𝑖 the energy consump‑
tion of the task assigned to slot 𝑖. Hence : ̂𝑞𝑖 = ∑𝑁

𝑗=1 𝑥𝑖𝑗𝑞𝑗

and ̂𝑐𝑖 = ∑𝑁
𝑗=1 𝑥𝑖𝑗𝑐𝑗 .

On this basis, and considering that the battery charge can‑
not exceed 𝐵𝑚𝑎𝑥, the expected battery charge at the be‑
ginning of a generic slot 𝑖+1 can be computed as themin‑
imum between𝐵𝑚𝑎𝑥 and the battery charge at the begin‑
ning of the slot 𝑖 plus the amount of energy that is pro‑
duced in excess of the consumptionminus the energy that
is consumed in excess of the production. In a formula, this
can be expressed as: 𝐵𝑖+1 = min {𝐵𝑚𝑎𝑥, 𝐵𝑖+𝜂[𝑒𝑖− ̂𝑐𝑖]+−
[ ̂𝑐𝑖 − 𝑒𝑖]+} (where we use the notation: [𝑥]+ = max(𝑥, 0)
for any arbitrary integer 𝑥), and the constraint of energy
neutrality is expressed as 𝐵𝐾+1 >= 𝐵1.
In [5], the optimizationproblemof the scheduler has been
formulated as an integer linear programming problem,
1https://www.raspberrypi.com/news/
how-to-get-started-with-fuzix-on-raspberry-pi-pico/

Table 2 – Table of main symbols used in the model and algorithm.

𝑁 Number of tasks
𝐾 Number of slots of time in a period
𝑡𝑖 task with index 𝑖 = 0, … , 𝑁
𝑞𝑖 quality of a task (for each task)
𝑐𝑖 energy cost of a task (in milliAmpere)
𝜇 charging ef iciency of the battery

𝐵min Minimum level of the battery in milliAmpere
𝐵max Maximum level of the battery in milliAmpere

𝐵start = 𝐵0 Initial level of the battery in slot 0.
𝛾 multi‑objective optimization weight factor

[𝑥]+ max(0, 𝑥)

where the only objective is to maximize the overall qual‑
ity of service of the device. However, as already discussed
in the introduction, this approach is not fully satisfactory
because it may also result in drastic changes of QoS be‑
tween the tasks assigned to consecutive slots, thus mak‑
ing the overall behavior of the device unstable from a
practical point of view. Instead, herewe seek an optimiza‑
tion that tends to moderate any degradation of the QoS
among consecutive slots by introducing an additional op‑
timizationobjective. The consequence is that theproblem
of the scheduler nowbecomes amulti‑objective optimiza‑
tion problem that can be formalized as follows:

Problem 1 (Multi‑objective Stable plan Scheduling)

maximize 𝑧 =
𝐾

∑
𝑖=1

̂𝑞𝑖 (1)

minimize 𝑣 = max
𝑖∈[1,𝐾]

| ̂𝑞𝑖 − ̂𝑞𝑖+1| (2)

𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ [1, 𝐾], 𝑗 ∈ [1, 𝑁] (3)
𝑁

∑
𝑗=1

𝑥𝑖𝑗 = 1 (4)

𝐵𝑖+1 = min{𝐵max, 𝐵𝑖 + 𝜂[𝑒𝑖 − ̂𝑐𝑖]+−

−[ ̂𝑐𝑖 − 𝑒𝑖]+} ∀𝑖 ∈ [1, 𝐾] (5)

𝐵min ≤ 𝐵𝑖 ∀𝑖 ∈ [1, 𝐾] (6)
𝐵1 ≤ 𝐵𝐾+1 (7)

where [𝑥]+ = max(𝑥, 0)

In the problem there are two objective functions: (1) is
the sum of the quality of the tasks assigned to the slots
that should be maximized, while (2) expresses the re‑
quirement that the sum of the losses of the quality of ser‑
vice from each slot to the next one should be minimized.
Forwhat concerns the constraints, (3) and (4) express the
requirement that exactly one task must be assigned per
slot; (5) expresses the constraint of the battery charge at
the next slot, that depends on the task assignment as al‑
ready discussed; (6) expresses the requirement that the
battery charge should never go below the minimum, oth‑
erwise the device would stop working; (7) expresses the
energy neutrality constraint.

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024

©International Telecommunication Union, 202416

https://www.raspberrypi.com/news/how-to-get-started-with-fuzix-on-raspberry-pi-pico/
https://www.raspberrypi.com/news/how-to-get-started-with-fuzix-on-raspberry-pi-pico/


Although this formulation takes into account the require‑
ment of stability of the scheduling by aiming also at re‑
ducing the differences in QoS between consecutive slots,
it requires multi‑objective optimization and an objective
function (2) that is not linear, which is very complex to im‑
plement (if ever possible) in a resource‑constrained IoT
device. For this reason we propose an alternative prob‑
lem which keeps the same constraints, but that replaces
the two objective functions with a single function and
with the non‑linearity limited only to the absolute value.
Speci ically, we introduce a penalty term to the sum of the
QoS that takes into account the variation of QoS between
consecutive slots as follows:

maximize 𝑧 =
𝐾

∑
𝑖=1

̂𝑞𝑖 − 𝛾 [| ̂𝑞𝑖 − ̂𝑞𝑖+1| − 1 ]+ (8)

Note that, 1) the fuction [⋅]+ is used to get always a pos‑
itive penalty factor, and 2) the multiplicative factor 𝛾 is
used to modulate the impact of the differences between
task quality with respect to the goal of maximizing the to‑
tal quality, 3) the −1 term is introduced to discount the
penalty factor when the schedule changes with minimal
variation, i.e. when we move from two tasks with mini‑
mum quality differences (in particular this factor can be
adjusted to be at least the cost of the idle task, or the lat‑
ter can be normalized to be 1 as we assume in the simu‑
lation section). In [5] we proved that the problem of En‑
ergy Neutral Optimal Scheduling is NP‑Hard. However, we
show that it can be solved by a proper dynamic program‑
ming approach even in low‑power devices. Clearly this
formulation is more complex than the original one, but it
remains NP‑Hard. To solve this problem we propose in
the next section an algorithmbased on dynamic program‑
ming that is computationally feasible even in low‑power
devices.

5. ALGORITHM
We propose a dynamic programming algorithm that is in‑
spired to a variation of the unbounded knapsack problem,
with the major difference that the solution is computed
proceeding backwards with respect to the time slot. In
practice, we compute a table M of size 𝐾 ⋅ 𝐵𝑚𝑎𝑥, where
each row is associated with a slot and each column to a
level of battery, and the value of 𝑀(𝑘, 𝑏) for 𝑘 ∈ [1, 𝐾]
and 𝑏 ∈ [0, 𝐵𝑚𝑎𝑥] is the value of the objective function, i.e.
the maximum quality of a schedule that is energy neutral
startingwith a battery of 𝑏 and using 𝑘 slots. The resulting
Bellman equations, which adopt a penalty factor 𝑝, are:
𝑜𝑝𝑡(𝑘, 𝑏) = max

𝑖=1…𝑁
{ 𝑞𝑖+𝑜𝑝𝑡(𝑘+1, 𝐵′(𝑖))−𝑝 | 𝐵′(𝑖) ≥ 𝐵min}

with:
𝐵′(𝑖) = min{𝐵max, 𝑏 − 𝑐𝑖 + 𝑒𝑖}, 𝑝 = 𝛾([| ̂𝑞𝑖 − ̂𝑞𝑖+1| − 1]+)

(9)
The Python code with the function
ScheduleWithPenalty that computes the value

(quality) of the optimal solution based on the above
recursive equations are in Listing 1, while the function
BuildSchedule in Listing 2 is used to construct the
optimal schedule. In the following we discuss both in
detail, note that all indexes for array and matrices are
zero‑based.
The function ScheduleWithPenalty uses two matrices:
M and I (lines 3,4) initialized with zeros, of size 𝐾 ×
(𝐵max + 1). The role of matrix M has been already ex‑
plained above, while matrix I is used to keep track of the
best task associated with each solution in 𝑀(𝑘, 𝑏); the
value of 0 here is used to signal that there is no task that
can be scheduled, so the values stored in I are the indexes
of the tasks increased by one. For each level 𝑏 of the bat‑
tery the algorithm starts with the base case at the begin‑
ning of the period associatedwith the last slot (𝑘 = 𝐾−1)
(lines 7‑13). In the inner loop (lines 9‑13) the algorithm
inds thebest task (i.e. with highest quality) that results in
an energy‑neutral schedule, i.e. if it starts with a battery
level 𝑏 itmust endwith battery level above𝐵1 and the test
in line 10 skips all tasks that do not guarantee this condi‑
tion. The solutions (quality and index of the task to be
scheduled) are stored in lines 14,15. The next loops (line
17‑32) compute the best schedule for the remaining slots
in decreasing order. Given the slot 𝑘 and battery level at
the beginning of the slot 𝑏, the loop in lines 20‑30 inds
the best task to do this, it computes the value of 𝐵′(𝑖) as
in Equation 9 (line 21). The algorithm uses this value to:
i) check that it satis ies the constraint (6) of themodel; ii)
compute the penalty factor (line 26‑27) and the newqual‑
ity using Equation (8). At the end the solutions are stored
in M, I (lines 31,32).
The function BuildSchedule builds the schedule S,
with 𝐾 indexes of tasks: it starts with the value of
I[0][Bstart] (the index of the best task for the irst slot,
with initial battery equal to Bstart= 𝐵1); computes the
residual battery at the beginning of the next slot; checks
that this level is feasible for 𝐵𝑚𝑖𝑛 and then it updates the
iteration variable for the next iteration, illing all values of
S. At the end it returns a Python list Swith the tasks sched‑
uled in each slot and the quality of this schedule. Note that
the scheduling here is computed without taking into ac‑
count the penalty factor, in order to be comparable with
the original algorithm. Note also that the code is not op‑
timized at all for performance (memory or time), but for
clarity.
After building the schedule𝑆 as shown in Listing 2, we in‑
troduce here two metrics to evaluate the degree of stabi‑
lization of the algorithm. Since, without loss of generality
we ordered the tasks in increasing order of quality, so the
difference between task indexes is proportional to their
difference in quality. We de ine the vector of leaps 𝐽 as
the distance between the task index assigned to slot 𝑖 and
to the next slot 𝑖 + 1:

𝐽[𝑖] = |𝑆[𝑖] − 𝑆[𝑖 + 1]| ∀𝑖 ∈ [1 … 𝐾]

Caruso et al.: A dynamic programming schedule trading off quality and stability in task allocation 
for energy-neutral Internet of Things devices harvesting solar energy

©International Telecommunication Union, 2024 17



1 def ScheduleWithPenalty(K,Bstart,Bmin,Bmax,E,
2 Tasks,gamma=0.5):
3 M = np.zeros( (K,Bmax+1))
4 I = np.zeros( (K,Bmax+1), dtype=int)
5 # last slot k = K-1
6 k = K-1
7 for b in range(Bmax,-1,-1):
8 qmax,idmax = -100,0
9 for i,task in enumerate(Tasks):

10 if b - task.cost + E[k] >= Bstart and
11 task.quality > qmax:
12 qmax = task.quality
13 idmax = i+1
14 M[k][b] = qmax if qmax != -100 else 0
15 I[k][b] = idmax
16 # other slots in decreasing order
17 for k in range(K-2,-1,-1):
18 for b in range(Bmax,-1,-1):
19 qmax,idmax = -100,0
20 for i,task in enumerate(Tasks):
21 Bprime = min(b-task.cost+Eprod[k],Bmax)
22 if Bprime >= Bmin:
23 q = M[k+1][Bprime]
24 if (q == 0): continue
25 j = I[k+1][Bprime]-1
26 dq = task.quality - Tasks[j].quality
27 penalty = max(0,gamma*(abs(dq)-1))
28 if q + task.quality - penalty > qmax:
29 qmax = q + task.quality - penalty
30 idmax = i+1
31 M[k][b] = qmax if qmax != -100 else 0
32 I[k][b] = idmax

Listing 1 – Python implementation of the dynamic programming sched‑ 
uler with index distance penalty.

By taking J we de ine two simple statistics on this vector 
to measure the stability of a schedule:

• sum: the sum of the leaps in 𝐽 , i.e. sum=∑𝐾
𝑖=1 𝐽[𝑖].

• max: the maximum gap in the vector 𝐽 , i.e. max =
max(𝐽).

We observe that the schedule that minimizes the jumps,
and so both quantity, sum, max, is obtained when we
consider a constant schedule, i.e. a schedule with the
same task in all slots. This, clearly neglect, in some way,
the overall goal of modulating the load in a different way
among slots in order to better use the energy produced by
thepanel. Wewill see, in the next section, thatwhen 𝛾 = 1
the algorithm approaches this kind of schedule, trying in
any case to get the best quality and be energy‑neutral.

6. EVALUATION
Differently to our original work described in [16], where
we evaluated the algorithm proposed in Listing 1 only by
simulation, in this paper we use the Arduino DUE plat‑
form 2 for experimentation. Arduino DUE is the irst Ar‑
duino board based on a 32‑bit ARM core microcontroller,
2Arduino DUE: https://docs.arduino.cc/hardware/due

1 def BuildSchedule(K,Bmin,Bmax,Bstart,Panel,Tasks):
2 S = [0]*K
3 B = Bstart
4 for i in range(K):
5 S[i] = I[i][B]-1
6 if (S[i] < 0):
7 return (S,0)
8 B = min(B + Panel[i] - Tasks[S[i]].cost,
9 Bmax)

10 if B < Bmin:
11 return ([],0)
12 if B < Bstart:
13 return ([],0)
14 return(S,sum(Tasks[s].quality for s in S))

Listing 2 – Python code that construct the schedule from I, check that
everything is feasible and recompute the quality.

with an 84 MHz clock, 96 KB SRAM and 512 KB of mem‑
ory lash. The objectives of the evaluation are to demon‑
strate that the proposed algorithm can be executed on
a real‑world platform with limited capabilities such as
an Arduino board and to compare the performance of
our algorithm against the one described in [5] (hereafter
called IoT algorithm), which computes the optimal sched‑
ule with the sole objective of maximizing the overall qual‑
ity of the tasks without taking into account any task sta‑
bilization requirement.
Table 3 – Evaluation parameters: day divided in 24 hours, 10 taskswith
costs 𝑐𝑖 and quality 𝑞𝑖 and the values of 𝛾 used to compute the penalty.

Parameter Value

K 24
N 10

𝐵𝑚𝑖𝑛 160 (mAh)
𝐵𝑚𝑎𝑥 [2000, 1000] (mAh)

𝐵1 [1800, 800] (mAh)
𝑐𝑖 [1, 22, 33, 43, 53, 63, 73, 84, 94, 104]
𝑞𝑖 [1, 22, 32, 42, 51, 61, 71, 81, 91, 100]
𝛾 [ 0.1, 0.2, …, 1.0]

To this end, we have used the parameters shown in Table
3: the number of slots (𝐾) and the number of tasks (𝑁)
with the corresponding cost 𝑐𝑖 (in mAh) and quality 𝑞𝑖 (in
percentage). We assume two different battery con igura‑
tions: 1) 𝐵𝑚𝑎𝑥 = 2000 mAh and 𝐵1 = 1800 mAh; and
2) 𝐵𝑚𝑎𝑥 = 1000 mAh and 𝐵1 = 800 mAh, both with a
minimum battery level 𝐵𝑚𝑖𝑛 = 160 mAh. The values of 𝛾
range between [0.1 … 1.0], which result in different penal‑
ties and consequently different schedules. To emulate the
energy harvesting capability of the board, we simulate the
energy production of the solar panel on two scenarios:
1) the overproduction scenario, which represents a sce‑
nario where the energy production in each hour is high
(taken in summer), the sunrise is 8.00am and the sunset
is 19.00pm; and 2) the underproduction scenario, which
represents a reduction of 20% of the energy production
with regard to the irst scenario. Table 4 shows the rel‑
evant parameters for the energy production in both sce‑

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024

©International Telecommunication Union, 202418

https://docs.arduino.cc/hardware/due


Table 4 – Daily energy production in mAh for a sunny scenario 𝐸𝑜𝑣𝑒𝑟 and a cloudy 𝐸𝑢𝑛𝑑𝑒𝑟 . Energy is generated from slot 8 to slot 19; for the rest of
slots the production is 0.

Energy Slot

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

𝐸𝑜𝑣𝑒𝑟 0 0 0 0 0 0 0 19 110 224 285 335 350 331 283 134 20 18 8 0 0 0 0 0
𝐸𝑢𝑛𝑑𝑒𝑟 0 0 0 0 0 0 0 15 88 179 228 268 280 264 226 107 16 14 6 0 0 0 0 0

narios for the slots in [8, 19] in which there is energy pro‑
duction. The code is available in https://github.com/
sescolar/ngcc.
Table 5 shows the comparison of the IoT and stabiliza‑
tion algorithms in termsof execution time, andRAM/ lash
memory occupancy on theArduinoDUEplatform for both
values of maximum battery capacity 𝐵max, i.e. 1000 and
2000 mAh. As shown, the task stabilization algorithm
does not increase the RAM occupation and minimally in‑
creases the lash memory of the Arduino DUE. Note that
the occupied space of RAM/ lash memory by the algo‑
rithms w.r.t. the total space of Arduino DUE is approx‑
imately 55% and 8%, respectively. Note, however, that
this space includes the code to generate the tasks’ costs
and quality (which is something that can be optimized
in a real deployment) and the code to simulate the solar
panel production (that in a real deployment is not neces‑
sary, since in this case the devicemonitors in real time the
status of the battery/solar panel). This means that the al‑
gorithm can really be executed on resource‑constrained
platforms. The average time to calculate the schedule
with this algorithm is longer than the time required with
the IoT algorithm, approximately 77% higher; however,
the absolute timing is in theorderof a fewseconds to com‑
pute a schedule for the entire day; this cost does not rep‑
resent a problem in any practical scenario. Note also that,
for 𝐵max = 1000 mAh the average execution time and the
RAMusage scaleddownof around50%with respect to the
con iguration with 𝐵max = 2000 mAh. This is because in
the algorithm 𝐵max determines the number of iterations
of the loop for in line 6 of Listing 1.
Table 5 – Comparison of the execution times, RAM and lash memory
occupancy by the IoT/stabilization algorithms on the Arduino DUE plat‑
form.

Algorithm IoT Stabilization
𝐵max (mAh) 1000 2000 1000 2000

Execution time (ms) 432 1011 865 1792
RAM usage (Bytes) 26364 54364 26364 54364
Flash usage (Bytes) 41548 41548 41724 41724

We compute the quality provided by the IoT algorithm
and the task stabilization algorithm for the different val‑
ues of 𝛾 and for the two con igurations of the battery. The
results are shown in Fig. 1 and Fig. 2 with 𝐵max = 2000
mAh and𝐵max = 1000mAh, respectively, which show two
box diagrams that represent the overall maximum/mini‑
mum/avg quality for the overproduction (left) andunder‑
production scenario (right), the quality is presented as a

percentage of the maximum quality achievable, i.e. if we
schedule the taskwith higher quality in all slots. Note that
each experiment was executed a number of 𝑛 = 10 times,
where in each iteration the energy production panel was
randomly and slightly updated. This update aims to re‑
lect the variations on the estimated hourly energy pro‑
duction that may occur in the real world, so we irst cal‑
culate the increase/decrease on the estimated value and
then distribute it evenly over the number of slots per
hour. As shown, each box diagram shows at the irst
value of axis𝑥 themaximum/minimum/average qualities
provided by the IoT algorithm and, at the rest of values
of axis 𝑥, the maximum/minimum/average qualities pro‑
vided by the task stabilization algorithm for the values of
𝛾 evaluated.
From the results, we observe that the higher the energy
production the higher the quality, so we obtain signif‑
icantly larger qualities in the overproduction scenario.
Additionally, we observe that the qualities achieved by
means of task stabilization for every values of 𝛾 are very
close to the ones achieved by the IoT algorithm, which
provides the optimal quality, so the task stabilization al‑
gorithm does not imply a signi icant reduction in quality.
We also observe how the battery size impacts the qual‑
ity achieved by the stabilization algorithm. As the com‑
parison of the two graphs on the right‑hand side of ig‑
ures 1 and 2 shows, no noticeable reduction in quality
is observed in the underproduction scenario. However,
the comparison of the two plots on the left‑hand side of
igures 1 and 2) shows that, for the overproduction sce‑
nario, the reduction in quality obtained when halving the
battery capacity is very signi icant, approximately 10%,
meaning that a smaller battery can only grow to its maxi‑
mumcapacity and thereforewill not take advantage of the
increased energy production that allows it to plan more
costly and higher quality tasks.
Next, we focus on evaluating the strategy developed for
task stabilization by computing the number of leaps of a
certain schedule 𝑆, provided by both the IoT and task sta‑
bilization algorithm. We are particularly interested in de‑
termining how the number of leaps may be reduced for
the different values of 𝛾 and 𝐵max considered, and com‑
pare these against the number of leaps required by the
IoT algorithm to compute the optimal schedule. To do
that, we take the results of the overproduction scenario
and we compute the metric sum for each schedule com‑
puted for each one of the 𝑛 iterations performed for each
experiment, both for the IoT algorithm and for the task

Caruso et al.: A dynamic programming schedule trading off quality and stability in task allocation 
for energy-neutral Internet of Things devices harvesting solar energy

©International Telecommunication Union, 2024 19

https://github.com/sescolar/ngcc
https://github.com/sescolar/ngcc


IoT 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

γ

60

65

70

75

80

85

90

95

100

Q
u

al
it

y
(%

)

IoT 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

γ

60

65

70

75

80

85

90

95

100

Q
u

al
it

y
(%

)

Fig. 1 – Overall maximum/minimum/average quality provided for the overproduction scenario (left) and underproduction scenario (right) with
𝐵max=2000 mAh.

IoT 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

γ

60

65

70

75

80

85

90

95

100

Q
u

al
it

y
(%

)

IoT 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

γ

60

65

70

75

80

85

90

95

100
Q

u
al

it
y

(%
)

Fig. 2 – Overall maximum/minimum/average quality provided for the overproduction scenario (left) and underproduction scenario (right) with
𝐵max=1000 mAh.

stabilization algorithm.

Fig. 3 shows themaximum,minimum, and average sumof
leaps for each case, when 𝐵max = 2000 (left) and 𝐵max =
1000 (right). As expected, regardless 𝐵max, as 𝛾 increases
the sum of leaps is reduced, until a certain value of 𝛾
(𝛾 = 0.6 for 𝐵max = 2000 and 𝛾 = 0.3 for 𝐵max = 1000),
when the sum of leaps achieves the minimum and keeps
constant. If we consider theworst case, i.e., themaximum
sumof leaps required to compute a schedule (the twoblue
lines), 9 and 23 leaps are needed with the IoT algorithm
with 𝐵max = 2000 and 𝐵max = 1000, respectively, whilst
with the task stabilization algorithm we need 7 leaps for
values of 𝛾 ≥ 0.6 and 𝐵max = 2000 and 11 leaps for val‑
ues of 𝛾 ≥ 0.3 and 𝐵max = 1000. Consequently, as battery
capacity decreases, the number of leaps increases in both
algorithms regardless of the value of 𝛾, due to the loss of
granularity resulting from having fewer battery sampling
levels, which can lead to scheduling taskswith greater dis‑
tance in terms of cost and quality.

Finally, we analyze how stable is the schedule given by
the task stabilization algorithm. To do that, we take the
worst‑case schedule from Fig. 3 in terms of number of
leaps, i.e. theblue line in theplot of the left side that repre‑
sents 9 leaps (IoT) and7 leaps (stabilizationwith𝛾 ≥ 0.6)
with 𝐵max = 2000 and the blue line in the plot of the right
side with 23 leaps (IoT) and 11 leaps (stabilization with
𝛾 ≥ 0.3) with 𝐵max = 1000. The output of the execu‑
tion for both algorithms (IoT and task stabilization with
𝛾 = 0.1, 0.3 and 0.6) provides the schedule shown in Ta‑
ble 6, the vector of leaps shown in Table 7 and the quality
shown in Table 8.

As shown inFig. 4 on the left‑hand side, IoT and task stabi‑
lization algorithmswith 𝛾 = 0.1produce exactly the same
maximum quality 𝑄 = 80.79%, with a different schedule
but with the same sum of leaps (9), as shown in the igure
on the right‑hand side. For values of 𝛾 ≥ 0.3 we obtain
a quality similar but more stable schedules, i.e. a lower
sumof leaps and possibly a lowermaximumvalue of gaps,

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024

©International Telecommunication Union, 202420



IoT 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

γ

4

5

6

7

8

9

10

J
u

m
p

s

max

min

avg

IoT 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

γ

10

12

14

16

18

20

22

J
u

m
p

s

max

min

avg

Fig. 3 – Maximum/minimum/average number of leaps for the schedules provided by the IoT algorithm, and by the task stabilization algorithm for all
values of 𝛾 considered for 𝐵max=2000 (left) and for 𝐵max=1000 (right)

Table 6 – Scheduling provided for each slot by the IoT algorithm ( irst row) and for the task stabilization algorithmwith values of 𝛾=0.1, 0.3 and 0.6 for
𝐵max=2000, and values of 𝛾=0.1 and 0.3 for 𝐵max=1000

𝐵max Task scheduled in slot

2000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

IoT 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 7 2 2 2 1 1
𝛾=0.1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 7 7 5 2 2 1 1
𝛾=0.3 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 4 4 4 4 2 2 2
𝛾=0.6 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 4 3 3 3 3 3 3

1000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

IoT 9 9 9 7 7 7 7 6 2 10 10 10 10 10 10 10 10 7 6 2 2 2 2 2
𝛾=0.1 9 8 7 6 4 5 6 7 8 9 10 10 10 10 10 10 10 4 4 4 3 3 2 2
𝛾=0.3 6 7 7 7 7 7 7 7 7 7 10 10 10 10 10 10 10 4 3 3 3 3 3 3

Table 7 – Leaps in each slot provided by the IoT algorithm ( irst row) and for the task stabilization algorithm with values of 𝛾=0.1, 0.3 and 0.6 for
𝐵max=2000, and values of 𝛾=0.1 and 0.3 for 𝐵max=1000

𝐵max Leap in slot

2000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

IoT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 5 0 0 1 0 0
𝛾=0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 2 3 0 1 0 0
𝛾=0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 2 0 0 0
𝛾=0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 1 0 0 0 0 0 0

1000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

IoT 0 0 2 0 0 0 1 4 8 0 0 0 0 0 0 0 3 1 4 0 0 0 0 0
𝛾=0.1 1 1 1 2 1 1 1 1 1 1 0 0 0 0 0 0 6 0 0 1 0 1 0 0
𝛾=0.3 1 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 6 1 0 0 0 0 0 0

as shown in Table 5. Note that more stable schedules do
not mean the overall quality is signi icantly decreased, as
shown for 𝛾 = 0.3 and 0.6 in the third and fourth row of
Table 8. Note also that a decrease of 2 leaps with 𝛾 = 0.6
represents a 22.2% of reduction. In Fig. 4 we depict the

associated schedule (on the left side) and the vector of
leaps 𝐽 (on the right side) to the four experiments shown
in Table 6. Fig. 5 shows on the left‑hand side the sched‑
ule and on the right side the stabilization metrics for the
IoT and task stabilization algorithms with 𝛾 = 0.1, 0.3

Caruso et al.: A dynamic programming schedule trading off quality and stability in task allocation 
for energy-neutral Internet of Things devices harvesting solar energy

©International Telecommunication Union, 2024 21



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Number of slots (K)

1

2

3

4

5

6

7

8

9

10

T
as

k

QIoT=80.79
Qγ=0.1=80.79
Qγ=0.3=80.58
Qγ=0.6=80.58

IoT

γ=0.1

γ=0.3

γ=0.6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Number of slots (K)

0

1

2

3

4

5

6

J
u

m
p

s

∑
IoT = 9,max = 5∑
γ=0.1 = 9,max = 3∑
γ=0.3 = 8,max = 6∑
γ=0.6 = 7,max = 6

IoT

γ=0.1

γ=0.3

γ=0.6

Fig. 4 – Schedule (left) and stabilization metrics (right) obtained by IoT and stabilization algorithm and for 𝐵max=2000.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Number of slots (K)

1

2

3

4

5

6

7

8

9

10

T
as

k

QIoT=70.08
Qγ=0.1=68.12
Qγ=0.3=68.08

IoT

γ=0.1

γ=0.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Number of slots (K)

0

1

2

3

4

5

6

J
u

m
p

s
∑

IoT = 23,max = 8∑
γ=0.1 = 19,max = 6∑
γ=0.3 = 11,max = 6

IoT

γ=0.1

γ=0.3

Fig. 5 – Schedule (left) and stabilization metrics (right) obtained by IoT and stabilization algorithms and for 𝐵max=1000.

Table 8 – Overall quality (in percentage) and the stabilization metrics
(sum, max) provided by the IoT algorithm ( irst row) and for the task
stabilization algorithmwith values of 𝛾=0.1, 0.3 and 0.6 for 𝐵max=2000
and for 𝐵max=1000.

Metrics Q (%) (sum,max)
𝐵max (mAh) 1000 2000 1000 2000

IoT 70.08 80.79 (23,8) (9,5)
𝛾=0.1 68.12 80.79 (19,6) (9,3)
𝛾=0.3 68.08 80.58 (11,6) (8,6)
𝛾=0.6 – 80.58 – (7,6)

and 𝐵max = 1000, where we observe also the same ef‑
fects, since the increase of 𝛾 does not imply the reduction
in quality but it does imply more stable schedules, with
a lower sum of leaps. We also note that a larger battery
capacity signi icantly impacts both the overall quality ob‑
tained, which increases with the capacity, and on the sta‑
bilization of the schedule, which is less stable with lower
capacities.

7. CONCLUSIONS AND FUTURE WORK

As energy neutrality in energy‑constrained IoT devices 
becomes increasingly important, new approaches are 
emerging to ind different optimization objectives, in ad‑ 
dition to maximizing the quality of the tasks scheduled for 
execution. One of these approaches is to seek task stabi‑ 
lization, in order to avoid luctuations from the point of 
view of the application behavior, such as in the sampling 
and transmission rates that could impact the quality of 
the data measured by the sensors. This is precisely the 
objective that we address in this work: an energy‑neutral 
algorithm that gracefully degrades or upgrades the per‑ 
formance of the application and that consequently min‑ 
imizes the number of leaps between consecutive tasks, 
i.e. the sum of the differences between the indexes of the 
scheduled consecutive tasks across the reference time. As 
far as the authors know, the problem of the stability of the 
behavior of an IoT device has received no consideration at 
all in the past works on energy neutrality.

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024

©International Telecommunication Union, 202422



This work extends the original work described in 
[16] with an implementation and evaluation of two 
algorithms, the proposed task stabilization algorithm 
and the quality maximization algorithm described in [5], 
on a real resource‑constrained platform such as the 
Arduino DUE. The results show that, our approach 
greatly reduces the leaps among consecutive tasks 
executed by the device, with no signi icant reduction in 
quality as compared with the quality maximization 
algorithm.
As future work we plan to extend the comparison of this 
algorithm with others that will arise in future literature, 
addressing the problem of scheduling with stabilization, 
and to extend this approach to the concept of statistical 
energy neutrality [19] and to use other cost‑utility pat‑ 
terns to represent different IoT use cases and scenarios, 
as for instance, the ‘utility‑like’ concave utility function to 
characterize diminishing returns.

ACKNOWLEDGEMENTS
This paper is partially supported by European 
Union’s Horizon 2020 research and innovation 
programme under grant agreement no. 857159, 
project SHAPES (Smart & Healthy Ageing through 
People Engaging in Supportive Systems), by 
MCIN/AEI/10.13039/501100011033.under Grant 
TALENT‑BELIEF (PID2020‑116417RB‑C44) and the 
Project MIRATAR TED2021‑132149B‑C41 funded by 
MCIN/AEI/10.13039/501100011033 and by European 
Union NextGenerationEU/PRTR. It is also partially sup‑ 
ported by the PRA project AUTENS (Sustainable Energy 
Autarky) of the University of Pisa, and the PON‑PNR 
2015‑2020 project TEBAKA (Territorial Basic Knowledge 
Aquisition) of the University of Salento.

REFERENCES
[1] Aman Kansal, Jason Hsu, Sadaf Zahedi, and Mani

B. Srivastava. “Power Management in Energy Har‑
vesting Sensor Networks”. In: ACM Trans. Embed.
Comput. Syst. 6.4 (Sept. 2007), 32–es. ISSN: 1539‑
9087. DOI: 10.1145/1274858.1274870.

[2] Edoardo Baldini, Stefano Chessa, and Antonio
Brogi. “Estimating the Environmental Impact of
Green IoT Deployments”. In: Sensors (2023), pp. 1–
29. ISSN: 14248220. DOI: 10.3390/s23031537.

[3] Melisa Kuzman, Xavier del Toro Garcia, Soledad Es‑
colar, Antonio Caruso, Stefano Chessa, and Juan
Carlos Lopez. “A Testbed and an Experimental Pub‑
lic Dataset for Energy‑Harvested IoT Solutions”. In:
2019 IEEE 17th International Conference on Indus‑
trial Informatics (INDIN). IEEE, July 2019. DOI: 10.
1109/indin41052.2019.8972219.

[4] Soledad Escolar, Stefano Chessa, and Jesús Car‑
retero. “Quality of service optimization in solar
cells‑based energy harvesting wireless sensor net‑

works”. In: Energy Ef iciency (2017), pp. 1–27. ISSN:
1570‑6478. DOI: 10.1007/s12053-016-9458-3.

[5] Antonio Caruso, Stefano Chessa, Soledad Escolar,
Xavier del Toro, and Juan Carlos López. “A Dy‑
namic ProgrammingAlgorithm forHigh‑Level Task
Scheduling in Energy Harvesting IoT”. In: IEEE In‑
ternet of Things Journal 5.3 (June 2018), pp. 2234–
2248. ISSN: 2327‑4662. DOI: 10.1109/JIOT.2018.
2828943.

[6] Junlong Zhou, Jin Sun, Peijin Cong, Zhe Liu, Xiu‑
min Zhou, TongquanWei, and ShiyanHu. “Security‑
Critical Energy‑Aware Task Scheduling for Het‑
erogeneous Real‑Time MPSoCs in IoT”. In: IEEE
Transactions on Services Computing 13.4 (2020),
pp. 745–758. DOI: 10.1109/TSC.2019.2963301.

[7] Kun Cao, Junlong Zhou, Guo Xu, TongquanWei, and
Shiyan Hu. “Exploring Renewable‑Adaptive Com‑
putation Of loading for Hierarchical QoS Optimiza‑
tion in Fog Computing”. In: IEEE Transactions on
Computer‑Aided Design of Integrated Circuits and
Systems 39.10 (2020), pp. 2095–2108. DOI: 10 .
1109/TCAD.2019.2957374.

[8] LaihyukPark, ChunghyunLee, JoongheonKim,Aziz
Mohaisen, and Sungrae Cho. “Two‑stage IoT device
scheduling with dynamic programming for energy
Internet systems”. In: IEEE Internet of Things Jour‑
nal 6.5 (2019), pp. 8782–8791.

[9] Muhammad Moid Sandhu, Sara Khalifa, Raja Jur‑
dak, andMarius Portmann. “Task Scheduling for Si‑
multaneous IoT Sensing and Energy Harvesting: A
Survey and Critical Analysis”. In: arXiv: Signal Pro‑
cessing (2020).

[10] Pierpaolo Loreti, Lorenzo Bracciale, and Giuseppe
Bianchi. “StableSENS: Sampling Time Decision
Algorithm for IoT Energy Harvesting Devices”.
In: IEEE Internet of Things Journal 6.6 (2019),
pp. 9908–9918. DOI: 10 . 1109 / JIOT . 2019 .
2933335.

[11] Soledad Escolar, Stefano Chessa, and Jesús Car‑
retero. “Optimization of Quality of Service in Wire‑
less Sensor Networks Powered by Solar Cells”. In:
IEEE 10th International Symposium on Parallel and
Distributed Processing with Applications. July 2012,
pp. 269–276. DOI: 10.1109/ISPA.2012.43.

[12] Soledad Escolar, Stefano Chessa, and Jesús Car‑
retero. “Energy management of networked, solar
cells powered, wireless sensors”. In: Proceedings of
the 16th ACM international conference on Model‑
ing, analysis & simulation ofwireless andmobile sys‑
tems. ACM. 2013, pp. 263–266.

[13] Soledad Escolar, Stefano Chessa, and Jesús Car‑
retero. “Energy‑neutral networked wireless sen‑
sors”. In: Simulation Modelling Practice and Theory
43 (2014), pp. 1–15. ISSN: 1569‑190X. DOI: https:
/ / doi . org / 10 . 1016 / j . simpat . 2014 . 01 .

Caruso et al.: A dynamic programming schedule trading off quality and stability in task allocation 
for energy-neutral Internet of Things devices harvesting solar energy

©International Telecommunication Union, 2024 23

https://doi.org/10.1145/1274858.1274870
https://doi.org/10.3390/s23031537
https://doi.org/10.1109/indin41052.2019.8972219
https://doi.org/10.1109/indin41052.2019.8972219
https://doi.org/10.1007/s12053-016-9458-3
https://doi.org/10.1109/JIOT.2018.2828943
https://doi.org/10.1109/JIOT.2018.2828943
https://doi.org/10.1109/TSC.2019.2963301
https://doi.org/10.1109/TCAD.2019.2957374
https://doi.org/10.1109/TCAD.2019.2957374
https://doi.org/10.1109/JIOT.2019.2933335
https://doi.org/10.1109/JIOT.2019.2933335
https://doi.org/10.1109/ISPA.2012.43
https://doi.org/https://doi.org/10.1016/j.simpat.2014.01.002
https://doi.org/https://doi.org/10.1016/j.simpat.2014.01.002


002. URL: https : / / www . sciencedirect . com /
science/article/pii/S1569190X14000033.

[14] Soledad Escolar, Stefano Chessa, and Jesús Car‑
retero. “Energymanagement in solar cells powered
wireless sensor networks for quality of service op‑
timization”. In: Personal and Ubiquitous Computing
18.2 (2014), pp. 449–464. DOI: 10.1007/s00779-
013-0663-1.

[15] Antonio Caruso, Stefano Chessa, Soledad Escolar,
Xavier del Toro, Melisa Kuzman, and Juan C. López.
“Experimenting Forecasting Models for Solar En‑
ergy Harvesting Devices for Large Smart Cities De‑
ployments”. In: 2019 IEEE Symposium on Comput‑
ers and Communications (ISCC). 2019, pp. 1177–
1182. DOI: 10.1109/ISCC47284.2019.8969684.

[16] Antonio Caruso, Stefano Chessa, Soledad Escolar,
FernandoRincón, and JuanC. López. “TaskSchedul‑
ing Stabilization for Solar Energy Harvesting Inter‑
net of Things Devices”. In: 2022 IEEE Symposium
on Computers and Communications (ISCC). 2022,
pp. 1–6. DOI: 10.1109/ISCC55528.2022.9913061.

[17] M.M. Sandhu, S. Khalifa, R. Jurdak, and M. Port‑
mann. “Task Scheduling for Energy‑Harvesting‑
Based IoT: A Survey and Critical Analysis”. In: IEEE
Internet of Things Journal 8.18 (2021), pp. 13825–
13848.

[18] T. Bu, Z. Huang, K. Zhang, Y. Wang, H. Song, J. Zhou,
Z. Ren, and S. Liu. “Task scheduling in the internet
of things: challenges, solutions, and future trends”.
In: Cluster Computing (2023).

[19] S. Escolar, A. Caruso, S. Chessa, X. d. Toro, F. J. Vil‑
lanueva, and J. C. López. “Statistical EnergyNeutral‑
ity in IoT Hybrid Energy‑Harvesting Networks”. In:
2018 IEEE Symposium on Computers and Commu‑
nications (ISCC). 2018, pp. 00444–00449. DOI: 10.
1109/ISCC.2018.8538532.

[20] Elizabeth Liri, K. K. Ramakrishnan, Koushik Kar,
Geoff Lyon, and Puneet Sharma. “An Ef icient En‑
ergy Management Solution for Renewable Energy
Based IoT Devices”. In: Proceedings of the 24th In‑
ternational Conference on Distributed Computing
and Networking. ICDCN ’23. event‑place: Kharag‑
pur, India. New York, NY, USA: Association for Com‑
puting Machinery, 2023, pp. 20–27. ISBN: 978‑1‑
4503‑9796‑4. DOI: 10 . 1145 / 3571306 . 3571387.
URL: https : / / doi . org / 10 . 1145 / 3571306 .
3571387.

[21] F.A. Kraemer, D. Palma, A.E. Braten, and D. Ammar.
“Operationalizing Solar EnergyPredictions for Sus‑
tainable, Autonomous IoT Device Management”.
In: IEEE Internet of Things Journal 7.12 (2020),
pp. 11803–11814.

[22] T. Sanislav, G.D. Mois, S. Zeadally, and S.C. Folea.
“Energy Harvesting Techniques for Internet of
Things (IoT)”. In: IEEE Access 9 (2021), pp. 39530–
39549.

AUTHORS
Antonio Caruso received his
MS degree (“cum laude”) in
computer science from the
University of Pisa, Italy, and
PhD in computer science from
the same University. From 2005
he joined the Mathematical
and Physics Department of the
University of Salento as assis‑

tant professor. He received the Innovation Award from
Italian‑Canada in 2017. He has been member of several
program committees of conferences and workshops,
and published on international journals and conference
proceedings mainly in the area of: mobile distributed
systems, internet of things, smart environment, wireless
sensor and ad‑hoc networks, underwater networks, and
distributed algorithms.

Stefano Chessa is full professor
at the Department of Computer
Science of the University of Pisa.
He is member of the Council of
the Doctorate in Computer Sci‑
ence and chair of theMSc curric‑
ula in Cybersecurity of the Uni‑
versity of Pisa. He has worked
in several EU projects (SatNex,
SMEPP, InterMedia, PERSONA,

universAAL, Engaged, TEACHING), and he has been the
scienti ic leader (for the University of Pisa) of the EU
projects RUBICON and DOREMI. He is co‑author of al‑
most 200 publications appeared on international, peer‑
reviewed journals, conferences, and books chapters. His
research interests are in the ields of smart environments,
Internet of Things, pervasive computing and in their ap‑
plications to e‑health, ambient assisted living, crowdsens‑
ing and participatory sensing.

Soledad Escolar holds a Ph.D.
in computer science and tech‑
nology from the University Car‑
los III de Madrid in 2010 with
honors. In September 2015, she
joined the University of Castilla‑
La Mancha (UCLM) as a post‑
doctoral researcher and in 2020
she took possession of the posi‑
tion of associate professor at the

same university. Since 2021, she has been appointed as
the deputy director of the Academic Planning and Smart
ESI at the School of Computer Science. Her research ca‑
reer has focused mainly on the study of a wide range

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024

©International Telecommunication Union, 202424

https://doi.org/https://doi.org/10.1016/j.simpat.2014.01.002
https://www.sciencedirect.com/science/article/pii/S1569190X14000033
https://www.sciencedirect.com/science/article/pii/S1569190X14000033
https://doi.org/10.1007/s00779-013-0663-1
https://doi.org/10.1007/s00779-013-0663-1
https://doi.org/10.1109/ISCC47284.2019.8969684
https://doi.org/10.1109/ISCC55528.2022.9913061
https://doi.org/10.1109/ISCC.2018.8538532
https://doi.org/10.1109/ISCC.2018.8538532
https://doi.org/10.1145/3571306.3571387
https://doi.org/10.1145/3571306.3571387
https://doi.org/10.1145/3571306.3571387


of problems related to distributed systems, more specif‑
ically, sensor networks and their evolution towards the
Internet of Things, speci ically application portability in
heterogeneous environments, communication protocols,
synchronization, mobility, models, and energy ef iciency
management algorithms in energy‑harvesting devices.

Fernando Rincón obtained a
PhD in computer engineering
from the University of Castilla‑
La Mancha in May 2003, after
graduating in computer science
from the Autonomous Univer‑
sity of Barcelona in September
1993. Currently, he serves as an
assistant professor at the Uni‑

versity of Castilla‑La Mancha. His scienti ic contribution
includes 20 publications in international impact journals,
8 book chapters, two patents, and over 50 contributions
to national and international conferences. He has exten‑
sive experience in both publicly funded research projects
and has participated in over 20 contracts with leading
Spanish companies. He served as the director of the De‑
partment of Information Technology and Systems from
2010 to April 2017. His current lines of research include
edge computing, electronic design automation, and dy‑
namically recon igurable systems based on FPGA devices.

Caruso et al.: A dynamic programming schedule trading off quality and stability in task allocation 
for energy-neutral Internet of Things devices harvesting solar energy

©International Telecommunication Union, 2024 25

Juan Carlos López received
his MS and Ph.D. degrees in
telecommunication (electrical)
engineering from the Technical
University of Madrid in 1985
and 1989, respectively. From
September 1990 to August
1992, he was a visiting scientist
in the Department of Electrical
and Computer Engineering at

Carnegie Mellon University, Pittsburgh, PA (USA). His
research activities center on embedded system design,
distributed computing and advanced communication
services. From 1989 to 1999, he was an associate pro‑
fessor at the Department of Electrical Engineering at the
Technical University of Madrid. In 1999, Prof. López
joined the University of Castilla‑La Mancha as a professor
of computer architecture, where he served as dean of the
School of Computer Science from 2000 to 2008. Since
2006, he is the director of the Indra Chair at this univer‑
sity. He is and has been member of different panels of
the Spanish National Science Foundation and the Spanish
Ministry of Education and Science, regarding information
technologies research programs. He is member of IEEE
and ACM.


	A DYNAMIC PROGRAMMING SCHEDULE TRADING OFF QUALITY AND STABILITY IN TASKALLOCATION FOR ENERGY‑NEUTRAL INTERNET OF THINGS DEVICES HARVESTING SOLARENERGY
	1. INTRODUCTION
	2. RELATED WORK
	3. MODEL OF ENERGY HARVESTING DEVICES
	4. SCHEDULING PROBLEM
	5. ALGORITHM
	6. EVALUATION
	7. CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES
	AUTHORS



