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Abstract –The Great Barrier Reef (GBR) of Australia is the largest size of coral reef system on the planet stretching 
over 2300 kilometers. Coral reefs are experiencing a range of stresses including climate change, which has 
resulted in episodes of coral bleaching and ocean acidification where increased levels of carbon dioxide from the 
burning of fossil fuels are reducing the calcification mechanism of corals. In this article, we present a successful 
application of big data analytics with Internet of Things (IoT)/wireless sensor networks (WSNs) technology to 
monitor complex marine environments of the GBR. The paper presents a two-tiered IoT/WSN network 
architecture used to monitor the GBR and the role of artificial intelligence (AI) algorithms with big data analytics 
to detect events of interest. The case study presents the deployment of a WSN at Heron Island in the southern GBR 
in 2009. It is shown that we are able to detect Cyclone Hamish patterns as an anomaly using the sensor time series 
of temperature, pressure and humidity data. The article also gives a perspective of AI algorithms from the 
viewpoint to monitor, manage and understand complex marine ecosystems. The knowledge obtained from the 
large-scale implementation of IoT with big data analytics will continue to act as a feedback mechanism for 
managing a complex system of systems (SoS) in our marine ecosystem. 
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1. INTRODUCTION 
 
The Great Barrier Reef (GBR) of Australia consists 
of 3200 coral reefs extended over 280 000 square km 
[1]. The GBR has about 900 islands covering 2600 
km that include mangrove forests, coastal wetlands 
and estuaries, deep shoals, seagrass meadows, 
continental shelf margin and slope [2]. Both 
economically and ecologically, Australia 
significantly gains benefits from this geographically-
important marine ecosystem. However, the burning 
of fossil fuels releases carbon dioxide (CO2), which 
in turn is absorbed by oceans, resulting in 
acidification. This process inhibits corals from 
secreting calcium carbonate exoskeletons [3], 
reducing (calcification) the reef-building mechanism 
and associated organisms. Rise in global temperature 
is also putting more stress on the marine species. 
Coral bleaching is the process where the relationship 
between the coral and its symbiotic algae breaks 
down during rapid changes in sea-water temperature 
(hot or cold), making corals vulnerable [4]. 

Anthropogenic activities are attributed to increased 
stresses on coral reefs as the prominent reason for 
coral bleaching. Episodes of bleaching at regional 
scales have been occurring for many decades (prior 
to the 1980s), but due to a lack of reporting, 
documentation and understanding, it is difficult to 
measure the extent of the bleaching effect prior to the 
1980s [5]. In 1911, the first thermal bleaching 
incident was reported at Bird Key Reef in the Florida 
Keys, where large numbers of corals were injured 
during abnormally hot and calm weather conditions, 
killing many fish, Diadema and molluscs [6]. In 
1929, a similar bleaching incident was reported at 
Low Isles on the GBR, killing many corals [7]. The 
reports of bleaching incidents have grown 
significantly since 1971, and this has been linked to 
climate change [8]. 
The Australian Institute of Marine Science (AIMS) 
collects environmental data to analyze and address 
these challenging questions. It is understood that the 
catastrophic thermal stress might seriously impact 
the GBR over the next century [8]. As a result, it is 
imperative that we understand the temperature 
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patterns and ecological response to mitigate the 
human-activity-induced stresses [5]. Given the lack 
of evidence, complex environmental simulation 
models with detailed characterization are more likely 
to lead to more uncertainty [9]. The only way to 
approach this problem is to collect information on 
the tropical marine environment, assisting to develop 
more robust models with evidence. However, the 
challenge here is to collect data at the appropriate 
spatial and temporal scales [10]. The sensitive 
environmental dynamics on the GBR necessitates 
real-time monitoring as a way of managing and 
understanding anthropogenic stresses effectively. 
Internet of Things (IoT)/wireless sensor networks 
(WSNs) enable real-time, remote sensing at fine 
spatial and temporal scales of large areas (such as the 
GBR) [11]. WSNs consist of a network of sensor 
nodes deployed at multiple, statistically important 
locations. Sensor nodes are equipped with relevant 
sensing elements, data processor units, transceiver 
with antennas, power systems and protective 
housings [12]. The network of sensor nodes is 
formed by directing the nodes to communicate with 
specific nodes in the network. Sensor networks 
promise to allow data collection at a higher sampling 
frequency (including finer spatial and temporal 
scales) while able to keep the cost to a minimum, and 
provide real-time access to a range of parameters 
[13]. In addition, visualization of sensor data on a 
web portal in real time with modeling and simulation 
results, have clearly changed the approaches to 
monitoring the GBR. 
Artificial intelligence (AI) plays a critical role in 
analyzing real-time streaming sensor data from such 
large-scale environments. Given the volume of data 
received from the sensor nodes, the data needs to be 
modeled to make a meaningful sense of the data. To 
extract useful information from the marine system, 
WSNs/IoT need appropriate network architecture, 
protocols, communication with AI-based analytics 
helping to inform end users [14]. Designing such 
networks requires categorizing sensor networks into 
different communication models, data delivery 
models, and network dynamic models. However, 
technical challenges in implementing such networks 
include network discovery, control and routing, 
collaborative signal and information processing, 
tasking and querying, and security. The role of AI 
and data analytics, is vital in such situations. AI 

incorporates several elements of learning, 
adaptation, evolution and fuzzy logic to intelligently 
analyze data and create intelligent machines to 
extract and represent information in a meaningful 
way [15]. 
In this article, we present our previous experiences 
in implementing real-time WSN/IoT for monitoring 
the GBR. The article focuses on implementation 
challenges and how AI was used to detect interesting 
events from the deployed WSN. Clause 2 describes 
the measures taken to monitor and understand GBR. 
It also provides the challenges faced in deploying 
WSN on the GBR. Clause 3 provides the proposed 
network architecture used in monitoring the GBR 
using WSN. Clause 4 provides a case study of 
detecting Cyclone Hamish (that passed through the 
GBR during March 2009) using a suite of AI 
algorithms and some of the open challenges in 
system of systems (SoS) integration with AI. The 
conclusion of this article is provided in clause 5. 
 
2. THE GREAT BARRIER REEF 
MONITORING 
 
The GBR is the largest living structure that stretches 
over 2300 kilometers. It includes 600 types of coral, 
over 100 jellyfish species, more than 3000 varieties 
of molluscs, 1625 kinds of fish, 133 types of sharks 
and rays, and over 30 different types of whales and 
dolphins. It is also unique as the GBR extends 14 
degrees of latitude, including 600 continental islands 
and about 150 inland mangrove islands [16]. 
The Great Barrier Reef Ocean Observing System 
(GBROOS) Project, which is part of the Australian 
Integrated Marine Observing System (IMOS), has 
been supported by a special National Collaborative 
Research Infrastructure Strategy (NCRIS) grant 
from the Australian Government. GBROOS is an 
observation system that looks to record the impact of 
the Coral Sea on the GBR. Specifically, GBROOS 
aims to provide the observational data to understand 
the long-term change and impact on the GBR. The 
GBROOS has five components of monitoring [17]: 
 
1) nine long-term moorings (temperature and 

salinity profiles, waves and currents) 
2) two reference moorings (basic 

oceanographic parameters) 
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3) IoT/WSNs on seven islands (reefs) 
(temperature profiles and weather data) 

4) remote sensing using satellites (surface 
temperature and ocean color data) 

5) underway sampling (temperature, salinity, 
chlorophyll). 

WSN/IoT provides real-time sensing of spatially and 
temporally dense measurements of a range of 
bio-physical parameters [18]. Without WSN/IoT 
technology, it is difficult to get such spatially and 
temporally dense record of bio-physical events, 
which is what makes the WSN deployment so 
important. In addition, WSN/IoT significantly 
improves the access to real-time data covering long 
time and large-scale geographical areas. WSN/IoT 
find its use highly important in benthic zones [19], 
as well as to understand the effect of heat and light 
on coral bleaching [20]. Furthermore, WSN/IoT data 
allows us to understand complex ocean processes 
impacting reefs, and providing detailed 
environmental information up to the coral bommie 
(outcrop of coral reef) level [20]. The WSN/IoT data 
from Lizard Island, Orpheus Island, Rib Reef, 
Myrmidon Reef, Davies Reef, Heron Island and One 
Tree Island, coupled with four other complementary 
sensing components (as listed above), provide a 
dense environmental information source. The real-
time data from the integrated system enables the 
detection of interesting events and for managers to 
take immediate action. 
Figure 1 shows the IoT/WSN deployment sites at 
seven locations on the GBR. The harsh marine 
environments of the GBR poses several challenges 
in implementing large-scale IoT/WSN and 
observing the data in real time. The sensor nodes are 
aware of their spatial locations, providing three 
dimensional data [spatial position (x,y) and depth 
(z)] [10]. In the event of unsuccessful transmission 
by a sensor node, a node could be reconfigured to 
transmit data to other nodes. The data could then be 
rerouted to the base station without loss. The 
implementation challenges include network design, 
sensor node design with protective casings, floating 
buoys to house sensor nodes, reliable moorings that 
can withstand tides, water currents and heavy storms. 
There is always a chance of sea creatures 
dismantling the setup either due to curiosity or 
accidently. The following subclause highlights some 
of the challenges: 

 
Fig. 1. Map of seven IoT/WSN deployments sites 
on the GBR. Monitoring of Rib Reef, Myrmidon 
Reef and Davies Reef have been decommissioned 
in 2014. Image source: Map Data © 2017 Google 

Images 
 
2.1. Sensor network and sensing elements 
 
Sensor nodes are resource constrained i.e., they have 
limited processing power, battery, memory to store 
and process data. Therefore, the design of sensor 
networks is application-specific. The architecture 
design of sensor networks is aimed at maximizing 
the lifetime of the network at the cost of expending 
limited resources. These constraints also influence 
the data sampling times and spatial distribution of 
sensor nodes. Marine environment is relatively 
aggressive compared with other environments, 
requiring specialized sensing elements for 
continuous monitoring [21]. Marine environment 
monitoring requires the integration of sensor nodes, 
such as WSN based iMote2 [22] and IoT-enabled 
Waspmote [23]. The sensors also need to be 
calibrated prior to deployment and corrected for 
drifts in readings from true value over time, as a 
result of gradually degrading calibration. 
 

Lizard Island 

Rib Reef Myrmidon Reef 

Orpheus Island Davies Reef 

Heron Island 

One Tree 
Island 
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2.2. Securing buoys and casing 
 
Sensor nodes need floating buoys to hold the 
electronics in a secure casing, protection from 
surrounding environments to avoid water, humidity 
build-up or condensation. Experience from previous 
deployments have indicated equipment will foul and 
corrode [24]. Therefore, utmost care must be taken 
when deploying sensor nodes in marine 
environments, given there is a high chance of contact 
with sea water. The floating buoys are the preferred 
protective casings for marine environments. 
However, the buoys introduce several challenges. 
First, the buoys consisting of sensor nodes need 
moorings fixed usually to the sea floor using cables. 
Second, depending on the type of sensing element 
we may also have to run a long cable with a sensing 
element, causing deterioration of the measured 
signal from the sensing element. Third, the buoys 
drift due to ocean currents and tides, causing radial 
(vertical) and tangential (horizontal) displacements 
of sensors nodes. Therefore, these displacements are 
likely to cause issues with wireless data transmission 
as the nodes move in a manner that they are unable 
to be in the communication range of the deployed 
sensor network. 
 
2.3. Communication and scheduling constraints 
 
Communication in a sensor network can be 
categorized into two kinds: local coordination and 
sensor-base communication [25]. Local coordination 
involves aggregating data among a group of nodes. 
The sensor-base communication is concerned with 
communicating the aggregated data to a base station. 
Both these types of data aggregation could utilize 
single-hop or multi-hop communication [26]. The 
data could be logged to a data logger, or collected 
manually using regular site visits, or using a 
microwave communication link (such as, the setup at 
Davies Reef) [27]. Radiocommunication draws most 
of the battery power. Hence, scheduling of sleep and 
wake-up cycles to sense environment, store data, and 
transmit data are critical to prolong the operational 
time of the network. 
 
2.4. Scalable networking architecture 
 
Marine environments need sensor networks that 
have flexible architecture to cover spatially small 
(few meters) as well as large (few kilometer) areas. 

Therefore, the sensor network architectures need to 
be scalable. Homogenous sensor networks consist of 
sensor nodes of the same processing power, radio 
range, data storage capacity, and networking 
abilities. These attributes of a homogenous network 
limit the topology of the sensor network to be flat 
i.e., it is not scalable in the event of dynamic 
rerouting or reconfiguration of network nodes. On 
the other hand, heterogeneous network includes 
sensor nodes having varied processing, 
communication, and storage abilities. These 
attractive features of heterogeneous sensor nodes 
provide scalable networking solutions through 
hierarchical architectures. Tenet [28], Tsar [29], 
SensEye [30], Asap [31], and Citric [32] are some of 
the examples of heterogeneous networks. 
 
2.5. Detecting interesting events using AI 
 
The network topology of IoT/WSN can be a star, 
mesh, tree or a combination of all [33]. The way that 
data moves across the network from one location to 
another depends on the topology. Thus, event 
detection can be local or global relative to the 
network. Local events are specific to the sensor 
nodes, whereas global events require the sensor data 
to be gathered at a centralized location. Local event 
detection requires processing power at the sensor 
nodes. Often, the computational power, memory and 
resources are limited in individual nodes. Therefore, 
simple event detections locally are often relatively 
easy and will be based on one-dimensional sensor 
data. For example, detecting changes in temperature 
level above a certain threshold is an example of a 
local event. On the other hand, global event detection 
involves high computational power, memory, 
sophisticated AI algorithms and network resources. 
Global events also consider multidimensional sensor 
data from multiple sensors. For example, detecting 
an island-wide temperature change is an example of 
a global event. AI algorithms face challenges due to 
error in data, data loss, non-generative data models, 
temporally and spatially incomplete records of 
physical phenomenon and certain marine artefacts 
affecting the sensor data. The challenge in IoT/WSN 
to detect events is to identify anomalous events in a 
resource-constrained setup. 
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3. CLOUD-CENTRIC NETWORK 
ARCHITECTURE FOR REAL-TIME 
MONITORING 
 

 
 

Fig. 2. Proposed IoT/WSN architecture for real-
time monitoring, managing and understanding of 

environment 
 
Figure 2 shows the proposed cloud-centric network 
architecture for real-time sensing, monitoring and 
decision-making. The data framework in Fig. 2 
illustrates how data is converted when transferring 
from lower layers of the network architecture to 
layers above. The data from the end-user 
applications are managed through a cloud platform. 
The platform contains computing hardware and 
software, data storage capacity and AI analytics to 
service end users on a real-time basis. 
 
3.1. Networking framework 
The networking framework shows the networking 
protocols from physical layer up to the application 
layer. The layers are conceptually similar to the 
Open Systems Interconnection (OSI) model. The 
layers ensure that the control is passed from the layer 
below to the layer above. The physical layer allows 
physical transmission of data bits, whereas the data 
link layer allows transfer of data from one sensor 
node to another. The network layer determines the 
path on the network to the correct physical node by 
managing Internet Protocol (IP) addresses. The 
transport layer manages end-to-end connections and 
reliability of network. This is achieved by 
transferring data across network connections. 
Transfer Control Protocol (TCP) is an example of a 
transfer layer protocol. 
Figure 2 also shows that the data link layer, network 
layer and transport layers together are responsible for 
controlling the quality of service (QoS) demands 
requested by the users as well as for prioritizing data 
for real-time applications, such as video [34]. The 
session layer manages different types of 
communications between hosts. This operation 

includes the opening and closing of sessions. The 
presentation layer manages contexts between 
applications by handling format conversions, 
encryption/decryption, independent of application –
web content is an example. The application layer is 
the topmost layer and is used by the end users. It 
provides services to end-user applications through 
appropriate networking protocols, such as Hypertext 
Transfer Protocol (HTTP) and Hypertext Transfer 
Protocol Secure (HTTPS). Web browser, is an 
example of application layer that uses HTTP or 
HTTPS networking protocol for a wide variety of 
services. 
 
3.2. Data framework 
 
The data framework provides a model of the data 
flow from physical sensing to data transmission 
among sensor nodes, routing through different 
networks, delivery with appropriate encapsulations, 
interpretation and visualization based on cloud 
computing and analytics. Sensors attached to the 
nodes measure physical phenomena and processing 
boards are programmed to sample at specific 
sampling rates. Sensor nodes are spatially distributed 
based on the project plan, cost, application and 
scientific objectives. The data from the sensors are 
stored temporarily on board the nodes, before they 
are transmitted to gateway nodes. The data link layer 
handles data transmission by sensing the physical 
medium and channel availability. Once the data is 
transferred from nodes to gateways, the data will be 
directed to high-level nodes, such as the cloud 
servers. Gateways are programmed to direct the data 
from sensor nodes to cloud databases through IP 
addresses. The network layer manages the IP 
addresses and data routing. The delivery of data to a 
particular database is ensured by the transport layer. 
Cloud servers manage the storage of received data 
from sensor nodes and also have high computation 
compared to sensor nodes. The data is made 
available to end users through applications from the 
cloud servers. Servers also manage application 
sessions among different hosts, as well as allow 
multiple sessions for the same application from 
multiple users.  
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Fig. 3. IoT/WSN deployed at Heron Island of the 
Great Barrier Reef. Figure shows sensor nodes 

networked to communicate with buoys, which in 
turn communicate with poles. Finally, the data from 
the poles are transmitted to a base station. The base 

station transmits the data to the mainland that is 
75 km away 

 
4. CASE STUDY: DETECTING CYCLONE 
HAMISH ON HERON ISLAND OF GBR 
USING AI 
 
In this clause, we provide a case study from the 
IoT/WSN deployed on Heron Island for real-time 
monitoring of the GBR and in particular the passage 
of Tropical Cyclone Hamish in 2009. The Australian 
Federal Government and Queensland State 
Government provided funding for the Australian 
Integrated Marine Observing System (IMOS) [20], 
which included five components to observe ocean 
parameters with the IoT/WSN being one of them. By 
mid-2008 the IoT/WSN had been installed at Heron 
Island with the other sites completed by 2010. 
Figure 3 shows the deployment of heterogeneous 
sensor nodes with hierarchical network architecture. 
The network consists of 5 buoys and 6 poles in the 
lagoon area of the GBR, with a spatial resolution of 
2 km. The first tier (top level) consists of poles, 
followed by floating buoys (as second tier). Sensor 
nodes are connected to buoys via appropriate 
cabling. Further, sensor nodes are equipped with 
temperature probes that measure sea temperatures 
below the surface. For this case study, we have 
considered one month of data (collected from 
21 February 2009 to 22 March 2009, 9:00am to 
3:00pm with 10 minutes sampling frequency) [15, 
21, 35]. 
 
4.1. WSN network architecture 
 
Figure 4 shows the network architecture of the 
deployed IoT/WSN on Heron Island. The buoys use 

single-hop communication to send data to poles, and 
poles use multi-hop communication to send data to 
the base station. One of the poles is housed with a 
weather station, measuring air temperature, pressure, 
humidity, rain, wind speed and direction. The data 
from this weather station is collected every 10 
minutes. The data received by the main base station 
is then transmitted to a database that is 75 km away 
on the Australian mainland using the Telstra 3G 
network. 
 
4.2. Cyclone Hamish detection using AI 
 
Event detection in the case of Heron Island involved 
detecting anomalous patterns from the sensor data. 
The key challenge here is to identify anomalous 
events in the resource-constrained IoT/WSN setup 
while achieving high detection accuracy [36]. We 
approached the problem using our previously 
established method of detecting elliptical anomalies 
or Elliptical Summaries Anomaly Detection 
(ESAD). This is achieved by first modeling the 
collected data at individual sensor nodes by sample-
based ellipsoids and numerically clustering the sets 
of ellipsoids [36, 37]. Next, a dissimilarity measure 
of the data is constructed using improved visual 
assessment of cluster tendency (iVAT) [38]. This 
step provides us a visual tendency of assessment 
(VAT) to seek the presence of the number of clusters 
of ellipsoids in the data. The block within the 
dissimilarity matrix is reordered using a recursive 
iVAT algorithm. As a final step, a single linkage 
algorithm is employed to extract anomalous clusters 
from the dissimilarity data. Using this AI approach, 
we were able to clearly identify the pattern of the 
passage of Tropical Cyclone Hamish appearing as an 
anomaly before and after the cyclone passed through 
Heron Island in 2009. The algorithm has since been 
transformed for real-time applications. Recently, we 
were able to demonstrate that the Cyclone Hamish 
event from the WSN data can be detected in real-
time IoT settings using our suite of AI algorithms. 
 
4.3. System of systems (SoS) view of integrated 
AI 
 
Our ecosystem not only consists of environmental 
applications, but also agriculture, smart city, 
healthcare, transport, energy and many others. From 
a global technological ecosystem, we need to have a 
holistic view of the entire ecosystem to understand 
and solve the emerging issues. In other words, we 
need to have an integrated view of the SoS. Figure 5 
provides a common operating picture (COP) of a 
system of systems using cloud-centric AI analytics. 

Base Station 

Buoy 
 
 

Sensor 
Pole 
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AI algorithms are used to provide application-
specific analytics to end users. These are generally 
provided as a service to end users. The SoS concept 
goes beyond traditional analytics to provide a 
complete understanding of the issues to 
governments, policymakers and decision managers. 
In this respect, systems are to be integrated in a 
seamless manner and solve technological issues 
within and outside the realm of specific solutions. 
 
4.4. Open research challenges 
 
• An estimated 8.4 billion IoT devices are used in 

2017 for numerous applications [39]. The 
challenge lies in SoS integration with AI to 
process, analyze and generate actionable 
knowledge. For data originating from billions of 
devices, it will be nearly impossible to analyze 
manually. This challenge is attributed to the big 
data challenge. The analysis should include the 
growth of multidimensional data attributes (i.e. 
volume, velocity, variety, veracity, variability, 
and value) to produce actionable knowledge 
using AI algorithms. 

 

 
 

Fig. 4. WSN/IoT system architecture used to 
monitor Heron Island. The data is collected using a 
two-tiered (tree) hierarchical network architecture. 

The data is then transmitted to a central base 
station, which then transmits it to a mainland 

server. The cloud server consists of AI analytics 
that can monitor streaming real-time data and detect 

events 
 

 
 
Fig. 5. The illustration depicts the idea of achieving 
a common operating picture (COP) using system of 

systems approach. The eMarine Information 
Infrastructure (eMII) provides a single integrative 
framework for data and information management 
that will allow discovery and access of the data by 
scientists, managers and the public. The data from 
real-world are then fed to AI-based cloud-centric 
analytics. The output from the analytics is used to 
make decisions as well as to provide feedback to 

the existing systems 
 

• Clustering of data from sensors and IoT devices 
is an unsupervised task to extract hidden 
patterns without a priori information. However, 
with the big data challenges (pointed above), 
the clustering algorithms need to be scalable 
(algorithms could be used on large volumes of 
data), self-tuning (the AI algorithms should 
work without any input parameters from end 
users), immune to outliers (eliminate outliers, 
missing data points, and error points from the 
sensed data), and adaptive (the AI models must 
adapt the models to newly arrived data points 
without retraining using all data points). 

• The AI algorithms must provide a holistic 
knowledge of SoS in real-time. This requires 
AI algorithms to be aware of not only the 
current system where the algorithm resides, but 
also about dependent and interconnected 
systems. Currently, most of the AI algorithms 
are designed to be performed for a specific 
system, ignoring the implications of data flow 
and connectedness of dependent systems. 

• One of the important challenges in today’s 
IoT/WSN paradigm is the data security issue. 
The algorithms, services and infrastructure face 
tremendous challenge in maintaining security, 
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authenticity, trust, privacy and transparency of 
the data. This also becomes further complicated 
when citizen-centric data is allowed (such as, 
the Open Data initiatives from governments) 
and through crowdsourcing. New methods, 
such as, block-chain is a possible future 
solution. 

 
CONCLUSION 
 
The Great Barrier Reef (GBR) of Australia is the 
largest living structure (coral reef) on the planet and 
stretches over 2300 kilometers. Anthropogenic 
stresses on coral reefs are causing coral bleaching. 
The burning of fossil fuels releases carbon dioxide 
which in turn is absorbed by the oceans, reducing the 
efforts of the reef-building mechanism by corals. 
Therefore, it is necessary to monitor and manage our 
marine environment as well as to prevent ecosystem 
collapse. In this article, we presented an overview 
and a use case of the WSNs/IoT to monitor the 
complex marine environments, including the GBR. 
The article presented an architecture used to monitor 
the GBR as well as the role of AI algorithms to detect 
events. With a suite of AI algorithms, we were able 
to detect Cyclone Hamish (which occurred in 2009) 
patterns using temperature, pressure and humidity 
sensors using two-tiered IoT/WSN network 
architecture. The article highlights the role of AI 
algorithms that could be used to monitor, manage 
and understand complex marine ecosystems. 
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