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The Internet of Things (IoT) is revolutionizing industries by connecting everyday objects,
known as smart devices, via the Internet. These devices, embedded with sensors and
communication technologies, gather and share data. For the guaranteed gathering of
information, the devices share global knowledge with each other, by using dissemination
mechanisms in order to broadcast information. This study evaluates four flooding methods
for broadcasting information across network nodes, namely: (i) blind flooding; (ii)
probabilistic flooding; (iii) m-probabilistic flooding; and (iv) scoped probabilistic flooding, the
latter to be introduced here. The evaluation considers random networks that are based on the
Burr Type XII distribution and seven real networks. The evaluated flooding methods are
studied on three different metrics: (i) coverage achieved; (ii) number of messages exchanged;
and (iii) a metric that is based on binomial approximation. The latter is introduced to provide
deeper insights into the particulars of the under-evaluation flooding methods. The results
show that, under certain conditions, m-probabilistic flooding outperforms probabilistic
flooding in terms of coverage, while requiring significantly fewer messages. Additionally, the
study revealed that the scoped probabilistic flooding achieves coverage comparable to that of
the probabilistic flooding while reducing the number of exchanged messages.
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1. INTRODUCTION

The Internet of Things (IoT) describes a network where everyday objects, known
as “smart devices,” are connected via the Internet. In most cases, these devices are
embedded with sensors, processors, and communication technologies, enabling them to
gather and share data. The IoT is revolutionizing various sectors, including healthcare,
transportation, manufacturing, and energy [1, 2], while encompassing a wide array of
devices such as smartphones, vehicles, home appliances, industrial equipment, and
even wearable technology. These devices are interconnected, facilitating communication
among themselves and with cloud-based systems. This interconnectivity not only allows
for the accumulation and analysis of data, providing novel insights and improved
efficiency, but also supports the remote automation and control of these devices.

Flooding, a technique for broadcasting messages to every node within a network, is
frequently utilized across a range of networking protocols and mechanisms to enable
efficient information dissemination. This method is particularly effective in networks
consisted of a high density of devices, facilitating rapid and effective information spread.
Flooding is integral to a variety of applications, including established routing protocols,
data collection, dissemination processes, and device discovery methods. In the realm of
the IoT, several mechanisms employ variations of flooding. These mechanisms include,
among others, the Constrained Application Protocol (CoAP) [3], Zigbee [4], the protocol
for low-power and lossy networks (RPL) [5], and Z-Wave [6]. Each of these applications
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leverages the flooding method to enhance network com-
munication and information exchange.

The core concept of flooding, known as blind flooding,
was introduced in [7]. In a network that utilizes blind
flooding, each node is responsible for broadcasting a
message to all its neighbors. These neighbors then relay
the message further to their respective neighbors. This
process continues, propagating the message throughout
the network until it either reaches its intended destination
or all nodes in the network have received it. While blind
flooding is widely used in various applications to ensure
reliable information dissemination and to achieve global
coverage, it can be resource-intensive. Specifically, it may
require a substantial number of packet transmissions to
cover the entire network. As a result, blind flooding is
susceptible to the broadcast storm problem as noted in [8].
This issue arises when an excessive number of broadcast
messages are sent simultaneously by network nodes,
leading to bandwidth overload, network congestion, and
potentially severe degradation in network performance,
sometimes even rendering the network inoperable.

To mitigate the broadcast storm problem, probabilistic flood-
ing has been proposed as an alternative. This approach
deviates from the comprehensive broadcast method of
blind flooding. In probabilistic flooding, a node does not
transmit a message to every neighboring node; instead,
it sends the message to a randomly chosen subset of
nodes, based on a predetermined forwarding probabil-
ity. The key benefit of this technique lies in its ability
to diminish redundant network traffic. By selectively
forwarding packets to only a portion of the network’s
nodes, it significantly reduces the generation and trans-
mission of duplicate packets. This, in turn, eases network
congestion and enhances overall network performance.
However, determining the ideal forwarding probabil-
ity for comprehensive network coverage is a complex
task that often necessitates extensive experimentation
for optimal results. Furthermore, probabilistic flooding
might not be universally applicable or effective across
all network types and traffic conditions, especially in
networks characterized by high dynamics or congestion
levels.

m-Probabilistic flooding, given in [9], is a probabilistic flood-
ing variation where each node forwards the information
message to m (randomly selected) neighbor nodes. It was
introduced as an alternative for studying the network
operations when there is a lack of information regarding
the required knowledge (i.e., node degree and largest
eigenvalue in [9]’s case). Interestingly, the authors there
demonstrated that m-probabilistic flooding could achieve
global coverage with a value of m equal to or greater than
4, even in the absence of this critical information.

The fourth considered flooding mechanism is a blend of
scoped flooding [10] and probabilistic flooding. Unlike

traditional flooding methods that aim for broad network
coverage, scoped flooding focuses on limiting the spread
of information to specific areas or “scopes” within a
network. This method is particularly effective in reducing
redundant data transmissions and mitigating network
congestion. To have a clearer comparison among the
various techniques, the “scoped” ability is added to
probabilistic flooding to create the new scoped probabilistic
flooding.

This study concentrates on assessing the performance of
the four distinct flooding variations given above: (i) blind
flooding; (ii) probabilistic flooding; (iii) m-probabilistic
flooding; and (iv) scoped probabilistic flooding, with
initial results featured in [11]. These variations are exam-
ined within two types of networks: random networks
based on the Burr Type XII distribution [12], and seven
real networks. The evaluation focuses on three metrics:
coverage, the number of messages, and a specific metric
∆. ∆, originally associated with probabilistic flooding in
[9], employs a binomial approximation and is redefined
in this study to assess m-probabilistic flooding, specifi-
cally its average forwarding probability. Furthermore,
an advanced version of the ∆metric for m-probabilistic
flooding is proposed, incorporating the consideration of
variable forwarding probability.

The evaluation indicated that although probabilistic
flooding typically outperforms other methods, there were
instances where m-probabilistic flooding achieved better
coverage with significantly fewer message exchanges.
Furthermore, the study found that the metric∆, redefined
in this paper for the m-probabilistic flooding approach,
exhibited behavior similar to the ∆ metric previously
established for probabilistic flooding in existing litera-
ture. Additionally, the introduced scoped probabilistic
flooding appeared to achieve comparable coverage to
probabilistic flooding but with a reduced number of
messages transmitted.

The rest of the paper is organized as follows. Section 2
presents the past related work. In Section 3, the system
model is presented along with the definition of ∆ that is
based on the binomial approximation for probabilistic
flooding and the definitions of the two versions of the
metric for the m-probabilistic flooding. The results from
the evaluation of the random networks are presented in
Section 4. Section 5 presents the collected results from
the real topologies. Finally, the conclusions are drawn in
Section 6.

2. PAST RELATED WORK

There are numerous studies that make use of a proba-
bilistic approach [13] to broadcast information instead
of blind flooding [7], in order to avoid the broadcast
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storm problem [8] and to decrease the overhead of the
dissemination. Additionally, probabilistic approaches
are used to reduce overhead that is generated by ma-
licious nodes [14]. The probabilistic approaches can
be categorized as approaches using fixed forwarding
probabilities [15] and approaches that use variable for-
warding probabilities depending on node properties [16,
17]. Other approaches [18, 19, 20] use fuzzy logic to
select the forwarding probability. Another dissemination
mechanism is that of scoped flooding [10, 21], where the
information message is transmitted to all nodes of the
selected region of the network.

Reina et al. [22] studied probabilistic broadcast schemes
for wireless ad hoc networks. More specifically, they pro-
vided a classification of probabilistic broadcast schemes
along with a thorough review on them. Additionally,
their evaluation metrics include a broadcast efficiency
group that considers the reachability of the schemes, the
redundancy which measures the overhead of the broad-
cast schemes, the time elapsed during the broadcast and
the energy consumption. Ruiz et al. [23] proposed a new
taxonomy of the broadcasting schemes. Additionally,
they provided a thorough review of the most noticeable
broadcasting protocols.

m-Probabilistic flooding was first introduced by Oikono-
mou et al. [9]. In this paper, the authors evaluated
m-probabilistic flooding on geometric random graphs
and on Erdős-Rényi networks. Additionally, the authors
proposed a spectral approach for selecting the forward-
ing probability of the probabilistic flooding along with
a metric ∆ that is based on the binomial approximation
and the results showed that the approach covers more
than 95% of the network nodes.

3. SYSTEM MODEL

This section presents: (i) definitions of the system model;
(ii) descriptions of the evaluated flooding methods; and
(iii) the definitions of the metric ∆ for all evaluated meth-
ods. More specifically, Subsection 3.1 presents general
definitions of the system model while Subsection 3.2
describes the evaluated flooding methods. Finally, the
definition of the metric ∆ which is based on binomial
approximation for all the evaluated methods is presented
in Subsection 3.3.

3.1 General definitions

Let each network topology of N nodes be represented by
an undirected graph G = (V(G),E(G)), where V(G) and
E(G) are the set of nodes and the set of links between
them, respectively. A node of the graph is represented
by an integer number i = 1, 2, ...,N. Let ni be the set

of neighboring nodes of node i. The node degree (i.e.,
the number of neighbor nodes) of node i is denoted by
di = |ni|. Let d̄, be the average node degree, given by
d̄ = 1

N
∑N

i=1 di. D denotes the diameter (i.e., the maximum
eccentricity) of a graph and D denotes the density of a
graph.

Let A denote the N × N adjacency matrix of a graph
G. If (A)i j is the element of row i and column j, then
(A)i j = 1, for (i, j) ∈ E(G) and (A)i j = 0, for (i, j) <
E(G). Since the graph in this paper is assumed to be
undirected, (A)i j = (A) ji applies, and the nodes cannot
be connected to themselves i.e., (i, i) < E(G), and (A)ii = 0.
Consequently,A is a real symmetric matrix, i.e.,A = A⊤

and let, λ1 ≥ λ2 ≥ · · · ≥ λN denote the eigenvalues ofA
in decreasing order.

3.2 The flooding methods

All evaluated methods are initiated by a network’s node,
to be called hereafter the initiator, which is the first node
that transmits the information message. When a node
receives the information message, it becomes “covered”,
while if it receives the information message more than
once, the information message is discarded. For analysis
purposes, it is assumed here that the information mes-
sages are transmitted and received in discrete time steps
t. The total number of steps that flooding needs to cover
all nodes of the network, or reaches a point that it cannot
cover any other nodes, is denoted by T.

3.2.1 Blind flooding

Under blind flooding, when a node receives the informa-
tion message for the first time, forwards the message to
all of its neighbors. The information message travels this
way until all nodes receive it or until there are no other
nodes able to forward it.

3.2.2 Probabilistic flooding

In the context of probabilistic flooding, upon receiving
an information message for the first time, a node alters its
behavior by transmitting the information selectively to its
neighboring nodes based on a predetermined forwarding
probability denoted as q.

Five different cases of q are explored here, encompassing
scenarios beyond the conventional blind flooding which
is actually the situation where q = 1. These cases include
specific values, q = 0.2, 0.5, 0.7 and a unique instance
represented by q = 4/λ1. The first three values of q
(i.e., 0.2, 0.5, 0.7) are straightforward and are employed
to evaluate their proximity to blind flooding outcomes.
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For the case of q = 4/λ1, where λ1 signifies the largest
eigenvalue calculated from the network’s adjacency ma-
trix, this specific value has been highlighted in existing
literature as the minimum forwarding probability for
achieving global coverage under specific conditions [9].

3.2.3 m-Probabilistic flooding

Unlike probabilistic flooding, where an information mes-
sage is forwarded to every neighbor under a specific
probability, in m-probabilistic flooding, upon initial re-
ception of the message, a node transmits it exclusively to
m randomly selected neighboring nodes with probability
one. If not, the message is disregarded. Three distinct
values of m are under consideration: 0.25d̄, 0.50d̄, 0.75d̄,
with d̄ denoting the average node degree. The second
value of m, i.e. 0.5d̄, is selected to be the same case as the
probabilistic flooding (q = 0.5), while the other two are
selected arbitrarily.

To assess m-probabilistic flooding in comparison to other
probabilistic methods based on q, p̄ is considered as the
average likelihood of a node being selected among the
neighbors of its neighbor (i.e., to receive the message). In
m-probabilistic flooding, all m selected neighbors receive
the message with certainty; thus, the average probability
can be expressed as shown in Eq. (1).

p̄ =
m
d̄

(1)

3.2.4 Scoped probabilistic flooding

Scoped probabilistic flooding has many similarities to
probabilistic flooding, the main differentiation lying into
the scoped probabilistic flooding limitation on how many
time steps (or hops) it will operate. Scoped probabilis-
tic flooding is evaluated under the same forwarding
probabilities q as probabilistic flooding while it is also
evaluated on different time step limits.

3.3 The metric

Before delving into the analysis of the metric ∆ that is
based on binomial approximation, certain definitions are
necessary. The collection of nodes covered at a specific
step t is denoted as Ct. The set of covered nodes up
to step t is represented by Ct and can be computed as
Ct = C0 ∪ C1 ∪ · · · ∪ Ct, with the understanding that
C0 ⊂ · · · ⊂ Ct−1 ⊂ Ct. Additionally, let C′t denote the set
of uncovered nodes until time step t, complementing the
integral of Ct.
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Figure 1 – The histogram of different values of c of the Burr Type XII
distribution.
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Figure 2 – The coverage of probabilistic flooding for different probabili-
ties q as a function of the shape constant c in 95 % confidence interval.
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Figure 3 – The coverage of m-probabilistic flooding for different values
of m as a function of the shape constant c in 95 % confidence interval.

The metric∆ that characterizes both probabilistic flooding
and scoped probabilistic flooding is defined by Eq. (2). It
involves summing the count of the number of uncovered
neighbors of the nodes that became covered at step t, then
multiplying this count by the forwarding probability q.
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Figure 4 – The coverage of scoped probabilistic flooding for different
values of q as a function of the shape constant c in 95% confidence
interval. Subfigure (a) depicts the results for 2 hops and subfigure (b)
presents the results for 3 hops.

This process occurs for all steps t ∈ T, and the result
is normalized by the summation of node degrees (Nd̄).
Thus, the metric ∆ can be defined as an approximation of
the probability that the flooding will continue normalized
by the summation of node degrees.

∆ =
1

Nd̄

T∑
t=0

∑
∀i∈C′t

|Ct ∩ ni| × q (2)

This study presents two versions of the metric∆ for the m-
probabilistic flooding. On the one hand, Eq. (3) expresses
the simple version of the metric for m-probabilistic flood-
ing. This expression is similar to the metric for probabilis-
tic flooding with the difference that the latter, instead of
multiplying by the forwarding probability q, it multiplies
by the average probability p̄ of a node to be selected. On
the other hand, Eq. (4) expresses the more sophisticated
version where it takes into consideration the different
nodes’ degrees. More specifically, the multiplication is
replaced by the summation of the probabilities of each
uncovered node to become covered p j at the next time
step, and this probability is given by:

p j =

1, if d j ≤ m,
m
d j
, otherwise

.

∆ =
1

Nd̄

T∑
t=0

∑
∀i∈C′t

|Ct ∩ ni| × p̄ (3)

∆ =
1

Nd̄

T∑
t=0

∑
∀i∈C′t

∑
∀ j∈ni∩Ct

p j (4)
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Figure 5 – The number of messages that are transmitted under the
probabilistic flooding for different forwarding probabilities q as a
function of the shape constant c in 95 % confidence interval.
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Figure 6 – The number of messages that are transmitted under the
m-probabilistic flooding for different values of m as a function of the
shape constant c in 95 % confidence interval.

4. RESULTS ON RANDOM NETWORKS

For the evaluation process, simulation scenarios have
been implemented in the Python programming language.
The networks are managed by the NetworkX Python
package [24] while the generation of the randomly gener-
ated numbers, and the computation of the largest eigen-
value takes place under the SciPy python package [25].

For studying the different flooding methods, multiple
networks have been generated from the Burr Type XII
distribution [12], which is continuous, and its probability
density function is given by xc−1

(1+xc)k+1 , where k and c are
shape constants. Fig. 1 presents the histograms of the
Burr Type XII distribution for some values of c. The
following procedure has been followed to generate the
random networks of the Burr Type XII distribution.

First, a sequence of randomly generated numbers is
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Figure 7 – The number of messages transmitted under scoped prob-
abilistic flooding for different values of q as a function of the shape
constant c in 95% confidence interval. Subfigure (a) depicts the results
for 2 hops and subfigure (b) presents the results for 3 hops.

produced following the distribution under 27 different
values of c, i.e., {1.0, 1.1, 1.2, . . . , 2.0, 2.5, 3.0, . . . , 10} and
k = 5 for all sequences. Then, each element of the
sequence is multiplied by 100 and then converted to an
integer. This is done in order to convert the continuous
sequence to a discrete one. Next, all elements of the
discrete sequence are incremented by one as a way to
ensure that all nodes have at least one neighbor (i.e.,
di > 0∀i ∈ V(G)). This sequence is then examined to find if
it is graphical or not. If the sequence is graphical then the
network is generated by a variation of the Havel-Hakimi
algorithm [26]. This variation guarantees the production
of a connected graph by picking the nodes with the lowest
degrees first, instead of the highest ones. This procedure
is repeated for each c under ten different iterations. Table 1
depicts the characteristics of some networks that are
generated by the aforementioned procedure for different
values of c.

Table 1 – The characteristics of some random networks.

c |E(G)| d̄ λ1 4/λ1 D D

1.0 130249 26.05 47.625 0.084 5 0.002605
2.0 218852 43.77 54.121 0.074 5 0.004377
2.5 253047 50.61 58.808 0.068 5 0.005061
4.5 333216 66.64 70.543 0.057 5 0.006665
6.5 376384 75.28 77.613 0.052 4 0.007528
8.5 401203 80.24 81.782 0.049 4 0.008025
10.0 413962 82.79 83.986 0.048 4 0.008280

For the evaluation, different values of the forwarding
probabilities, the number of nodes, and the number of
time steps are considered. For the probabilistic flooding,
five different values of the forwarding probabilities q are
selected, namely, q ∈ {0.2, 0.5, 0.7, 1.0, 4/λ1}, where λ1 is
the largest eigenvalue of the graph’s adjacency matrix.
The first three values of q are straightforward. When q =
1.0 the probabilistic flooding reduces to blind flooding,
where the nodes forward the information message to all
of its neighbors.

For m-probabilistic flooding, three different numbers of
nodes are selected for each network with respect to the
average node degree d̄, namely m ∈ {0.25d̄, 0.50d̄, 0.75d̄}.
Here, it is noteworthy that the case of m = 0.50d̄ is similar
to the case of q = 0.5 because the average probability of a
node to be informed in the m-probabilistic flooding is 0.5
from (1).

Scoped probabilistic flooding is evaluated under the same
values as probabilistic flooding due to their similarities.
As already mentioned, the only difference between the
two approaches is that scoped probabilistic flooding has
a limit on the time steps a message can be forwarded
(i.e., hops); thus it is evaluated along with two different
values of time steps.

The following sections present the evaluation results,
focusing on: (i) the coverage achieved by the flooding
methods, (ii) the number of messages sent until the
conclusion of each method, and (iii) the metric ∆. The
figures provided in the subsequent sections represent the
95% confidence interval of the outcomes derived from
ten repetitions for each iteration of the shape constant
c. In order to ensure a “fair” experimentation process,
all the algorithms start from the same initiator for each
network, and the initiator is arbitrarily selected.

4.1 Coverage

The mean coverage of the probabilistic flooding, for
different forwarding probabilities q, is depicted in Fig. 2.
As expected, blind flooding (i.e., q = 1) covers all nodes of
all graphs and iterations. In addition, the coverage of all
forwarding probabilities improves as the shape constant
c increases. For low values of the shape constant, all
forwarding probabilities struggle to achieve full coverage.
It is noteworthy, that the full coverage of the network is
achieved in reverse order of the forwarding probabilities.
More specifically, when the forwarding probability is set
to 0.7 the full coverage is achieved at c = 1.5. Similar
to the forwarding probability q = 0.7, the forwarding
probability q = 0.5 achieves full coverage at c = 2.5, while
the case of q = 0.2 covered all nodes at c = 4.0. In the case
where q = 4/λ1, it is shown that probabilistic flooding is
not able to cover all nodes but its performance improves
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as the shape constant increases, as expected [9].

Fig. 3 illustrates the average coverage attained by m-
probabilistic flooding across various m values. The cov-
erage in m-probabilistic flooding is directly related to the
number of selected neighbors. For instance, when c = 1.0,
with m = 0.25d̄, the average coverage achieved is 0.58,
while for m = 0.75d̄, the attained coverage rises to 0.75.
In general, the performance of m-probabilistic flooding
is lower with smaller values of the shape constant, grad-
ually improving as the shape constant increases, until it
eventually reaches 1.0 in the reverse order of m.

In Fig. 4, the coverage of scoped probabilistic flooding
is depicted for 2 and 3 time steps. As expected, for both
the considered time steps, the coverage is proportional
to the forwarding probability q for all different values
of the shape constant c. For the case of 2 time steps
(Fig. 4(a)), the scoped probabilistic flooding is not able
to cover all nodes of the network while the achieved
coverage of the blind scoped flooding (i.e., q = 1.0)
does not get over 0.3. It is also noted that the case of
q = 4/λ1 does not seem to improve as the shape constant
increases, with this behavior being similar to the case of
3 hops. This is attributed to the fact that this case needs
substantially more time (or hops) to cover the same
number of nodes compared to the case of q = 0.2, because
4/λ1 ≪ 0.2. The performance of scoped probabilistic
flooding is improved substantially for the case of 3 hops
as shown by Fig. 4(b). Scoped blind flooding seems to
approach the total coverage but does not achieve it. Note
that the performance of the case of q = 0.7 is very close to
the performance of scoped blind flooding for high values
of the shape constant c.

Both probabilistic methods (probabilistic flooding and
m-probabilistic flooding) demonstrate similar coverage
behaviors concerning the shape constant c. They both
reach full coverage (1.0) when c is significantly large,
with the exception of the case of q = 4/λ1. It is interesting
to focus on one case of each flooding method in order to
compare them. Specifically, the q = 0.5 case is selected for
probabilistic flooding and the m = 0.5d̄ case is selected
for m-probabilistic flooding. The latter case is selected
because it maintains an equivalent average forwarding
probability to the probabilistic flooding. For large values
of c (i.e., c > 2.5), both methods achieve full coverage.
However, when c is small, probabilistic flooding sig-
nificantly outperforms m-probabilistic flooding. As an
illustration, when c = 1.0, probabilistic flooding achieves
a coverage of 0.93, while m-probabilistic flooding only
reaches 0.7.

4.2 Number of messages

Fig. 5 illustrates the average number of messages trans-
mitted in probabilistic flooding for different values of
q. As expected, a higher forwarding probability corre-
sponds to an increased message count. Notably, for all
cases of q, the number of sent messages rises alongside the
shape constant, with the exception of the case q = 4/λ1.
This behavior can be attributed to the direct relationship
between the number of edges and the shape constant c. It
is important to highlight that in the case of q = 4/λ1, the
message count remains relatively constant, in contrast to
the results in Fig. 2. This observation is linked to the fact
that λ1 is proportional to the shape constant and to the
average degree d̄, as well.

Fig. 6 illustrates the average number of messages sent
by m-probabilistic flooding for various values of m. The
figure demonstrates a consistent pattern that, as m in-
creases, the number of messages sent by m-probabilistic
flooding also increases. This behavior is observed across
all values of m. Initially, for c = 1.0, the message count is
relatively low, ranging from 34, 438 to 113, 718 messages.
However, as c increases, the number of messages sent by
m-probabilistic flooding rises significantly, ranging from
200, 000 to 617, 707 messages.

Fig. 7 presents the average number of transmitted mes-
sages that scoped probabilistic flooding was able to trans-
mit. As expected, the number of messages is proportional
to the shape constant c and to the forwarding probabil-
ity. The former is attributed to the fact that the average
number of messages increases with the shape constant c.
The latter can be explained by the fact that, as q increases,
the more messages are transmitted by the method, thus
higher coverage is achieved, as shown by Fig. 4. The
great difference in the number of messages between the
case of 2 hops (Fig. 7(a)) and the case of 3 hops (Fig. 7(b))
is attributed to the fact that the generated networks are
of relatively small diameter (i.e., the networks of c = 1.0
have a diameter of 5 hops) and the later case is easier to
reach all nodes of the network. This is also shown by the
fact that, for the case of 3 hops, scoped blind flooding
achieved total coverage for large values of c, while the
case of 2 hops achieved only 0.28 coverage.

Revisiting the same scenarios for the comparative analy-
sis of probabilistic flooding and m-probabilistic flooding
proves intriguing. As anticipated, both flooding methods
exhibit a nearly identical average message count across
all values of c. It is noteworthy here that scoped prob-
abilistic flooding achieves an outstanding performance
with a significant lower number of transmitted messages,
compared to the other considered flooding methods.
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Figure 9 – The metric ∆ in along with the achieved coverage (subfigure
(a)) and with the number of transmitted messages (subfigure (b)).

4.3 The binomial approximation

Fig. 8 presents the average value of ∆ for various for-
warding probabilities q in relation to the shape constant
c. Fig. 9 illustrates the behavior of the metric ∆ along
with the achieved coverage and the number of messages.
Across all cases of forwarding probabilities, there is a
consistent decrease in ∆ as c increases. Furthermore, the
results illustrate that ∆ is directly proportional to the
forwarding probability q and inversely proportional to
the coverage and the number of messages.

The simple version of the metric ∆ of m-probabilistic
flooding is presented in Fig. 10(a) for different values of
m as a function of the shape constant c. Similar to the
behavior observed in probabilistic flooding, this figure
reveals that, increasing m, results in a higher metric
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Figure 10 – The metric∆ for m-probabilistic flooding for different values
of m as a function of the shape constant c in 95 % confidence interval.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 2 4 6 8 10

∆

c

q = 4/λ1
q = 0.2
q = 0.5
q = 0.7
q = 1.0

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10

∆

c

q = 4/λ1
q = 0.2
q = 0.5
q = 0.7
q = 1.0

(b)

Figure 11 – The metric ∆ for scoped probabilistic flooding for different
values of q as a function of the shape constant c in 95% confidence
interval. Subfigure (a) depicts the results for 2 hops and subfigure (b)
presents the results for 3 hops.

∆. Additionally, for all m scenarios, ∆ decreases as the
shape constant c increases. It is interesting that, when
considering the same cases of forwarding probabilities
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(i.e., q = 0.5 and m = 0.5d̄), both metrics yield similar ∆
values on average relative to the shape constant c.

Fig. 10(b) presents the sophisticated version of the metric
∆ for different values of m as a function of the shape
constant c. Similar to the simple version of the metric
∆, the sophisticated version is proportional to m. In the
case of 0.25d̄ there is an increase for small values of c, i.e.,
c < 2. For the other values of the shape constant c of the
case of 0.25d̄ the sophisticated version of the metric ∆
stays relatively stable.

The other two cases have different behaviors. More
specifically, the metric ∆ for both the other cases (0.50d̄
and 0.75d̄) initially exhibits an increase as the values of c
remain small. This trend is then followed by a decrease.
It is reasonable here to take into consideration the degree
histograms of the key networks, i.e., c ∈ {1.0, 2.5, 6.5}
as depicted in Fig. 12(a), 12(b) and 12(c), respectively.
The vertical orange line of each figure depicts the mean
degree of each network. It is observed that for small
values of c < 2.5 and as increases, there are more and
more nodes that their degree is smaller than the selected
m, resulting into p j = 1.0. At c = 2.5, the metric ∆ reaches
the maximum value for the case of m = 0.75d̄, and next,
the metric ∆ decreases until it stabilizes after c = 6.5. This
behavior is also observed for the case of m = 0.50d̄, where
the maximum value of the metric ∆ is detected when
c = 3.5 instead of 2.5 of the case of m = 0.75d̄ and there
is not any visible point that the metric ∆ stabilizes for
m = 0.50d̄.
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Figure 12 – The degree histograms of randomly generated networks
that follow the Burr type XII distribution for different values of c. The
vertical orange lines depict the mean degree d̄.

Fig. 11 presents the metric ∆ for scoped probabilistic
flooding as a function of shape constant c and for different
values of time steps. For the case of 2 hops (Fig. 11(a)),
the metric ∆ is proportional to the forwarding probability
q and to the shape constant c for the most cases, except
the cases of q = 4/λ1 and q = 0.2. This behavior is
attributed to the fact the method was not able to cover

enough nodes for each value of the shape constant to
be a notable increase in the metric ∆. For the case of 3
hops (Fig. 11(b)), the behavior of the metric ∆ for scoped
probabilistic flooding, for the three largest values of
the forwarding probability, is similar to the behavior of
probabilistic flooding. For the case of q = 0.2, there is a
notable increase in the rate of increment but it does not
follow the behavior of the metric ∆ of the probabilistic
flooding; a similar behavior follows the case of q = 4/λ1.

5. RESULTS ON REAL NETWORKS

In order to further evaluate the probabilistic methods,
data regarding seven real networks are considered. More
specifically, four of them have been obtained by [27],
namely routers-rf, WHOIS, pgp and cegb2802. Addition-
ally, facebook originates from [28] and the other two net-
works, namely ca-grqc and ca-HepPh originate from [29].
For all considered real networks, the largest connected
component is selected as the network. Table 2 depicts
the final seven connected networks with their character-
istics/attributes.
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Figure 13 – The degree histograms of the real networks. The vertical
orange lines depict the mean degree d̄.
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Table 2 – The characteristics of the real networks

N |E(G)| d̄ λ1 4/λ1 D D

routers-rf 2,113 6,632 6.280 27.671 0.145 12 0.0029
WHOIS 7,476 56,943 15.230 150.859 0.027 8 0.0020
pgp 10,680 24,316 4.550 42.435 0.094 24 0.0004
facebook 4,039 88,234 43.690 162.374 0.025 8 0.0108
cegb2802 2,694 140,028 103.960 116.724 0.034 26 0.0386
ca-grqc 4,158 13,428 6.460 45.617 0.088 17 0.0018
ca-HepPh 11,204 117,649 21.000 244.939 0.016 13 0.0015
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Figure 14 – The mean coverage of probabilistic flooding for five different
networks with respect to the forwarding probability q.

The experimentation that took place for these topologies
is similar to the previous one. The forwarding prob-
abilities q and m are assigned the same values as the
evaluation on random networks. The time step limits of
scoped probabilistic flooding are selected with respect
to each network’s diameter. The time step limits are
selected in this manner for the algorithms to be able to
reach the same portion of each network. Each experiment
is repeated 100 times, with a different initiator for each
iteration but the same for all methods, and the results are
averaged.

5.1 Coverage

Fig. 14 illustrates how the coverage of probabilistic flood-
ing varies concerning the parameter q. Across all net-
works, higher forwarding probabilities consistently lead
to improved coverage. Notably, for q = 4/λ1, the cover-
age achieved by probabilistic flooding on the cegb2802
network far surpasses that of the other four networks,
each registering coverage levels below 0.1. Additionally,
the probabilistic flooding achieves total coverage for the
other forwarding probabilities. This discrepancy can be
attributed to the cegb2802 network’s D and the proximity
of λ1 to d̄. At q = 0.2, while probabilistic flooding exhibits
better coverage across all topologies, the most striking
enhancement occurs within the facebook network, where
coverage improves from 0.04 (at q = 4/λ1) to 0.7. More-
over, probabilistic flooding achieves significant coverage
in the facebook network for all q but does not reach total
coverage until the forwarding probability goes to 1.0. In

general, the coverage of probabilistic flooding seems to
be proportional to the network’s D.

Fig. 15 showcases the mean coverage achieved by m-
probabilistic flooding as a function of m. Notably, the
coverage remains consistently stable for both the facebook
and cegb2802 networks across all values of m. How-
ever, a noticeable improvement in coverage is observable
across other networks as the value of m increases. It’s
worth highlighting a connection between the outcomes
derived from the Burr distribution and the results ob-
served in the pgp network. Specifically, the probabilistic
flooding demonstrates superior coverage compared to m-
probabilistic flooding, notably in the case where q = 0.5
for probabilistic flooding and m = 0.5d̄ for m-probabilistic
flooding.
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Figure 15 – The mean coverage of m-probabilistic flooding for five real
networks with respect to different values of m.

Fig. 16 presents the mean coverage of scoped probabilistic
flooding for the real networks with respect to the forward-
ing probability and the time step limits. It is observed
that the coverage for all cases of the time step limits is
proportional to the forwarding probability. Additionally,
the coverage is proportional to the time step limits. This
is attributed to the fact that the methods are restricted
to a portion of the network that can be reached. It is
noteworthy here that the achieved coverage of scoped
probabilistic flooding on the cegb2802 network, for most
time step limits and most forwarding probabilities out-
performs the rest. As expected, scoped probabilistic
flooding reduces to the probabilistic flooding for large
number of time step limits. This is shown in Fig. 16(d)
which is mostly identical to the corresponding figure of
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the probabilistic flooding (Fig. 14).
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Figure 16 – The mean coverage of scoped probabilistic flooding for
the real networks with respect to the forwarding probability q. The
labels of subfigures present the time step limits of scoped probabilistic
flooding.

5.2 Number of messages

The mean number of messages sent from probabilistic
flooding is presented in Fig. 17. As expected, the number
of sent messages rises in tandem with the increment
of the forwarding probability. It is noteworthy here to
consider the achieved coverage from Fig. 14 and the case
of q = 4/λ1 where the probabilistic flooding achieves 0.9
coverage in the cegb2802 network with a small number
of messages.

Fig. 18 presents the average count of messages transmit-
ted using m-probabilistic flooding. In both the facebook
and cegb2802 networks, in order for probabilistic flood-
ing to achieve an equivalent coverage as m-probabilistic
flooding with m = 0.25d̄, the forwarding probability
needs to be set at 0.5. Moreover, the number of messages
transmitted by probabilistic flooding is twice the number
of messages that is sent by m-probabilistic flooding.
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Figure 17 – The mean number of messages transmitted under probabilis-
tic flooding for the real networks on different forwarding probabilities
q.

Fig. 19 illustrates the mean number of messages transmit-
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Figure 18 – The mean number of messages transmitted under m-
probabilistic flooding for real networks on different values of m.

ted by scoped probabilistic flooding with respect to the
forwarding probability and to the time step limits. The
number of messages is proportional to the forwarding
probability and to the time step limit. Additionally, it
is also proportional to |E(G)|. It is noteworthy here that
the coverage of scoped probabilistic flooding when the
time step limit T = ⌈0.75D⌉ is similar to the coverage of
probabilistic flooding (Fig. 14) but this is achieved with
slightly fewer messages, as shown by the Fig. 17.

5.3 The binomial approximation

Fig. 20 illustrates the mean ∆ of probabilistic flooding
for real networks across varying forwarding probabili-
ties q. The results indicate that there is a proportional
relationship between the metric ∆ and the forwarding
probability q in almost every considered network, ex-
cept for the facebook network. Specifically, in the case of
q = 1.0, the metric ∆ experiences a decrease instead of
the expected increase, in contrast to the outcomes ob-
served in the Burr distribution results. This is attributed
to the fact that the facebook network is more dense than
the evaluated random networks, thus, the probabilistic
flooding needs fewer steps to cover the network. In
addition, although the coverage of probabilistic flooding
increases by 0.15 − 0.18, the ∆ doubles for the facebook
network when q ∈ {0.2, 0.5}. Moreover, the metric ∆ for
the pgp network experiences a substantial increase for
the case of q = 1.0. This is attributed to the fact that this
network is loosely connected, its density D is very small
as illustrated in Table 2, and that the case of q = 1.0 is the
only case that total coverage is achieved for this network.

The simple version of the metric ∆ for m-probabilistic
flooding is presented in Fig. 21(a) and Fig. 21(b) presents
the sophisticated version of the metric. As expected, both
versions of the metric ∆ of m-probabilistic flooding are
proportional to m. Despite the fact that, the coverage of
m-probabilistic flooding (Fig. 15) for the facebook network
and for the cegb2802 network stays the same, the metric
∆ increases in both versions with the increasing values
of m.
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Figure 19 – The mean number of messages transmitted under scoped probabilistic flooding for real networks with respect to the forwarding
probability q. The labels of subfigures present the time step limits of scoped probabilistic flooding.

Fig. 22 presents the metric∆ for scoped probabilistic flood-
ing with respect to the forwarding probability and the
time step limits for real network topologies. As expected,
from the results obtained for the random topologies, the
metric ∆ for scoped probabilistic flooding is proportional
to the time step limits. Additionally, it is observed that
the metric ∆ for scoped probabilistic flooding follows
similar behavior to the metric ∆ of probabilistic flooding
as the time step limits increase.
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Figure 20 – The mean ∆ for the probabilistic flooding for real networks
as a function of the different forwarding probabilities q.

6. CONCLUSIONS

This paper evaluates the performance of four different
flooding methods, namely: (i) blind flooding; (ii) prob-
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Figure 21 – The metric ∆ for the m-probabilistic flooding for the real
networks as a function of the different values of m.

abilistic flooding; (iii) m-probabilistic flooding; and (iv)
scoped probabilistic flooding, and the latter is introduced
in this paper. Scoped probabilistic flooding is basically
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Figure 22 – The metric ∆ of the scoped probabilistic flooding for seven real networks with respect to the forwarding probability q. The labels of
subfigures present the time step limits of the scoped probabilistic flooding.

probabilistic flooding with restriction on the number of
hops that the message will be transmitted. The flooding
methods are evaluated on three metrics: (i) coverage;
(ii) number of transmitted messages; and (iii) the metric
∆ which is based on binomial approximation. Metric
∆ approximates the probability that the flooding will
continue normalized by the summation of node degrees.
The assessment is carried out on networks structured
according to the Burr Type XII distribution for node de-
gree, as well as on real network topologies. The paper
also introduces a modified version of the ∆metric for m-
probabilistic flooding, displaying similar characteristics
to its probabilistic flooding counterpart. This extended ∆
metric, specific to m-probabilistic flooding, incorporates
individual node degrees to calculate the likelihood of a
node becoming covered.

The findings indicate that m-probabilistic flooding, in
certain scenarios, outperformed probabilistic flooding in
terms of coverage, while requiring significantly fewer
message exchanges. Probabilistic flooding, however, gen-
erally exhibited superior performance. In addition, the
study revealed that scoped probabilistic flooding attains
coverage comparable to that of probabilistic flooding but
with a reduced number of messages sent. Finally, the
metric ∆ has similar behavior for random, as well as for
real networks, with some differences that are attributed
to the networks’ density.
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