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Abstract – In this paper we present some two-ray models with Doppler effects for Low Earth Orbit (LEO) 
satellite links. We show that satellite motion-caused Doppler shifts are different along the two rays, resulting 
in a time-varying phase shift. This is quantified with a few Doppler models and approximations. The 
combined interference effects, along with the path length difference caused phase shift, are calculated using 
a generic LEO pass-over. Channel gains are computed and compared using various antenna patterns and 
system parameters. The models show good agreements except for very low elevation angles. They 
demonstrate that a tracking antenna is effective in reducing fading for moderate to high elevation angles. 
Fixed patch antennas perform well. Omnidirectional and dipole antennas perform poorly. Higher carrier 
frequency and higher antenna height lead to faster fades. The fading becomes deeper at low elevation angles. 
Very fast fading is observed near the ends of a pass-over. 

Keywords – Curved Earth two-ray, ground reflection, LEO channel model, LEO satellite channel, satellite 
Doppler, two-ray Doppler channels 

1. INTRODUCTION

A LEO satellite-Earth channel model usually 
consists of a Line-Of-Sight (LOS) component and a 
multipath component. It may be modelled 
statistically by a 2D impulse response over the 
Doppler-delay domain [1] [2] [3]. The distribution 
is environment dependent. For large data it may 
follow a Rician distribution at high elevation angles 
and Rayleigh or lognormal distributions at low 
elevations. During a satellite pass-over, the channel 
is non-stationary and may be modelled by a state 
machine of distributions [3]. For a moving earth 
terminal, the Doppler spectrum may be modelled by 
a Jakes-shaped Rayleigh process [4]. In this paper 
we assume a fixed ground terminal. 

Sometimes, a LEO satellite channel can be simply 
modelled by a deterministic model, such as a LOS 
model or line-tracing model [5]. When the ground 
terminal is at an open field or water surface, it fits 
the two-ray scenario. A two-ray model is the first 
step up from LOS and enters the multipath arena. It 
may help us understand multipath interference-
caused fading. As a deterministic model it may be 
more convenient for engineering design, e.g. 
antenna selection.  

A classical two-ray channel [6] [7] [8] is for 
stationary or slow-motion radios [9] where the 
Doppler effect is negligible. The assumption is that 
there is no frequency change between the two rays. 

The phase and amplitude differences are solely 
caused by the different path lengths. The wave 
interference leads to level fluctuations at the 
receiver. A two-ray model appears in ITU 
Recommendations [10] where typical surface 
parameters are specified.  

For a LEO satellite earth link, the fast movement of 
the satellite breaks the fixed frequency assumption. 
The Doppler shifts along the two rays are different 
due to the non-zero angle between them. Although 
the angle and frequency shift are small, the 
accumulate phase shift may be significant. It is in 
addition to the phase shift caused by path length 
difference, which results in a different amplitude 
fluctuation or fading. The discussion of this 
phenomenon has not been found in the literature, 
nor is the application of two-ray model for LEO-
ground links. 

A simplistic LEO two-ray model may use a series of 
isolated static episodes at each time instance. It will 
lead to an unrealistic amplitude fading pattern, 
reducing the fidelity of the model and its validity. 
The correct way is to incorporate the Doppler shift 
effects in the model itself. This is the motivation and 
goal of the investigation.  
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It is also curious to see how the channel response 
changes when the ground antenna pattern and 
other system parameters are changed, including 
antenna height, carrier frequency, distance, satellite 
orbit, surface properties and wave polarization.  

To achieve the aims we will base our analysis on one 
LEO pass-over and calculate the channel gains using 
different Doppler models [11] [12]. The 
convergence of the results will serve as cross-
checks and validation for all our models. 

The main contributions of the paper are 

(1) Introduce Doppler effects to the two-ray

channel model for LEO satellite links. 

(2) Explore different Doppler shift models and

algorithms and the results agree well except for 

very low elevations. 

(3) Compare antennas and system parameters

on their channel responses. 

The method of adding Doppler shifts may also be of 

use to multi-ray and line-tracing modelling.  

In the rest of the paper, we first review and 
introduce three ingredients of our models: the 
classic two-ray model on a curved earth, a typical 
LEO satellite pass-over with specified orbit and 
distances, and the Doppler modelling methods 
especially for the reflected links. We derive our 
channel gains according to the Doppler models and 
discuss numerical methods. Then we model a 
selection of example scenarios with real and 
artificial antenna patterns and system parameters 
and compare the results. 

2. CURVED EARTH TWO-RAY MODEL

2.1 Static two-ray geometry 

A 2D curved earth two-ray geometry assumes a 
smooth and uniform terrain, as illustrated in Fig. 1. 
The flat earth model is inaccurate for our long-
distance scenarios.  

If the positions of satellite A and the ground 
terminal B are known, the reflect point C is fully 
determined.  However, unlike the flat earth model, 
it cannot be expressed explicitly. A numerical 
solution is required.  

To construct the implicit equation, we use the equal 
relationship of the two grazing angles [13] in Fig. 1. 

 𝛼 =  𝛼1 = 𝛼2 (1) 

From the two triangles OACO and OCBO we have 

𝛼1

= cos−1
𝐻1 sin(𝑑1 /𝑅𝐸)

√𝐻1
2 + 𝑅𝐸

2 − 2𝐻1𝑅𝐸 cos(𝑑1/𝑅𝐸)

(2) 

𝛼2

= cos−1
𝐻2 sin(𝑑2 /𝑅𝐸)

√𝐻2
2 + 𝑅𝐸

2 − 2𝐻2𝑅𝐸 cos(𝑑2/𝑅𝐸)

(3) 

where 𝐻1 = ℎ1 + 𝑅𝐸   and 𝐻2 = ℎ2 + 𝑅𝐸 . 

The given surface distance is  

𝑑𝑠 = 𝑑1 + 𝑑2. (4) 

Fig. 1 - Curved earth two-ray geometry 

When substituting (2)-(4) into (1) we can define a 
function  

𝑞(𝑑1)

=
𝐻1 sin(𝑑1 /𝑅𝐸)

√𝐻1
2 + 𝑅𝐸

2 − 2𝐻1𝑅𝐸 cos(𝑑1/𝑅𝐸)

−
𝐻2 sin((𝑑𝑠 − 𝑑1) /𝑅𝐸)

√𝐻2
2 + 𝑅𝐸

2 − 2𝐻2𝑅𝐸 cos((𝑑𝑠 − 𝑑1)/𝑅𝐸)

(5) 

Then 𝑑1 can be solved from 𝑞(𝑑1) = 0 numerically. 
If using MATLAB, variable precision algorithm (vpa) 
solver vpasolve must be used, as double precision 
solvers fzero and solve result in unacceptable errors. 

From the triangle OABO, the earth center angle 

𝛽 =
𝑑𝑠

𝑅𝐸
. The length of the direct range is 

𝑙𝑑 = √𝐻1
2 + 𝐻2

2 − 2𝐻1𝐻2 cos𝛽 (6) 
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The elevation angle is 

𝜃 = sin−1
𝐻1

2 − 𝐻2
2 − 𝑙𝑑

2

2𝐻2𝑙𝑑
(7) 

Once 𝑑1  is known, all other parameters 𝑑2, 𝛽1,  𝛽2 

can be calculated, e.g. 𝛽1 =
𝑑1

𝑅𝐸
. The range sections

are 

𝑙1 = √𝐻1
2 + 𝑅𝐸

2 − 2𝐻1𝑅𝐸 cos𝛽1
(8) 

𝑙2 = √𝐻2
2 + 𝑅𝐸

2 − 2𝐻2𝑅𝐸 cos𝛽2
(9) 

For a satellite or ground antenna, the angle between 
the two rays is known as the ‘two-ray angle’. The 
two-ray angle at the satellite is 

𝜂1 = cos−1  
𝑙𝑑
2 + 𝑙1

2 − 𝑙2
2

2 𝑙𝑑  𝑙1
(10) 

For a typical LEO with ℎ2  ≤ 18 m, the angle 𝜂1 <
2.3 × 10−3 degree and the antenna gains are 
effectively equal for the two rays, equivalent to 
using an omnidirectional antenna. 

However, the situation is very different for the 
ground antenna. The two-ray angle for the ground 
antenna is 

𝜃2 = cos−1  
𝑙𝑑
2 + 𝑙2

2 − 𝑙1
2

2 𝑙𝑑  𝑙2
(11) 

It changes vastly so that the antenna pattern plays 
an important role. The ground antenna shown in Fig. 
1 is a tracking antenna, with its maximum gain 
facing the satellite. Fixed antennas will also be used 
in our analysis. 

2.2 Classic two-ray channel model 

In a classic two-ray model the radios involved are 
static. The direct ray and the earth-reflected ray 
meet at the receiver with the same frequency. Due 
to the different path lengths, there is a carrier phase 
shift between the two rays as 

𝛷2𝑅 =
2π𝑓0(𝑙1 + 𝑙2)

𝑐
+ 𝜑𝜌 −

2π𝑓0𝑙𝑑
𝑐

(12) 

The first term is the carrier and phase of the 
reflected ray, 𝜑𝜌 is the phase of the surface reflect 

coefficient 𝜌 = |𝜌| exp 𝑖𝜑𝜌 , the third term is the 

carrier and phase of the direct ray, 𝑓0 is the carrier 
frequency in Hz and 𝑐  is the speed of light. The 
Carrier Wave (CW) response is 

𝑔2𝑅 =
𝑐

4𝜋𝑓0
(
𝑔1(0)𝑔2(𝜗𝑑)

𝑙𝑑

+
|𝜌|𝑔1(𝜓1)𝑔2(𝜗𝑟)𝑒

𝑖𝛷2𝑅

𝑙1 + 𝑙2
) 

(13) 

where 𝑔1(𝜗)  and 𝑔2(𝜗)  are the satellite/ground 
antenna voltage gains versus the deviation angle 𝜗. 
The 𝜗 is defined in the vertical plane containing the 
earth center, the satellite and the ground terminal 
(Fig. 1). The reference of 𝜗 is defined as follows. For 
a tracking antenna, when 𝜗 = 0, its gain reaches the 
maximum. For a tracking ground antenna, 𝜗𝑑 = 0 
and 𝜗𝑟 = 𝜃2 (see Fig. 1). For a fixed ground antenna, 
the reference angle 𝜗 = 0  points to the horizon. 
𝜗𝑑 = 𝜃 is the elevation angle, and 𝜗𝑟 = 𝜃 − 𝜃2. For a 
tracking satellite antenna, since 𝜂1 is tiny, 𝑔1(𝜂1) ≈
𝑔1(0). If it is a tracking or isotropic satellite antenna, 
the above equation can be simplified to 

𝑔2𝑅 =
𝑐𝑔1(0)

4𝜋𝑓0
(
𝑔2(0)

𝑙𝑑
+

|𝜌|𝑔2(𝜃2)𝑒
𝑖𝛷2𝑅

𝑙1 + 𝑙2
) (14) 

The reflection coefficient 𝜌 is a function of grazing 
angle 𝛼 , frequency 𝑓0 , ground relative dielectric 
constant 𝜀𝑟 , surface conductivity 𝜎 , and the 
polarization of the wave [13] [14]. 

For horizontally polarized waves the reflection 
coefficient is 

𝜌ℎ = 𝜌ℎ(𝛼, 𝑓0, 𝜀𝑟 , 𝜎)

=  
sin 𝛼 − √( 𝜀𝑟 − 𝑖𝜒 ) − cos2𝛼

sin𝛼 + √( 𝜀𝑟 − 𝑖𝜒 ) − cos2𝛼

(15) 

where 

𝜒 =  
𝜎

2𝜋𝑓0𝜀0

(16) 

and 314212
0 10854187817.8 −−−= mkgsA  is the 

electric constant or dielectric constant in vacuum. 

The ‘horizontal’ means E-field is perpendicular to 
the plane of incidence, and ‘ℎ = ⊥’ [7] [6]. 

The ‘vertically’ polarized wave means the E-field is 
parallel to the plane of incidence, ‘𝑣 = ∥’ [6]. 

𝜌𝑣 = 𝜌𝑣(𝛼, 𝑓0, 𝜀𝑟, 𝜎)

=  
(𝜀𝑟 − 𝑖𝜒) sin𝛼 − √( 𝜀𝑟 − 𝑖𝜒 ) − cos2𝛼

(𝜀𝑟 − 𝑖𝜒) sin𝛼 + √( 𝜀𝑟 − 𝑖𝜒 ) − cos2𝛼

(17) 

For circular and elliptical polarized waves, the 𝜌 
and 𝑔2𝑅 may be derived from a combination of the 
above. 

The decibel gain is 

𝐺2𝑅 = 20 log10 |𝑔2𝑅| (18) 
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3. A SIMPLE LEO GEOMETRY

A simple generic LEO satellite geometry is 
introduced as shown in Fig. 2. Two parameters ℎ1 
and d can fully define the system, where ℎ1  is the 
Satellite (SAT) altitude, and 𝑑 is the surface distance 
between the Ground Terminal (GT) and the sub-SAT 
track. For simplicity, a zero-inclination orbit is 
chosen so that the sub-SAT track is on the equator 
(red dashed line). The ground terminal is at zero 
longitude. Compared with a specific LEO orbit there 
may be a small discrepancy, depending on the 
inclination.  

Fig. 2 – A simple LEO satellite geometry specified by two 
parameters, (ℎ1, 𝑑). The blue dashed line is the satellite orbit, 

where the SAT is shown at the 𝜉 = 0 longitude. The red 
dashed line is the sub-SAT track. It is drawn to scale, ℎ1 =

2000 km,  
𝑑 = 2224 km.  

The calculation is based on one satellite pass-over 
with different parameters. 

We use a spherical coordinate (𝑟, 𝜓, 𝜉) centered at 
the earth center, where 𝑟 , 𝜓 , and 𝜉  are radius, 
latitude and longitude respectively. The ground 
terminal is located at (𝐻2, 𝜓𝐺 , 0), where 𝐻2 = ℎ2 +
𝑅𝐸  is the radius of the GT antenna, and 𝜓𝐺  is its 
latitude. 

𝜓𝐺 = 𝑑 𝑅𝐸⁄  (19) 

For most applications the ground antenna height 
ℎ2 > 0  so that there is a ground reflection. Even 
when ℎ2  is small, e.g. 0.5 m, it still needs to be 
specified by the model. Otherwise, if ℎ2 = 0 it will 
become a LOS model. 

The position of the LEO satellite is (𝐻1, 0, 𝜉(𝑡)) and 
the time 𝑡 ∈ [𝑡min, 𝑡max]. Its time-varying longitude 
is  

𝜉(𝑡) = 2𝜋𝑡 𝑇𝑠𝑎𝑡⁄  (20) 

where 𝑇𝑠𝑎𝑡 is the period of the satellite orbit, and 

𝑇𝑠𝑎𝑡 = 2𝜋√𝐻1
3 𝜇𝐺⁄ (21) 

where 𝜇𝐺  is the geocentric gravitational constant [6] 
and 𝜇𝐺 = 3.986004418 × 1014𝑚3𝑠−2.

The direct range 𝑙𝑑(𝑡) between the satellite and the 
ground terminal is 

𝑙𝑑(𝑡) = √𝐻1
2 + 𝐻2

2 − 2𝐻1𝐻2 cos𝜓𝐺 cos 𝜉(𝑡) (22)

The elevation angle viewed from the ground 
terminal towards the satellite is [2] 

𝜃(𝑡) = tan−1  
cos𝜓𝐺 cos 𝜉(𝑡) − 𝐻2 𝐻1⁄

√1 − cos2 𝜓𝐺  cos2𝜉(𝑡)
(23) 

Note this formula is for satellites with zero-degree 
inclination, including geostationary satellites. The 
earth’s self-rotation, up to about 6% of LEO velocity, 
is not taken into consideration. If both are 
considered, the error may be smaller due to a partial 
cancellation.  

The minimum elevation is determined by the GT 
antenna height ℎ2 or 𝐻2 as  

𝜃𝑚𝑖𝑛 = sin−1 𝑅𝐸 𝐻2⁄ − 𝜋 2⁄  (24)

which may not be calculated with cos−1(∙) due to 
ambiguity. The maximum elevation happens when 
the satellite is at 𝜉(0) = 0 as 

𝜃𝑚𝑎𝑥 = tan−1  
cos𝜓𝐺 − 𝐻2 𝐻1⁄

√1 − cos2𝜓𝐺

(25) 

At any given time 𝑡, the SAT’s earth center angle is 

𝛽(𝑡) = sin−1(𝑙𝑑(𝑡) cos𝜃(𝑡)/𝐻1) (26)

The earth surface distance from SAT to GT is 

𝑑𝑠(𝑡) = 𝑅𝐸𝛽(𝑡) (27)

The azimuth angle 𝜔𝑎(𝑡) is the angle between the 
𝜉 = 0 plane and the earth center plane containing 
both GT and SAT. From the surface right-angle 
triangle, it is 

𝜔𝑎(𝑡) = cot−1(cot 𝜉(𝑡) sin𝜓𝐺) (28) 

The range rate (radial velocity) of the direct path 
can be derived analytically from (22) as 

𝑣𝑑(𝑡) =  
𝑑𝑙𝑑(𝑡)

𝑑𝑡

=
2𝜋𝐻1𝐻2 cos𝜓𝐺 sin(𝜉(𝑡))

𝑇𝑠𝑎𝑡√𝐻1
2 + 𝐻2

2 − 2𝐻1𝐻2 cos𝜓𝐺 cos(𝜉(𝑡))

(29) 

For fixed ground terminal, 𝑣𝑑(𝑡)  is the speed 
projected on the direct link 𝑙𝑑 due to SAT movement. 
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Unfortunately for the reflected path there is no 
closed-form expression, so that 𝑣𝑟(𝑡)  has to be 
calculated numerically. 

Some example ranges, distances and angles are 
plotted in Fig. 3 to Fig. 5. 

 
Fig. 3 – Range and distance examples with elevation angles 𝜃. 

 
Fig. 4 – Example range rates and range rate difference. 

 
Fig. 5 – Example satellite and ground terminal ray angles. 

4. MODELLING OF DOPPLER SHIFT  

We need to model the Doppler shift of the direct link 
and the reflected link. There are different Doppler 
models and approximations, as the modelling of 
Doppler effects is possibly still an open problem 
[15]. 

4.1 Doppler shift by nodes’ motions 

For the direct link in its 1D space (straight line), the 
received frequency is given [15] as 

 𝑓𝑅(𝑡) = 𝑓0
1 − 𝑣𝑅(𝑡) 𝑐⁄

1 + 𝑣𝑆(𝑡) 𝑐⁄
 (30) 

where 𝑓0  is the source frequency, 𝑣𝑅(𝑡)  is the 
velocity of the receiver, 𝑣𝑆(𝑡) is the velocity of the 
source, and 𝑐 is the speed of propagation, or speed 
of light here.  

In this definition the movements of the source and 
the receiver have different contributions, although 
the difference is small, as 𝑣𝑅 , 𝑣𝑆 ≪ 𝑐.  

If the ends or nodes move in an arbitrary direction, 
the Doppler is related to the projected velocities to 
the 1D link towards each other.  

In Fig. 6 a generic two-ray Doppler model is 
illustrated with the projected moving ends. Satellite 

A moves with velocity �⃗� 𝐴(𝑡). The ground terminal 

moves with �⃗� 𝐵(𝑡).  These movements cause 

reflection point C to move with �⃗� 𝐶(𝑡). Only those 
projected velocities along the edges of the triangle 
ABCA are relevant. The plane containing the 
triangle is also moving. However, it is convenient to 
assume it is fixed with the media.  

 
Fig. 6 – Node velocities projected on links, a general model. 

When the nodes move there are six velocities 
projected on the edges linking A, B and C. We denote 
the velocity of 𝑋  relative to 𝑌  as 𝑣𝑋,𝑌  and have 

colour coded the 3D velocities and their projected 
velocities on the links. For example, for A, its 

velocity �⃗� 𝐴(𝑡) projected on the link 𝑙𝑑 towards B is 
𝑣𝐴,𝐵(𝑡). A positive velocity is when the link distance 

increases (opposite to the component vector 
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though), so that it produces a negative Doppler shift. 
The reflector C moves passively and its projected 
velocity along 𝑙1  away from A is 𝑣𝐶,𝐴 , and along 𝑙2 

away from B is 𝑣𝐶,𝐵.  

When a carrier frequency 𝑓0 is transmitted from A, 
the received frequency at B via the direct link is 
𝑓𝐵,𝐴(𝑡) 

𝑓𝐵,𝐴(𝑡) = 𝑓0
1 − 𝑣𝐵,𝐴(𝑡) 𝑐⁄

1 + 𝑣𝐴,𝐵(𝑡) 𝑐⁄
. (31) 

In the opposite direction, when a CW of 𝑓0  Hz is 
transmitted from B, the received frequency at A is 

𝑓𝐴,𝐵(𝑡) = 𝑓0
1 − 𝑣𝐴,𝐵(𝑡) 𝑐⁄

1 + 𝑣𝐵,𝐴(𝑡) 𝑐⁄
. (32) 

Obviously, 𝑓𝐴,𝐵(𝑡) ≠ 𝑓𝐵,𝐴(𝑡), although they are very 

similar when the velocities are far less than 𝑐.  

For the reflected ray, one way is to calculate it 
section by section before cascading them [11]. The 
frequency at C from A is  

𝑓𝐶,𝐴(𝑡) = 𝑓0
1 − 𝑣𝐶,𝐴(𝑡) 𝑐⁄

1 + 𝑣𝐴,𝐶(𝑡) 𝑐⁄
. (33)

The frequency at B is 

𝑓𝐵,𝐶𝐴(𝑡) = 𝑓𝐶,𝐴(𝑡)
1 − 𝑣𝐵,𝐶(𝑡) 𝑐⁄

1 + 𝑣𝐶,𝐵(𝑡) 𝑐⁄

= 𝑓0
𝑐 − 𝑣𝐶,𝐴(𝑡)

𝑐 + 𝑣𝐴,𝐶(𝑡)
∙
𝑐 − 𝑣𝐵,𝐶(𝑡)

𝑐 + 𝑣𝐶,𝐵(𝑡)

(34) 

In the opposite direction B→C →A, assume 𝑓0  is 
transmitted from B, the received frequency at A is 

𝑓𝐴,𝐶𝐵(𝑡) = 𝑓0
𝑐 − 𝑣𝐴,𝐶(𝑡)

𝑐 + 𝑣𝐶,𝐴(𝑡)
∙
𝑐 − 𝑣𝐶,𝐵(𝑡)

𝑐 + 𝑣𝐵,𝐶(𝑡)
 (35)

The calculations in (34) and (35) treated the 
reflected signal as a new source [11]. An alternative 
model is to treat the reflected path as a whole or 
known as the spatial mirror method [12]. It will be 
presented with the range rate approximation next. 

4.2 Doppler shift by range rates 

The calculations above require individual node 
positions in the 3D space, before being projected to 
each link. The efforts appear to be not well 
rewarded.  

A simpler approximation is based on the range rate  

𝑣(𝑡) =
𝑑𝑙(𝑡)

𝑑𝑡
≈

𝑙(𝑡) − 𝑙(𝑡 − ∆𝑡)

∆𝑡
 (36)

where ∆𝑡  is the time increment between range 
samples. There are only three link-based range 
rates, as illustrated in Fig. 7.  

Fig. 7 – Range rates of each section.  

The direct link. The range rate of the direct link is 

𝑣𝑑(𝑡) =
𝑑𝑙𝑑(𝑡)

𝑑𝑡
= 𝑣𝐵,𝐴(𝑡) + 𝑣𝐴,𝐵(𝑡). (37) 

It can be calculated analytically for our LEO model 
using (29).  

Since we do not have individual motion of the nodes, 
to make it a little closer to (30), we assign the range 
rate to the known faster moving node, as a ‘pseudo 
node motion’ scheme. All nodes’ movements are 
included although they are used in an approximate 
one-end moving fashion.  

For the direction A→B, the direct range is a source-
moving scenario, let 𝑣𝐵,𝐴(𝑡) = 0  in (31) the 

received frequency at B as 

𝑓𝐵,𝑑(𝑡) = 𝑓0/(1 + 𝑣𝑑(𝑡)/𝑐). (38) 

For the direction B→A, it is receiver-moving and let 
𝑣𝐵,𝐴(𝑡) = 0 in (32) the received frequency at A is 

𝑓𝐴,𝑑(𝑡) = 𝑓0(1 − 𝑣𝑑(𝑡)/𝑐). (39) 

The reflected link is treated by cascaded sections – 
the ‘s’ scheme [11]. This is the same as Section 4.1 
where the Doppler-shifted frequency at the 
reflector is deemed as a new source frequency for 
the next section. 

Relative to A’s movement, C moves much slower. 
This can be seen from the range rates in Fig. 4 (c) as 
|𝑣2| ≪ |𝑣1|. The definition of 𝑣1and 𝑣2 will follow. 

Therefore, for the direction A → C, the received 
frequency at C is 

𝑓1(𝑡) = 𝑓𝐶,𝐴(𝑡) ≈ 𝑓0/(1 + 𝑣1(𝑡)/𝑐) (40) 

where 

𝑣1(𝑡) =
𝑑𝑙1(𝑡)

𝑑𝑡
= 𝑣𝐶,𝐴(𝑡) + 𝑣𝐴,𝐶(𝑡). 

(41) 
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Compared with a fixed B, C moves faster especially 
at the edges of pass-overs. For the direction C→B 
the received frequency at B is 

 𝑓𝐵,𝐶(𝑡) ≈ 𝑓𝐶,𝐴(𝑡)/(1 + 𝑣2(𝑡)/𝑐). (42) 

Substitute 𝑓𝐶,𝐴(𝑡)  in (40) and write 𝑓𝐵,𝐶(𝑡)  as 

𝑓𝐵𝑠,𝑟(𝑡) for the whole reflected link.  

 𝑓𝐵𝑠,𝑟(𝑡) =
𝑓0

(1 + 𝑣1(𝑡)/𝑐)(1 + 𝑣2(𝑡)/𝑐)
. (43) 

where  

 𝑣2(𝑡) =
𝑑𝑙2(𝑡)

𝑑𝑡
= 𝑣𝐶,𝐵(𝑡) + 𝑣𝐵,𝐶(𝑡). (44) 

For path B→C→A, we first look at section B→C. 
Assume B is almost fixed, it is a receiver-moving 
scenario. When 𝑓0  is transmitted from B, the 
received frequency at C is 

 𝑓2(𝑡) = 𝑓𝐶,𝐵(𝑡) ≈ 𝑓0(1 − 𝑣2(𝑡)/𝑐) (45) 

The section along C→A is also receiver-moving as 
the satellite moves faster. The frequency received at 
A is 𝑓𝐴,𝐶(𝑡) ≈ 𝑓𝐶,𝐵(𝑡) (1 − 𝑣1(𝑡)/𝑐), or  

𝑓𝐴𝑠,𝑟(𝑡) = 𝑓0(1 − 𝑣1(𝑡)/𝑐)(1 − 𝑣2(𝑡)/𝑐). (46) 

Reflected link as a whole - the ‘w’ scheme. It treats the 
two reflected link sections together. The total link 
length is a scalar sum, 𝑙𝑟(𝑡) = 𝑙1(𝑡) + 𝑙2(𝑡) . Its 
range rate is 

 𝑣𝑟(𝑡) =
𝑑𝑙𝑟(𝑡)

𝑑𝑡
= 𝑣1(𝑡) + 𝑣2(𝑡). (47) 

This is effectively the spatial mirror method [12] as 
in Fig. 8. The link ACB, for example, is obtained from 
ACB’ or A’CB using mirror images 𝑙2

 ′  or 𝑙1
 ′ 

respectively. 

 
Fig. 8 – Range rate calculated using ‘mirror extension’ or the 

whole reflect link length variation – the ‘w’ scheme. 

For the downlink the received frequency is 

 𝑓𝐵𝑤,𝑟(𝑡) ≈
𝑓0

(1 + 𝑣𝑟(𝑡)/𝑐))
 (48) 

For the uplink 

 𝑓𝐴𝑤,𝑟(𝑡) ≈ 𝑓0(1 − 𝑣𝑟(𝑡)/𝑐) (49) 

The ‘w’ scheme assumes the Doppler effect is 
uniform along the link, in contrast to the ‘s’ scheme. 
It is not justified to choose one scheme so we will 
implement both and compare the results 
numerically. 

5. TWO-RAY DOPPLER CHANNEL 
MODELS 

In this section we introduce Doppler effects to the 
two-ray model. To keep it accurate we try to use 
analytical methods as far as possible and a 
numerical approach when needed. A pure 
numerical simulation is impractical due to the 
excessive number of samples. As the system is time-
variant some special treatment will be applied.  

5.1 An analytical model 

A two-ray Doppler channel model is represented by 
its CW response. Assume the transmitted signal is  

 𝑠𝑇𝑋(𝑡) = 𝑒𝑖2𝜋𝑓0𝑡 (50) 

The received signal is 

 𝑠𝑅𝑋(𝑡) = 𝑉𝑑(𝑡)𝑒
𝑖𝜑𝑑(𝑡) + 𝑉𝑟(𝑡)𝑒

𝑖𝜑𝑟(𝑡)  (51) 

The two terms represent the direct ray and the 
reflected ray. The 𝜑𝑑(𝑡) and 𝜑𝑟(𝑡) are generalized 
phases with carrier components 2𝜋𝑓𝑑𝑡 and 2𝜋𝑓𝑟𝑡 in 
them, respectively. The direct ray’s amplitude is 

 𝑉𝑑(𝑡) =
𝑐𝑔1(0)𝑔2(𝜗𝑑)

4𝜋𝑓𝑑(𝑡)𝑙𝑑(𝑡)
 (52) 

where 𝑓𝑑(𝑡) is the carrier after Doppler shift for the 
direct ray. The reflected ray’s amplitude is 

 𝑉𝑟 =
𝑐|𝜌|𝑔1(𝜓1)𝑔2(𝜗𝑟)

4𝜋𝑓𝑟(𝑡)𝑙𝑟(𝑡)
 (53) 

where 𝑓𝑟(𝑡) is the carrier frequency after Doppler 
for the reflected ray, which may be different for each 
direction. 𝑙𝑟(𝑡) = 𝑙1(𝑡) + 𝑙2(𝑡)  is the length of the 
reflected ray. As the reflection coefficient is complex, 
𝜌 = |𝜌| exp 𝑖𝜑𝜌, only the amplitude is used here. The 

phase 𝜑𝜌 will be added to the phase of the received 

signal. The values |𝜌ℎ| and 𝜑𝜌ℎ are given in (15) and 

|𝜌𝑣|  and 𝜑𝜌𝑣  given in (17) for horizontal 

polarization and vertical polarization respectively. 

The channel’s CW response or complex gain is  

𝐺 =
𝑠𝑅𝑋(𝑡)

𝑠𝑇𝑋(𝑡)
= 𝑉𝑑𝑒𝑖𝛷𝑑(𝑡) + 𝑉𝑟𝑒

𝑖𝛷𝑟(𝑡) (54) 
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where 𝛷𝑑(𝑡) = 𝜑𝑑(𝑡) − 2𝜋𝑓0𝑡 and 𝛷𝑟(𝑡) = 𝜑𝑟(𝑡) −
2𝜋𝑓0𝑡 are the baseband phase responses. If we have 
it referenced on the direct ray, we have the tilted 
phase CW response  

 𝐺′ =
𝐺

𝑒𝑖𝛷𝑑(𝑡)
= 𝑉𝑑 + 𝑉𝑟𝑒

𝑖𝛷′(𝑡) (55) 

where the tilted phase is 

 
𝛷′(𝑡) = 𝛷𝑟(𝑡) − 𝛷𝑑(𝑡) 

= 𝜑𝑟(𝑡) − 𝜑𝑑(𝑡) 
(56) 

Our task now is calculating 𝜑𝑟(𝑡) and 𝜑𝑑(𝑡). 

The phase of a signal after each link consists of a 
carrier term and a phase shift term due to the path 
delay difference. Unlike the static case, the time-
varying carriers, 2𝜋𝑓𝑟(𝑡)𝑡 and 2𝜋𝑓𝑑(𝑡)𝑡,cannot be 
cancelled as the frequencies are different. There will 
be a ‘beat effect’ when combined. Also, the phase 
shift due to delay is not a simple product (unless 
using approximations) but an integration, as both 
the frequency and the link length are time varying.  

For the direct link the phase of the received signal is 

𝜑𝑑(𝑡) = 2𝜋𝑓𝑑(𝑡)𝑡 + 2𝜋∫ 𝑓𝑑(𝜏)
𝑡

𝑡−
𝑙𝑑(𝑡)

𝑐

𝑑𝜏 (57) 

The integration period 𝑙𝑑(𝑡)/𝑐  is the duration the 
signal travels along 𝑙𝑑(𝑡) at time 𝑡.  

With the Doppler shift expressions given in the last 
section, the integral (57) is solvable only for the 
receiver-moving (uplink) case. When substituting 
(39) in (57) the phase is 

 

𝜑𝐴,𝑑(𝑡) = 2𝜋𝑓𝐴,𝑑(𝑡)𝑡

+ 2𝜋∫ 𝑓𝐴,𝑑(𝜏)
𝑡

𝑡−
𝑙𝑑(𝑡)

𝑐

𝑑𝜏 

= 2𝜋𝑓𝐴,𝑑(𝑡)𝑡

+ 2𝜋∫ 𝑓0(1 − 𝑣𝑑(𝜏) 𝑐⁄ )
𝑡

𝑡−
𝑙𝑑(𝑡)

𝑐

𝑑𝜏 

(58) 

Considering 𝑣𝑑(𝑡) = 𝑑𝑙𝑑(𝑡)/𝑑𝑡 (37) the integral is  

 
𝜑𝐴,𝑑(𝑡) = 2𝜋𝑓𝐴,𝑑(𝑡)𝑡

+ 2𝜋
𝑓0
𝑐

𝑙𝑑(𝑡 − 𝑙𝑑(𝑡) 𝑐⁄ ) 
(59) 

Note in (59) the bracket after 𝑙𝑑  denotes the 
function relationship, not a product. That is, 𝑙𝑑(𝑡 −
𝑙𝑑(𝑡)

𝑐
) is the length of the direct path at time 𝑡 −

𝑙𝑑(𝑡)

𝑐
. 

To calculate this length precisely, we go back in time 

from 𝑡 by 
𝑙𝑑(𝑡)

𝑐
. Further discussion is in Section 5.3.  

 

For the reflected link, only for the uplink ‘w’ scheme, 
the integral is solvable. The signal phase is 

𝜑𝑟(𝑡) = 2𝜋𝑓𝑟(𝑡)𝑡 + 2𝜋∫ 𝑓𝑟(𝜏)
𝑡

𝑡−
𝑙𝑟(𝑡)

𝑐

𝑑𝜏

+ 𝜑𝜌 

(60) 

When substituting (49) into (60) we have 

 

𝜑𝐴𝑤,𝑟(𝑡) = 2𝜋𝑓𝐴𝑤,𝑟(𝑡)𝑡 + 𝜑𝜌(𝑓𝐴𝑤,𝑟) 

+2𝜋∫ 𝑓𝐴𝑤,𝑟(𝜏)
𝑡

𝑡−
𝑙𝑟(𝑡)

𝑐

𝑑𝜏 

= 2𝜋𝑓𝐴𝑤,𝑟(𝑡)𝑡 + 𝜑𝜌(𝑓𝐴𝑤,𝑟) 

+2𝜋∫ 𝑓0(1 − 𝑣𝑟(𝑡)/𝑐) 𝑑𝜏
𝑡

𝑡−
𝑙𝑟(𝑡)

𝑐

 

(61) 

Considering 𝑣𝑟(𝑡) =
𝑑𝑙𝑟(𝑡)

𝑑𝑡
 as given in (47), we have 

 
𝜑𝐴𝑤,𝑟(𝑡) = 2𝜋𝑓𝐴𝑤,𝑟(𝑡)𝑡 + 𝜑𝜌(𝑓𝐴𝑤,𝑟) +

2𝜋
𝑓0

𝑐
𝑙𝑟(𝑡 − 𝑙𝑟(𝑡) 𝑐⁄ ) 

(62) 

Again, 𝑙𝑟(𝑡 − 𝑙𝑟(𝑡) 𝑐⁄ ) is the length of the reflected 
path at time 𝑡 − 𝑙𝑟(𝑡) 𝑐⁄ . 

For the uplink, the phase response can be obtained 
as 

 𝛷′
𝐴𝑤(𝑡) = 𝜑𝐴𝑤,𝑟(𝑡) − 𝜑𝐴,𝑑(𝑡) (63) 

When substituting (62) and (58) we have  

 

𝛷′
𝐴𝑤(𝑡)

= 2𝜋(𝑓𝐴𝑤,𝑟(𝑡) − 𝑓𝐴,𝑑(𝑡))𝑡

+ 2𝜋
𝑓0
𝑐

(𝑙𝑟(𝑡 − 𝑙𝑟(𝑡) 𝑐⁄ )

− 𝑙𝑑(𝑡 − 𝑙𝑑(𝑡) 𝑐⁄ )) + 𝜑𝜌(𝑓𝐴𝑤,𝑟) 

(64) 

Note the brackets after 𝑙𝑟  and 𝑙𝑑  denote the 
function relationships with time. This is the only 
analytical solution. If 𝑓𝐴𝑤,𝑟(𝑡) can also be calculated 

analytically then it is accurate. Unfortunately, this is 
not the case, although its influence is minor. See 
Section 5.3.1 for more discussions. For all downlink 
and sectional Doppler treatment of the reflected 
path (‘s’ schemes), the integrals are not solvable, 
and approximations must be used.  

5.2 Piecewise time-invariant approximations 

In the integrals in (57) and (60), both frequency and 
path lengths are time variant. If we treat the 
velocities and link lengths as constants at a given 
time, we obtain the piece-wise Time-Invariant (TI) 
approximations. 

For the downlink A→B the phase is 
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𝜑𝐵,𝑑(𝑡) = 2𝜋𝑓𝐵,𝑑(𝑡)𝑡

+ 2𝜋 ∫ 𝑓𝐵,𝑑(𝜏)
𝑡

𝑡−
𝑙𝑑(𝑡)

𝑐

𝑑𝜏 (65) 

Substitute the Doppler expressions 𝑓𝐵,𝑑 of (38) and 

assuming 𝑣𝑑(𝑡) is a constant during the integration 
period, we have 𝜑𝐵,𝑑(𝑡) ≈ 𝜑𝐵,𝑑,𝑇𝐼(𝑡) and 

𝜑𝐵,𝑑,𝑇𝐼(𝑡) = 2𝜋𝑓𝐵,𝑑(𝑡)𝑡

+ 2𝜋
𝑓0𝑙𝑑(𝑡)

𝑐(1 + 𝑣𝑑(𝑡) 𝑐⁄ )

(66) 

For the uplink the accurate solution was derived in 
(59). The TI approximation may still be useful for 
comparison. From (58), treating 𝑣𝑑(𝑡)  as time 
invariant we obtain 

𝜑𝐴,𝑑,𝑇𝐼(𝑡)

= 2𝜋𝑓𝐴,𝑑(𝑡)𝑡 + 2𝜋
𝑓0𝑙𝑑(𝑡)

𝑐
(1 −

𝑣𝑑(𝑡)

𝑐
) 

(67) 

For the reflected down link, if it is treated as a whole 
(‘w’ scheme), the phases can be calculated similarly. 
The received phase at B is 

𝜑𝐵𝑤,𝑟(𝑡) = 2𝜋𝑓𝐵𝑤,𝑟(𝑡)𝑡 + 𝜑𝜌(𝑓𝐵𝑤,𝑟)

+ 2𝜋∫ 𝑓𝐵,𝑟(𝜏)
𝑡

𝑡−
𝑙𝑟(𝑡)

𝑐

𝑑𝜏 

≈ 𝜑𝐵𝑤,𝑟,𝑇𝐼 = 2𝜋𝑓𝐵𝑤,𝑟(𝑡)𝑡 + 𝜑𝜌(𝑓𝐵𝑤,𝑟)

+ 2𝜋
𝑓0𝑙𝑟(𝑡)

𝑐(1 + 𝑣𝑟(𝑡) 𝑐⁄ )

(68) 

For the reflected uplink, apart from the analytical 
expression (62), its TI approximation is 

𝜑𝐴𝑤,𝑟,𝑇𝐼(𝑡) = 2𝜋𝑓𝐴𝑤,𝑟(𝑡)𝑡 + 𝜑𝜌(𝑓𝐴𝑤,𝑟)

+ 2𝜋
𝑓0𝑙𝑟(𝑡)

𝑐
(1 − 𝑣𝑟(𝑡) 𝑐⁄ ) 

(69) 

If the Doppler in the reflected path is treated section 
by section (‘s’ scheme), the TI phases can be derived 
accordingly. For the downlink, 

𝜑𝐵𝑠,𝑟(𝑡) = 2𝜋𝑓𝐵𝑠,𝑟(𝑡) 𝑡 + 𝜑𝜌(𝑓1)

+ 2𝜋 ∫ 𝑓1(𝜏)
𝑡−𝑙2(𝑡)/𝑐

𝑡−
𝑙𝑟(𝑡)

𝑐
)

𝑑𝜏

+ 2𝜋 ∫ 𝑓𝐵𝑠,𝑟(𝜏)
𝑡

𝑡−𝑙2(𝑡)/𝑐

𝑑𝜏 

(70) 

Substitute 𝑓1(𝜏)  according to (40) and 𝑓𝐵𝑠,𝑟(𝜏)  in 

(43), and treating 𝑣1(𝑡) and 𝑣2(𝑡) as time invariant 
we have 𝜑𝐵𝑠,𝑟(𝑡) ≈ 𝜑𝐵𝑠,𝑟,𝑇𝐼(𝑡) and 

𝜑𝐵𝑠,𝑟,𝑇𝐼(𝑡)

= 2𝜋𝑓𝐵𝑠,𝑟(𝑡) 𝑡 +
2𝜋𝑓0𝑙1(𝑡)/𝑐

1 + 𝑣1(𝑡)/𝑐

+
2𝜋𝑓0𝑙2(𝑡)/𝑐

(1 + 𝑣1(𝑡) 𝑐⁄ )(1 + 𝑣2(𝑡) 𝑐⁄ )
+ 𝜑𝜌(𝑓1)

(71) 

Note here we have used 𝑙𝑟(𝑡) − 𝑙2(𝑡) = 𝑙1(𝑡). 

For the uplink, we have 

𝜑𝐴𝑠,𝑟(𝑡) = 2𝜋𝑓𝐴𝑠,𝑟(𝑡) 𝑡 + 𝜑𝜌(𝑓2)

+ 2𝜋∫ 𝑓2(𝜏)
𝑡−𝑙1(𝑡)/𝑐

𝑡−
𝑙𝑟(𝑡)

𝑐
)

𝑑𝜏

+ 2𝜋∫ 𝑓𝐴𝑠,𝑟(𝜏)
𝑡

𝑡−𝑙1(𝑡)/𝑐

𝑑𝜏 

(72) 

When substituting 𝑓2(𝜏)  according to (45) and 
𝑓𝐴𝑠,𝑟(𝜏) in (46) and integrate it, we have 𝜑𝐴𝑠,𝑟(𝑡) ≈

𝜑𝐴𝑠,𝑟,𝑇𝐼(𝑡) and 

𝜑𝐴𝑠,𝑟,𝑇𝐼(𝑡) = 2𝜋𝑓𝐴𝑠,𝑟(𝑡)𝑡 + 𝜑𝜌(𝑓2)

+ 2𝜋
𝑓0𝑙2(𝑡)

𝑐
(1 − 𝑣2(𝑡)/𝑐) 

+ 2𝜋 (𝑓0𝑙1(𝑡) 𝑐⁄ )(1 − 𝑣1(𝑡) 𝑐⁄ )(1
− 𝑣2(𝑡) 𝑐⁄ )

(73) 

To simplify the notations next, some intermediate 
factors are introduced in Table 1. 

Table 1 – Intermediate factors 

𝑁1 = 1 − 𝑣1(𝑡)/𝑐 𝑄1 = 1/(1 + 𝑣1(𝑡) 𝑐⁄ ) 

𝑁2 = 1 − 𝑣2(𝑡)/𝑐 𝑄2 = 1/(1 + 𝑣2(𝑡) 𝑐⁄ ) 

𝑁𝑑 = 1 − 𝑣𝑑(𝑡)/𝑐 𝑄𝑑 = 1/(1 + 𝑣𝑑(𝑡) 𝑐⁄ ) 

𝑁𝑟 = 1 − 𝑣𝑟(𝑡)/𝑐 𝑄𝑟 = 1/(1 + 𝑣𝑟(𝑡) 𝑐⁄ ) 

The phase responses are phase differences between 
the reflected signal and the direct signal. For the ‘w’ 
downlink 𝛷′

𝐵𝑤(𝑡) = 𝜑𝐵𝑤,𝑟(𝑡) − 𝜑𝐵,𝑑(𝑡). From (68)

and (66), as well as (48) and (38) and Table 1, we 
have the TI phase response 

𝛷′
𝐵𝑤,𝑇𝐼(𝑡) = 2𝜋𝑓0((𝑄𝑟 − 𝑄𝑑)𝑡

+(𝑙𝑟(𝑡)𝑄𝑟  − 𝑙𝑑(𝑡)𝑄𝑑)/𝑐) + 𝜑𝜌(𝑓𝐵𝑤,𝑟) 
(74) 

Similarly, for the uplink, 𝛷′
𝐴𝑤,𝑇𝐼(𝑡) = 𝜑𝐴𝑤,𝑟,𝑇𝐼(𝑡) −

𝜑𝐴,𝑑,𝑇𝐼(𝑡). From (69), (67), (49), (39) and Table 1, 

𝛷′
𝐴𝑤,𝑇𝐼(𝑡) = 2𝜋𝑓0((𝑁𝑟 − 𝑁𝑑)𝑡

+(𝑙𝑟(𝑡)𝑁𝑟  − 𝑙𝑑(𝑡)𝑁𝑑)/𝑐) + 𝜑𝜌(𝑓𝐴𝑤,𝑟) 
(75) 

For the downlink, 𝛷′
𝐵𝑠,𝑇𝐼(𝑡) = 𝜑𝐵𝑠,𝑟,𝑇𝐼(𝑡) −

𝜑𝐵,𝑑,𝑇𝐼(𝑡). From (71), (66), (43), (38) and Table 1, 
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𝛷′
𝐵𝑠,𝑇𝐼(𝑡) = 2𝜋𝑓0((𝑄1𝑄2 − 𝑄𝑑)𝑡

+ (𝑙1(𝑡)𝑄1 + 𝑙2(𝑡)𝑄1𝑄2

− 𝑙𝑑(𝑡)𝑄𝑑)/𝑐) + 𝜑𝜌(𝑓1) 
(76) 

For the uplink, from (73), (67), (46), (39) and  
Table 1, 

 

𝛷′
𝐴𝑠,𝑇𝐼(𝑡) = 2𝜋𝑓0((𝑁1𝑁2 − 𝑁𝑑)𝑡

+ (𝑙2(𝑡)𝑁2 + 𝑙1(𝑡)𝑁1𝑁2

− 𝑙𝑑(𝑡)𝑁𝑑)/𝑐) + 𝜑𝜌(𝑓2) 
(77) 

For different schemes and directions, the channel 
gains are 

 𝐺′𝑥(𝑑𝐵) = 20 log10|𝐺𝑥′| (78) 

where 𝑥 is the code of scheme including algorithm 
and direction. The code names will be discussed in 
Section 5.4. 

Note when using 𝜑𝜌(𝑓0)  in places of 𝜑𝜌(𝑓𝑥)  for a 

few different schemes, there is no obvious 
difference as shown in numerical results. We still 
use individual frequencies for accuracy. 

5.3 Numerical computation 

5.3.1 An irregular sampling method 

In the analytical calculation of (64), the two range 
lengths 𝑙𝑑(𝑡 − 𝑙𝑑(𝑡)/𝑐)  and 𝑙𝑟(𝑡 − 𝑙𝑟(𝑡)/𝑐)  need to 
be calculated at time 𝑡 − 𝑙𝑑(𝑡)/𝑐  and 𝑡 − 𝑙𝑟(𝑡)/𝑐 
respectively. It means 𝑙𝑑(𝑡)  and 𝑙𝑟(𝑡)  must be 
calculated first at time 𝑡, and then go back in time by 
𝑇𝑑(t)  ≜ 𝑙𝑑(𝑡)/𝑐  and 𝑇𝑟(t)  ≜ 𝑙𝑟(𝑡)/𝑐,  to calculate 
the required range lengths. 𝑇𝑑(𝑡) and 𝑇𝑟(t) are the 
times the waves travel on 𝑙𝑑(𝑡)  and 𝑙𝑟(𝑡) 
respectively. Since 𝑇𝑑(𝑡)  and 𝑇𝑟(t)  vary with time 
this is an Irregular Sampling (IS) system. 
Fortunately, our satellite pass-over model allows 
for this.   

The sampling relationship is plotted in Fig. 9. 
Sampling happens first at regular instances 𝑇𝑠 apart, 
where 𝑇𝑠 is the main sampling period.  

 
Fig. 9 – Irregular sampling relationship, not drawn to scale. 

The simulation is performed in several steps. First, 
it runs in regular sampling intervals at  

 𝑡𝑛 = 𝑛𝑇𝑠, 𝑛 = 1,2,⋯𝑀 (79) 

 

to obtain relevant range lengths, where 𝑀  is the 
total number of samples in the pass-over. The direct 
range length is calculated precisely using (22) 

 𝑙𝑑,𝑛 = 𝑙𝑑(𝑡𝑛) = 𝑙𝑑(𝑛𝑇𝑠), 𝑛 = 1,2,⋯𝑀 (80) 

With the solver we calculate 𝑙1,𝑛 = 𝑙1(𝑡𝑛) and 𝑙2,𝑛 =

𝑙2(𝑡𝑛)  and sum up to obtain the reflected range 
length 

 𝑙𝑟,𝑛 = 𝑙𝑟(𝑡𝑛) = 𝑙𝑟(𝑛𝑇𝑠), 𝑛 = 1,2,⋯𝑀 (81) 

Then we go back and set the sampling instances 
according to 𝑇𝑑(𝑡𝑛) = 𝑙𝑑,𝑛/𝑐  and 𝑇𝑟(𝑡𝑛)  = 𝑙𝑟,𝑛/𝑐 

respectively at 

 𝑡𝑛,𝑑 = 𝑡𝑛 − 𝑇𝑑(𝑡𝑛), 𝑛 = 1,2,⋯𝑀 (82) 

and  

 𝑡𝑛,𝑟 = 𝑡𝑛 − 𝑇𝑟(𝑡𝑛), 𝑛 = 1,2,⋯𝑀 (83) 

The direct link length at the time 𝑡𝑛,𝑑 is calculated 
as 

 𝑙𝑑,𝑛,𝑑  = 𝑙𝑑(𝑡𝑛,𝑑), 𝑛 = 1,2,⋯𝑀 (84) 

The direct link length at the time 𝑡𝑛,𝑟 is calculated as 

 𝑙𝑑,𝑛,𝑟  = 𝑙𝑑(𝑡𝑛,𝑟), 𝑛 = 1,2,⋯𝑀 (85) 

The last letter ‘𝑑’ or ‘𝑟’ in the subscripts indicates 
the offset time being associated with 𝑇𝑑(𝑡) or 𝑇𝑟(𝑡) 
respectively.  

The reflected link can be calculated from 𝑙𝑑,𝑛,𝑟 . First 

solve (5) for the reflected link sections 

 
𝑙1,𝑛,𝑟  = 𝑙1(𝑡𝑛,𝑟), 𝑛 = 1,2,⋯𝑀 

𝑙2,𝑛,𝑟  = 𝑙2(𝑡𝑛,𝑟), 𝑛 = 1,2,⋯𝑀 
(86) 

Then sum up to obtain 

 
𝑙𝑟,𝑛,𝑟  = 𝑙𝑟(𝑡𝑛,𝑟) = 𝑙1,𝑛,𝑟 + 𝑙2,𝑛,𝑟, 

𝑛 = 1,2,⋯𝑀 
(87) 

Here we have implemented a time-varying 
sampling system. At different times we have 
different time offset 𝑇𝑑(𝑡𝑛)  and 𝑇𝑟(𝑡𝑛)  from the 
regular sampling instances 𝑡𝑛.  All required 
geometry and motion parameters are re-calculated 
at the new instances starting from the new values of 
longitudes 𝜉(𝑡𝑛,𝑑) and 𝜉(𝑡𝑛,𝑟) using (20). 

The Irregular Sampled (IS) uplink tilted phase is 

 

𝛷′
𝐴𝑤,𝐼𝑆(𝑡𝑛) = 2𝜋(𝑓𝐴𝑤,𝑟(𝑡𝑛)

− 𝑓𝐴,𝑑(𝑡𝑛))𝑡𝑛

+ 2𝜋
𝑓0
𝑐

(𝑙𝑟,𝑛,𝑟 − 𝑙𝑑,𝑛,𝑑)

+ 𝜑𝜌(𝑓𝐴𝑤,𝑟) 

(88) 
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Note it is not fully analytical, as in the computation 
of 𝑓𝐴𝑤,𝑟  with (49) the 𝑣𝑟(𝑡)  is still obtained 

numerically. In the computation of 𝑓𝐴,𝑑  although 

𝑣𝑑(𝑡) can be obtained analytically, practically it is 
still calculated numerically for consistency with 
𝑣𝑟(𝑡).  

5.3.2 A double sampling method 

The computation of TI approximations (Section 5.2) 
requires further elaboration.  

First, we determine the sampling interval 𝑇𝑠. When 
𝑓0 ≥ 10 GHz and ℎ2 ≥ 10  m, the channel fades 
relatively fast. The channel gain may be sufficiently 
represented by a sampling period of 𝑇𝑠 = 50  ms. 
For this sample rate there are up to 20000 samples 
during a pass-over. Using the high precision 
arithmetic MATLAB vpa, the execution time is many 
hours on a standard PC. To reduce the run time, we 
use longer sampling intervals, e.g. 𝑇𝑠 = 1  second 
when 𝑓0 and ℎ2 are lower. 

On the other hand, the propagation delay, e.g. for the 
range 𝑙𝑑 𝑐⁄  is far less than the sampling interval, 
𝑙𝑑 𝑐⁄ ≪ 𝑇𝑠, as illustrated in Fig. 9. It is 1 ms ≤ 𝑙𝑑 𝑐⁄ ≤
10 ms for the range of 300 km ≤ 𝑙𝑑 ≤ 3000 km. To 
perform numerical integration by cumulative sum 
is impossible, as there are no multiple samples to 
use. Also, the velocity calculation is inaccurate using 
the long 𝑇𝑠 steps due to time varying. 

To overcome these problems, we used a double-
sample method for the TI calculations, as shown in  
Fig. 10. A small time-chip 1 ≤ 𝑇𝐶 ≤ 5 ms is added to 
each regular sample to form a second sampling 
serial. The range lengths are now calculated at 𝑇𝐶  
steps for the related velocity 𝑣 ≈ ∆𝑙/𝑇𝐶. 

 
Fig. 10 – Difference operation at the 𝑡𝑛 vicinity using the 

sample at  𝑡𝑛 − 𝑇𝐶  instead of 𝑡𝑛−1. Not drawn to scale. 

Fig. 11 plots the absolute values of calculated range 
rate 𝑣𝑑 from (29), and errors from three numerical 
methods. Among them the one using step 𝑇𝑠 = 1 s 
has the largest error. The error using 𝑇𝐶 = 2 ms is 
much smaller, as expected. The IS offers the smallest 
error.  

 
Fig. 11 – Example of direct link range rate |𝑣𝑑(𝑡)| and errors 
from different numerical methods, 𝑇𝑠 = 1  s and 𝑇𝐶 = 2 ms. 

Mixed calculations using (29) and numerical 
method may produce unexpected errors, so that for 
the TI schemes both 𝑣𝑑(𝑡)  and 𝑣𝑟(𝑡)  should be 
calculated numerically, as there is no formula for 
the latter. 

5.4 Scheme codes 

We have configured 13 schemes for comparison. 
The codes of two-Ray Doppler (2RD) schemes are 
named as follows. The first letter ‘A’ or ‘B’ 
represents the receive end of a link, i.e. ‘A’ for an 
uplink, and ‘B’ for a downlink. The next letter, ‘w’ for 
the Doppler based on the whole reflected path, and 
‘s’ for sectional Doppler. Then it is ‘h’ or ‘v’ for 
horizontal and vertical polarization respectively. 
There are only two schemes obtained by irregular 
sampling ‘IS’, namely ‘AwhIS’ and ‘AwvIS’. The rest 
are Time-Invariant (TI) approximates, where ‘TI’ 
may be omitted. For the uplink, these 2RD schemes 
are ‘Ash’, ‘Asv’, ‘Awh’, ‘Awv’. For the downlink, they 
are ‘Bsh’, ‘Bsv’, ‘Bwh’, ‘Bwv’. There are also the static 
two-ray model ‘2Rh’ and ‘2Rv’, and the LOS model. 

6. NUMERICAL EXAMPLES AND 
DISCUSSIONS 

In this section we present some numerical results 
along with comparisons and discussions.  

6.1 Doppler shift difference 

The speculated non-zero Doppler shift differences 
between the two rays, are plotted in Fig. 12 , using 
the ‘Aw’ as examples. For the same SAT-GT system 
(ℎ1, 𝑑) , the Doppler difference increases with 
ground antenna height ℎ2 and frequency 𝑓0. 
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Fig. 12 – Doppler shift difference between two rays, given 

ground antenna height and carrier frequency, ‘Aw’, conditions 
in top title. 

6.2 Comparison of schemes  

Comparison of the results from different schemes 
and conditions may help check the algorithms and 
raise confidence in the models. The following 
comparisons will be considered. (1) IS versus TI; (2) 
‘s’ vs ‘w’; (3) Uplink ‘A’ vs downlink ‘B’; and (4) ‘h’ vs 
‘v’ polarization. Different ℎ1 and 𝑑 will also be used 
throughout this section. 

An example is given in Fig. 13. The analytical 
scheme 𝛷′

𝐴𝑤,𝐼𝑆(𝑡)  using (88) has virtually an 

identical result with the TI approximation 
𝛷′

𝐴𝑤,𝑇𝐼(𝑡) using (75).  

 
Fig. 13 – Phase and gain plots for two-ray static (2Rh) and 

some two-ray Doppler models. The uplink irregular sampling 
(‘AwhIS’), and time-invariant approximation (‘AwhTI’) have 

little difference.  

In most plots the conditions are given in the top title. 
In Fig. 13, 𝑇𝐶 = 2 ms is used for 𝛷′

𝐴𝑤,𝑇𝐼(𝑡), as well 

as 𝑣𝑟  and 𝑣𝑑  calculations for 𝑓𝐴𝑤,𝑟  and 𝑓𝐴,𝑑  used in  

𝛷′
𝐴𝑤,𝐼𝑆(𝑡). The SAT height ℎ1 = 650 km, GT height 

ℎ2 = 2 m and 𝑑 = 600 km from GT to the sub-SAT 
track, 𝑓0 = 1  GHz, a −20  dB back gain patch 
antenna is used, with an average ground. 

Some phase differences are plotted in Fig. 14. The 
difference between uplink IS and TI schemes is very 
small as shown in Fig. 14 (a).  

The uplink and downlink phase have a noticeable 
difference between source-moving and receiver-
moving models. An example is shown in Fig. 14 (b). 
With 𝑓0 = 1 GHz and ℎ2 = 2 m, the maximum phase 
difference is under 0.1°. If 𝑓0 = 30 GHz it will rise to 
2.5° . This small phase difference will not cause 
significant change in channel gain. The uplink and 
downlink gain curves are virtually identical. 

 
Fig. 14 – Phase differences, between two algorithms (a), and 
between the downlink and uplink (b), vertical polarization. 

A comparison of ‘s’ schemes ‘Ash’ and ‘Bsh’ with ‘w’ 
scheme ‘Awh’ is shown in Fig. 15. They agree well 
except when 𝜃 ≤ 1°.  

The phases of ‘s’ and ‘w’ schemes only diverge at the 
ends of a pass-over. For the most used elevation 
angles they agree well. This helps confirm our 
models are likely to be correct there. Further 
comparisons of the schemes will follow in another 
context.  
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Fig. 15 – Example of phase and channel gains for ‘Awh’, ‘Ash’ 

and ‘Bsh’ schemes. For ‘Ash’ and ‘Bsh’ the phase start to 
diverge when 𝜃 ≤ 3°. Rapid fading happens when 𝜃 ≤ 1° for 

‘Ash’,  
𝜃 ≤ 0.5° for ‘Bsh’. 

6.3 Ground antenna radiation pattern 

The ground antenna radiation pattern plays a key 
role in the two-ray responses. As per Fig. 5 (b) there 
is a significant difference between the viewing 
angles of the two rays. A good antenna should reject 
the ground reflection as much as possible. 

To demonstrate this effect, we use several antennas, 
including a practical helical antenna, an artificial 
patch antenna family, idealized horizontal and 
vertical dipoles, and the omnidirectional antenna. 

6.3.1 Helical antenna 

A real tracking 18.5 dBi helical antenna is tested 
first. Its linear voltage radiation is plotted in Fig. 16. 
Some channel gains are plotted in Fig. 17 for a GT to 
sub-SAT track distance 𝑑 = 800 km scenario. 

 
Fig. 16 – A helical antenna pattern in linear scale versus 𝜗. 

 
Fig. 17 – Tracking helical antenna selected channel gains. 

The elevation-wise selectivity and the tracking 
made the channel response free from deep fading 
when the elevation angle 𝜃 > 10° . All schemes 
agree well in this commonly working elevation 
region.  

We take this example to observe the different 
schemes at low elevation angles. The ends’ details of 
Fig. 17 (a) are plotted in Fig. 18.  

 
Fig. 18 – Details of Fig. 17 (a) at low elevation regions, ‘Ash’ 
has longer high frequency fading periods than others. ‘Awh’ 

and ‘Bwh’ are almost identical. 

The schemes are almost the same when 𝜃 > 4°. All 
have a dense fading period when 𝜃 < 0.5° at both 
ends of a pass-over. The uplink ‘Awh’ and downlink 
‘Bwh’ spatial mirror Doppler schemes are near 
identical for the whole pass-over. The ‘s’ schemes 
stand out with the ‘Ash’ more prominent. The very 
dense fading period is longer for ‘Awh’. The trend is 
similar for vertical polarized responses.  
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The agreements for all schemes when 𝜃 > 10° 
serve as cross-checks and validations for the 
schemes. 

Note that at the very edge the sampling rate is 
insufficient for the very fast fading, hence not able 
to reflect the full fading depth. 

6.3.2 Patch antennas 

We artificially generated a family of patch antenna 
patterns with different back gains. They are 
specified by two parameters 𝑔𝑛  and 𝑎 . 𝑔𝑛  is the 
back voltage gain. For example, 𝑔𝑛 = 0.1,  𝐺𝑛 =
20 log10 𝑔𝑛 = −20 dB. 𝑎 ∈ (0,1) is a small constant 
that helps to produce a non-zero gain at zero 
elevation. The voltage gain is calculated by 

 𝑔𝑎 = {
 𝑔𝑝 =

𝑎 + sin 𝜃

1 + 𝑎
,    if  𝑔𝑝 ≥ 𝑔𝑛 

𝑔𝑛, otherwise
 (89) 

In Fig. 19 three patterns are plotted. 

 
Fig. 19 – Artificial patch radiation patterns. 

The maximum gain of the patch is upwards, 
assuming it is deployed as a fixed antenna. The 
channel gains of three antennas are plotted in Fig. 
20. The deep fading even at high elevation angles 
corresponds to the poor antenna in (a) and fades 
less with a better antenna (c). 

 
Fig. 20 – Response for artificial patch antennas, with back gain 

𝐺𝑛 = −10 dB, −20 dB and −30 dB, ℎ2 = 2 m, 𝑓0 = 3 GHz. 

6.3.3 Omnidirectional antenna 

A hypothetical omnidirectional antenna along the 
elevation angle is used, as in Fig. 21. The two-ray 
interference fading is among the worst over the 
pass-over, as shown in Fig. 22. 

 
Fig. 21 – Omnidirectional radiation pattern. 
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Fig. 22 – Channel gains using omnidirectional antenna. Fading 
in horizontal polarization is larger than vertical polarization, 

𝑑 = 600 km,  ℎ2 = 3 m, 𝑓0 = 3 GHz. 

6.3.4 Dipole antenna 

Vertical monopole and dipole antennas are used 
extensively for VHF and UHF radios. It is interesting 
to see how they behave with a two-ray LEO channel. 
For this purpose, we generated an artificial 
‘doughnut’ shaped dipole pattern, as in Fig. 23. 

 
Fig. 23 – The linear radiation pattern of an artificial vertical 

dipole antenna. 

A channel gain example is plotted in Fig. 24 for a 
high elevation pass-over, with 𝑑 = 150  km. The 
highest elevation is 𝜃 = 75.7°. As expected, there is 
a valley in the middle of the pass-over due to the 
lower antenna gains there. For lower elevation 
pass-overs the responses are like omnidirectional 
ones. 

 

 
Fig. 24 – Channel gains for a vertical dipole antenna,  

𝑑 = 200 km, ℎ2 = 3 m, 𝑓0 = 1 GHz. 

6.4 Carrier frequency 

For a same set of conditions, the fading rate is 
proportional to the carrier frequency. This is 
plotted in Fig. 25 for 400 MHz, 2 GHz and 10 GHz 
respectively using a 𝐺𝑛 = −20 dB artificial patch 
antenna. 

 
Fig. 25 – Three frequencies and two polarizations, satellite 
height ℎ1  = 1200 km, GT height ℎ2  =  2 m, −20 dB patch 

antenna. 

6.5 Ground antenna height 

The ground antenna height plays a similar role to 
the carrier frequency. The higher it is, the more 
frequently the amplitude fluctuates. Examples are 
plotted in Fig. 26, for ℎ2 = 2 m, 5 m and 12 m.  

From Fig. 26 we can also see that the uplink ‘Awv’ 
and downlink ‘Bwv’ responses are almost identical. 
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Fig. 26 – Ground antenna heights, ℎ2  = 2 m, 5 m, and 12 m, 
1 GHz, ‘Awv’ versus ‘Bwv’ with no observable difference. 

7. CONCLUSIONS

In this paper we presented some two-ray models for 
LEO satellite links. They include the effects of 
ground reflection and Doppler effects due to 
satellite movement.  

Based on a satellite pass-over, the Doppler shift 
difference between the two rays was calculated 
with several range rate-based Doppler models and 
approximations. Analytical and numerical 
algorithms were constructed for the channel’s CW 
responses. 

With Doppler effects the channel loss changes with 
a frequency beat component on top of the classic 
two-ray phase shift. The fading periods become 
irregular while the envelope is almost unchanged 
from the static two-ray model. 

More importantly, the increased fidelity of the 
models raises confidence in applying the two-ray 
model to LEO scenarios without the concern that 
the motion factor was not counted in. Traditionally 
a two-ray channel is for stationary or slow-moving 
radios. 

With the two-ray Doppler models we verified that 
our high gain tracking antenna works very well as 
expected. Fixed up-facing patch antennas offer 
reasonable performance due to their low backside 

gains. We also showed that the omnidirectional and 
dipole antennas have poor performance. We 
observed that the fading rate increases with the 
ground antenna height and carrier frequency. 

By comparing the numerical results, we are pleased 
to see that the difference between our Doppler 
models is insignificant for normally used elevation 
angles, usually 𝜃 > 10°. They diverge only at very 
low elevation angles. The largest difference is 
between the sectional Doppler (‘s’ scheme) and the 
spatial mirror Doppler (‘w’ scheme), especially the 
uplink ‘As’. It happens, for example, when 𝜃 < 4° or 
even when 𝜃 < 1°. The uplink and downlink spatial 
mirror schemes ‘Aw’ and ‘Bw’ are almost identical. 
The Time-Invariant (TI) approximation results 
agree very well with the Irregular Sampled (IS) 
analytical algorithm. 

That all our schemes agree well in normally used 
elevations is significant. It serves as a cross-check 
and validation before experiment data is available. 

If one model is to be recommended, the spatial 
mirror method based ‘Aw’ is perhaps a good one, 
based on its simplicity. 

ACKNOWLEDGEMENT 

The author would like to thank Dr Giuseppina 
Dall’Armi-Stoks for providing the helical antenna 
radiation pattern, as part of the collaborations in the 
system engineering for the Buccaneer CubeSat Risk 
Mitigation Mission.   

He would also like to thank Mr Luis Lorenzin for 
recommending MATLAB vpa and proof reading, Mr 
Edward Arbon and Dr Timothy Pattison for their 
proof reading. He would like to thank the 
anonymous reviewers for their valuable comments, 
suggestions and corrections, and the ITU J-FET 
editors for their corrections. 

REFERENCES 

[1] G. E. Corazza and F. Vatalaro, "A statistical 
model for land mobile satellite channels and 
its application to nongeostationary orbit 
systems," IEEE Trans on vehicular technology, 
vol. 43, no. 3, pp. 738-742, 1994.

[2] J. M. Gongora-Torres, C. Vargas-Rosales, A. 
Aragon-Zavala and R. Villalpando-Hernandez, 
"Elevation Angle Characterization for LEO 
Satellites: First and Second Order Statistics," 
MDPI, vol. Appl Sci 13(7), no. 4405, 2023.

©International Telecommunication Union, 2024258

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 2, June 2024



 

[3] M. Tropea and F. A. De Rango, "Comprehensive 
Review of Channel Modeling for Land Mobile 
Satellite Communications," Electronics, vol. 5, 
no. 11, 2022.

[4] R. H. Clarke, "A statistical theory of mobile-
radio reception," Bell Syst. Tech. Journal, vol. 
47, no. 6, p. 957–1000, July 1968.

[5] Z. Yun and M. F. Iskander, "Ray Tracing for 
Radio Propagation Modelling: Principles and 
Applications," IEEE Access, vol. 3, pp. 1089-
1100, 2015.

[6] T. S. Rappaport, Wireless Communications: 
Principles and Practice, 2nd ed., Prentice Hall, 
2001.

[7] A. Saakian, Radio wave propagation 
fundamentals, Norwood: Artech House, 2011.

[8] N. Ranchagoda, K. Sithamparanathan, M. Ding, 
A. Al-Hourani and K. Gomez, "Elevation-angle 
based two-ray path loss model for Air-to-
Ground wireless channels," Elsevier Vehicular 
communications, vol. 32, pp. 1-12, December 
2021.

[9] W. Hubert, Y.-M. Le Roux, M. Ney and A. 
Flamand, "mpact of Ship Motions on Maritime 
Radio Links," Hindawi Publishing Corporation 
International Journal of Antennas and 
Propagation, 2012.

[10] International Telecommunication Union, 
“Recommendation ITU-R P.527-6,” 2021. 

[11] Floris, "How to calculate the Doppler effect on 
a wave reflection when both the source and 
the listener are moving," Physics Stack 
Exchange, 23 May 2017. [Online]. Available: 
https://physics.stackexchange.com/questions 
/334933/how-to-calculate-the-doppler-
effect- on-a-wave-reflection-when-both-the-
source-an. [Accessed 8 April 2024]. 

[12] P. Zhao, X. Wang, K. Zhang, Y. Jin and G. Zheng, 
"Doppler Modeling and Simulation of Train-to-
Train Communication in Metro Tunnel 
Environment," MDPI Sensors , vol. 22, no. 4289, 
2022.

[13] International Telecommunication Union, 
"Recommendation ITU-R P.2345-2 Radiowave 
propagation," 2020.

[14] D. E. Kerr, "Chapter 5," in Propagation of short 
radio waves, The Institution of Engineering 
and Technology, 1987, p. 396.

[15] B. Censor, "Theory of the Doppler effect: Fact, 
fiction and approximation," Radio science, vol. 
19, pp. 1027-1040, July-August 1984.

[16] A. Guth, "The Doppler effect and special 
relativity," Massachusetts Institute of 
technology lecture notes, 2018.

[17] W. Liu, S. Zheng, Z. Deng, W. Ke, W. Lin, J. Lei, Y. 
Jin and H. Liu, "Multi-Scene Doppler Power 
Spectrum Modeling of LEO Satellite Channel 
Based on Atlas Fingerprint Method," IEEE 
Access, vol. 9, pp. 11811 - 11822, January 2021. 

AUTHOR 

Weimin Zhang was born in 
May 1953 in Jinan, China. He 
received his B.Eng. degree of 
radio engineering in 1982 from 
Shandong Engineering 
Institute. He moved to 
Australia in 1985 and received 
his Ph.D. degree in 1996 from 

the University of South Australia. He joined the 
Defence Science and Technology Organisation (later 
known as Defence Science and Technology Group) 
in 1995. He has authored and co-authored over 
forty conference papers, journal papers and book 
chapters. His research interests cover areas in 
wireless communications, including modulation, 
error control coding and channel modelling. He is a 
member of IEEE. 

259©International Telecommunication Union, 2024

Zhang: Two-ray channel models with Doppler effects for LEO satellite communications


	TWO-RAY CHANNEL MODELS WITH DOPPLER EFFECTS FOR LEO SATELLITE COMMUNICATIONS
	1. INTRODUCTION
	2. Curved earth two-ray model
	2.1 Static two-ray geometry
	2.2 Classic two-ray channel model

	3. A simple LEO geometry
	4. modelling of Doppler shift
	4.1 Doppler shift by nodes’ motions
	4.2 Doppler shift by range rates

	5. two-ray Doppler channel Models
	5.1 An analytical model
	5.2 Piecewise time-invariant approximations
	5.3 Numerical computation
	5.3.1 An irregular sampling method
	5.3.2 A double sampling method

	5.4 Scheme codes

	6. Numerical Examples and Discussions
	6.1 Doppler shift difference
	6.2 Comparison of schemes
	6.3 Ground antenna radiation pattern
	6.3.1 Helical antenna
	6.3.2 Patch antennas
	6.3.3 Omnidirectional antenna
	6.3.4 Dipole antenna

	6.4 Carrier frequency
	6.5 Ground antenna height

	7. Conclusions
	ACKNOWLEDGEMENT
	References



