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Abstract – This study provides explicit mathematical formulations for the bi-static scattering coefficient 
from a randomly rough surface with a complex relative permittivity based on the following analytic models: 
Small perturbation model (SPM), Physical optics model (PO), and Kirchhoff approximation model (KA). Then 
it addresses the two shortcomings associated with each of the three models: i) limited applicability domain, 
and ii) null predicted values for the cross-polarized bi-static scattering coefficients within plane of incidence. 
The plane of incidence contains both backscattering direction and forward (specular reflection) direction 
which are of interest to the spectrum community. 
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1. INTRODUCTION 

Several natural and manmade surfaces affecting 
radio wave propagation can be treated as randomly 
rough surfaces with complex relative permittivity. 
Among those surfaces are: 

– Earth surface including land surface and sea 
surface,  

– Earth surface covers such as snow and sea ice,  

– town and city buildings and structures at the 
HF frequencies and lower frequencies,  

– and building walls at millimeter wave and 
higher frequencies, etc. 

The bi-static scattering coefficient from the above 
surfaces is required for assessing several 
parameters which are of interest to the spectrum 
community such as [1-3]; these are: 

– fading depth due to reflection from the 
Earth’s surface [2], 

– interference power due to reflection from the 
Earth’s surface [1],  

– radio noise due to microwave thermal 
emission from sea surface [3], etc.  

Deriving analytical expressions for the bi-static 
scattering coefficients could enhance as well as 
extend the applicability domains of the existing 
prediction methods of the above parameters [1-3]. 
Based on the above, this study aims at: i) providing 
explicit expressions for the bi-static scattering 
coefficient based on three mathematical models 
widely used in assessing bi-static scattering from 
randomly rough surfaces, and ii) evaluating the 
capabilities of those models in predicting 

cross-polarized bi-static scattering in the plane of 
incidence. The basis for the mathematical models in 
this study are:  

– Small perturbation model (SPM), 

– Physical optics model (PO), and  

– Kirchhoff approximation model (KA).  

The plane of incidence contains the incident 
direction and the normal direction to the surface. 
This plane contains the backscattering and the 
forward (specular reflection) directions. 

The study is organized as follows. In Section 2, the 
randomly rough interface characteristics are 
introduced along with the polarizations of the 
incident and scattered fields, as well as the two 
components of the bi-static scattering coefficient: 
the coherent component and diffuse component. 
The analytical expression for the coherent 
component is also given in Section 2. Explicit 
expressions for the diffuse bi-static scattering 
coefficient component are developed in section 3, 
section 4 and section 5 based on SPM, PO and KA 
models respectively. Finally, a summary and 
conclusion for the study is provided in section 6. 

2. PROBLEM FORMULATION 

Consider a randomly rough surface separating two 
non-magnetic media: an upper medium with 
complex relative permittivity of unity (free space), 
and a lower medium with complex relative 
permittivity 𝜀𝑟. The surface height 𝑧(𝑥, 𝑦), which is 
aligned along the 𝑧  direction, is randomly 
fluctuating around an average value of zero and 
with a constant variance 𝜎2. 
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 < 𝑧(𝑥, 𝑦) > =  0 

 < |𝑧(𝑥, 𝑦)|2 > = 𝜎2 (1) 

The bracket < > represents the ensemble average 
over the space.  

The probability distribution of the surface heights is 
constant in space and its correlation function 
𝐶(𝑥′, 𝑦′) is given by Equation (2). 

 𝐶(𝑥′, 𝑦′) = < 𝑧(𝑥, 𝑦)𝑧(𝑥 + 𝑥′, 𝑦 + 𝑦′) > (2) 

The above correlation function is independent of 𝑥 
and 𝑦. Accordingly, it can be written as 𝐶(𝜌) with  

𝜌 =  √𝑥′2 + 𝑦′2. 

In the roughness spectral domain 𝛋, the surface 
correlation function 𝐶(𝜌 ) has a spectral density 
function 

 𝑊(𝜅⃗ ) =  (
𝜎

2𝜋
)
2

∫𝑑𝜌 𝐶(𝜌)𝑒𝑗𝜅⃗⃗ ⋅𝜌̂. (3) 

where 𝜅  is the spatial wavenumber vector. For a 
Gaussian single-variant correlation function, 
Equation (3) reduces into 

 𝑊(𝜅⃗ ) =
𝜎2

4𝜋
𝑒𝑥𝑝 {−

1

4
𝜅2ℓ2}. (4) 

In Equation (4), 𝓵 is the surface correlation length. 
For a Gaussian correlation function, the surface 
height variance 𝜎2 and the correlation length 𝓵 may 
be used to obtain the surface mean square slope 𝑚 
as in Equation (5). 

 𝑚2 = 2(𝜎/ℓ)2 (5) 

Fig. 1 depicts the geometric configuration of the 
scattering from the randomly rough surface. Such a 
configuration is defined in a reference coordinate 
system (𝑥, 𝑦, 𝑧) . Within this reference coordinate 
system, the surface is illuminated by an incident 

plane wave propagating along the 𝑘̂𝑖(𝜃𝑖, 𝜑𝑖) vector 
direction and is linearly polarized and defined by 
𝑞̂𝑖(𝑞 = 𝑣, ℎ) where 

 𝑘̂𝑖 = 𝑠𝑖𝑛 𝜃𝑖 (𝑐𝑜𝑠 𝜑𝑖𝑥 + 𝑠𝑖𝑛 𝜑𝑖 𝑦) − 𝑐𝑜𝑠 𝜃𝑖 𝑧, 

 ℎ̂𝑖 = − 𝑠𝑖𝑛 𝜑𝑖 𝑥 + 𝑐𝑜𝑠 𝜑𝑖 𝑦,   

and 

𝑣𝑖 = − {𝑐𝑜𝑠 𝜃𝑖(𝑐𝑜𝑠 𝜑𝑖𝑥 + 𝑠𝑖𝑛 𝜑𝑖𝑦) + 𝑠𝑖𝑛 𝜃𝑖𝑧}.(6) 

A portion of the electromagnetic power illuminating 
the surface is scattered along a scattering direction 

𝑘̂𝑠(𝜃𝑠, 𝜃𝑠) with polarization 𝑝̂𝑠 (𝑝 = 𝑣, ℎ) where 

 𝑘̂𝑠 = 𝑠𝑖𝑛 𝜃𝑠 (𝑐𝑜𝑠 𝜑𝑠𝑥 + 𝑠𝑖𝑛𝜑𝑠 𝑦) + 𝑐𝑜𝑠 𝜃𝑠 𝑧, 

 ℎ̂𝑠 = −𝑠𝑖𝑛 𝜑𝑠 𝑥 + 𝑐𝑜𝑠 𝜑𝑠 𝑦, 

and 

𝑣𝑠 = 𝑐𝑜𝑠 𝜃𝑠(𝑐𝑜𝑠 𝜑𝑠𝑥 + 𝑠𝑖𝑛 𝜑𝑠𝑦) − 𝑠𝑖𝑛 𝜃𝑠𝑧.  (7) 

In equations (6) and (7), 𝑣 stands for vertical 
(parallel or TH) polarization, and ℎ stands for 
horizontal (perpendicular or TE) polarization.  

The bi-static scattering coefficient 𝛾𝑝𝑞(𝑘̂𝑠, 𝑘̂𝑖) along 

the scattering direction 𝑘̂𝑠 is the fraction of power 
scattered along such a direction with polarization 
𝑝̂𝑠  due to incident wave illuminating the surface 

along the 𝑘̂𝑖  direction with polarization 𝑞̂𝑖  (Fig. 1). 
The fraction of power is per unit solid angle and per 
unit area. 

 

Fig.1 – Geometric configuration of scattering from a randomly 
rough surface 

Due to surface roughness, the bi-static 
scattering coefficient has two components: 
coherent component 𝛾𝑝𝑞

𝑐 (𝑘̂𝑠, 𝑘̂𝑖) , and diffuse 

(non-coherent) component 𝛾𝑝𝑞
𝑑𝑖𝑓

(𝑘̂𝑠, 𝑘̂𝑖). 

 𝛾𝑝𝑞(𝑘̂𝑠, 𝑘̂𝑖) = 𝛾𝑝𝑞
𝑐 (𝑘̂𝑠, 𝑘̂𝑖) + 𝛾𝑝𝑞

𝑑𝑖𝑓
(𝑘̂𝑠, 𝑘̂𝑖) (8) 

The coherent component 𝛾𝑝𝑞
𝑐 (𝑘̂𝑠, 𝑘̂𝑖) is co-

polarized { 𝛾𝑣𝑣
𝑐 (𝑘̂𝑠, 𝑘̂𝑖)  or 𝛾ℎℎ

𝑐 (𝑘̂𝑠, 𝑘̂𝑖) } and 

exists only along the forward (specular 
reflection) direction {𝜃𝑠 = 𝜃𝑖 , and 𝜑𝑠 = 𝜑𝑖} as 

𝛾𝑝𝑞
𝑐 (𝑘̂𝑠, 𝑘̂𝑖) =

4𝜋 |𝑟𝑝𝑝(𝜃𝑖)|
2
𝑒𝑥𝑝{−(2𝑘𝜎 𝑐𝑜𝑠 𝜃𝑖)

2} 𝛿(𝜃𝑠 −

𝜃𝑖)𝛿(𝜑𝑠 − 𝜑𝑖)𝛿𝑝𝑞 .  (9) 
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In the above, 𝑟𝑝𝑝(𝜃𝑖)  is the Fresnel reflection 

coefficient for 𝑝 polarization as defined by: 

 𝑟ℎℎ(𝜃𝑖) =
𝑐𝑜𝑠 𝜃𝑖− √𝜀𝑟−𝑠𝑖𝑛2 𝜃𝑖

𝑐𝑜𝑠 𝜃𝑖+ √𝜀𝑟−𝑠𝑖𝑛2 𝜃𝑖
,   

and 

 𝑟𝑣𝑣(𝜃𝑖) =
𝜀𝑟 𝑐𝑜𝑠 𝜃𝑖− √𝜀𝑟−𝑠𝑖𝑛2 𝜃𝑖

𝜀𝑟 𝑐𝑜𝑠 𝜃𝑖+ √𝜀𝑟−𝑠𝑖𝑛2 𝜃𝑖
 . (10) 

Moreover, 𝛿(𝜃𝑠 − 𝜃𝑖)  and 𝛿𝑝𝑞  are the Dirac and 

Kronecker delta functions respectively: 

 𝛿(𝜃𝑠 − 𝜃𝑖) = {
1,    𝑖𝑓  𝜃𝑠 =  𝜃𝑖  
0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (10a) 

and 

 𝛿𝑝𝑞 = {
1,           𝑖𝑓 𝑝 = 𝑞
0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (10b) 

Analytical expressions for the diffuse bi-static 
scattering coefficient components are provided 
below, based on the three different models with 
values of cross-polarized bi-static scattering 
coefficients 

 𝛾𝑣ℎ
𝑑𝑖𝑓

(𝑘̂𝑠, 𝑘̂𝑖), and 𝛾ℎ𝑣
𝑑𝑖𝑓

(𝑘̂𝑠, 𝑘̂𝑖) 

within the plane of incidence based on each model. 

3. DIFFUSE BI-STATIC COEFFICIENT 
BASED ON THE SMALL 
PERTURBATION METHOD (SPM) 

The small perturbation method (SPM) applies for 
slightly rough surfaces having variance and 
correlation length governed by equations (35) and 
(36) defined in [4]. Those equations are recalled as 
Equation (11). 

 𝑘𝜎 < 0.3 ,    𝑎𝑛𝑑   

 𝑘ℓ >  4.71 𝑘𝜎. (11) 

The diffuse bi-static scattering coefficient 
𝛾𝑝𝑞

𝑆𝑃𝑀(𝑘̂𝑠, 𝑘̂𝑖)  based on SPM can be written as 

(Equation (22) of [5], (21-67) of [6], (31) of [4], and 
(37) of [7]) 

 𝛾𝑝𝑞
𝑆𝑃𝑀(𝑘̂𝑠, 𝑘̂𝑖) = 8 (𝑘2 cos 𝜃𝑠 cos 𝜃𝑖)

2|𝑔𝑝𝑞|
2
 𝑊(𝑘𝑥𝑦). (12) 

where 𝑊(𝑘𝑥𝑦) is the surface height spectral density 

function of Equation (4) calculated at roughness 
wavenumber 𝛋 equal to 𝑘𝑥𝑦. 

 𝑘𝑥𝑦 = 𝑘 √sin2 𝜃𝑠 + sin2 𝜃𝑖 − 2 sin 𝜃𝑖 sin 𝜃𝑠 cos(𝜑𝑠 − 𝜑𝑖) (13) 

 

Furthermore, the 𝑔𝑝𝑞 in Equation (12) are the SPM 

polarization factors with 

𝑔ℎℎ =
(𝜀𝑟−1)

(cos𝜃𝑠+√𝜀𝑟−sin2 𝜃𝑠)(cos𝜃𝑖+√𝜀𝑟−sin2 𝜃𝑖)
cos(𝜑𝑠 − 𝜑𝑖),  

𝑔𝑣ℎ =
−(𝜀𝑟−1)√𝜀𝑟−sin2 𝜃𝑠

(𝜀𝑟 cos 𝜃𝑠+√𝜀𝑟−sin2 𝜃𝑠)(cos 𝜃𝑖+√𝜀𝑟−sin2 𝜃𝑖)
sin(𝜑𝑠 − 𝜑𝑖),  

𝑔ℎ𝑣 = 
(𝜀𝑟−1)√𝜀𝑟−𝑠𝑖𝑛2𝜃𝑖

(cos𝜃𝑠+√𝜀𝑟−sin2 𝜃𝑠)(𝜀𝑟cos𝜃𝑖+√𝜀𝑟−sin2 𝜃𝑖)
sin(𝜑𝑠 − 𝜑𝑖),  

and 

𝑔𝑣𝑣 = 
(𝜀𝑟−1)(𝜀𝑟 sin𝜃𝑖 sin 𝜃𝑠  −√𝜀𝑟−sin2 𝜃𝑠 √𝜀𝑟−sin2 𝜃𝑖  cos(𝜑𝑠−𝜑𝑖) )

(𝜀𝑟cos 𝜃𝑠+√𝜀𝑟−sin2 𝜃𝑠)(𝜀𝑟cos 𝜃𝑖+√𝜀𝑟−sin2 𝜃𝑖)

. (14) 

For Gaussian correlation functions, Equation (12) 
reduces to: 

𝛾𝑝𝑞
𝑆𝑃𝑀(𝑘̂𝑠, 𝑘̂𝑖) = (2𝑘2𝜎ℓ cos 𝜃𝑠 cos 𝜃𝑖)

2 |𝑔𝑝𝑞|
2
exp {−

𝑘𝑥𝑦
2 ℓ2

4
}. (15) 

Fig. 2 depicts the value for the backscattering 
coefficient based on SPM, Equation (15). 

 

Fig. 2 – Vertically backscattering coefficient (ε_r=20) 

Case (1): kσ=0.1, kl=1.0, Case (2): kσ=0.2, kl=2.0, Case (3): 
kσ=0.3, kl=3.0 

In order to examine values of cross-polarized 
backscattering coefficients in the plane of incidence 
set  

 𝜑𝑠 − 𝜑𝑖 = 0 , 𝑜𝑟     ±  𝜋. (16) 

Then introduce Equation (16) into Equation (14) 
and the resultant into Equation (12) yielding null 
values for the cross-polarized bi-static scattering 
coefficients within the plane of incidence. Those 
null values indicate that SPM is not capable of 
predicting the cross-polarized bi-static scattering 
coefficients within the plane of incidence.  
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When 𝑘𝜎 increases, the validity conditions of SPM 
given in Equation (11) are not satisfied, and 
Equation (12) cannot be used. The next bi-static 
scattering coefficients to be used are those based on 
a physical optics model. 

4. DIFFUSE BI-STATIC SCATTERING 
COEFFICIENT BASED ON THE 
PHYSICAL OPTICS (PO) MODEL 

The validity conditions of PO are given by Equation 
(17) of [4].  

 𝑘ℓ > 6, and 𝑘ℓ > 5.893𝑘𝜎 (17) 

The diffuse bi-static scattering coefficient 𝛾𝑝𝑞
𝑃𝑂(𝑘̂𝑠, 𝑘̂𝑖) 

from randomly rough surface based on physical 
optics can be written as (Equation (12.55a) of [8], 
and (A.15) – (A.62) of [9]). 

 𝛾𝑝𝑞
𝑃𝑂(𝑘̂𝑠, 𝑘̂𝑖) = (

|𝑎𝑝𝑞|𝑘ℓ

2
)
2

𝑒𝑥𝑝{−(𝑘𝑞𝑧𝜎)2} 𝐼0

 (18) 

with 

 𝐼0 = ∑
(𝑘𝑞𝑧𝜎𝑠)

2𝑛

𝑛!𝑛

∞
𝑛=1 𝑒𝑥𝑝 {−

(𝑘𝑥𝑦ℓ)
2

4𝑛
}, 

 𝑘𝑥𝑦 =

 𝑘√𝑠𝑖𝑛2 𝜃𝑠 + 𝑠𝑖𝑛2 𝜃𝑖 − 2𝑠𝑖𝑛 𝜃𝑖 𝑠𝑖𝑛 𝜃𝑠 𝑐𝑜𝑠(𝜑𝑠 − 𝜑𝑖), 

and 

 𝑞𝑧 = 𝑐𝑜𝑠 𝜃𝑖 + 𝑠𝑖𝑛 𝜃𝑠 . (19) 

The above formulation of 𝐼0  is valid only for a 
Gaussian correlation function. The corresponding 
formulation for the exponential correlation function 
is given in Equation (A.63) of [9]. 

In addition, the 𝑎𝑝𝑞 are the PO polarization factors 

with: 

 𝑎ℎℎ = −𝑟ℎℎ(cos 𝜃𝑖 + cos 𝜃𝑠) cos(𝜑𝑠 − 𝜑𝑖), 

 𝑎𝑣ℎ = −𝑟ℎℎ(1 + cos𝜃𝑖 cos 𝜃𝑠) sin(𝜑𝑠 − 𝜑𝑖), 

 𝑎ℎ𝑣 = 𝑟𝑣𝑣(1 + cos 𝜃𝑖 cos 𝜃𝑠) sin(𝜑𝑠 − 𝜑𝑖), 

and 

 𝑎𝑣𝑣 = −𝑟𝑣𝑣(𝑐𝑜𝑠 𝜃𝑖 + 𝑐𝑜𝑠 𝜃𝑠) 𝑐𝑜𝑠(𝜑𝑠 − 𝜑𝑖).
 (20) 

Fig. 3 depicts backscattering coefficient values 
based on PO, Equation (18). 

 

Fig. 3 – Backscattering coefficient based on physical optics 
model as a function of angle of incidence 

(kσ = 1.5, rms slope = 0.1, εr =1.6) 

In order to examine values of cross-polarized bi-
static scattering coefficients within the plane of 
incidence introduce Equation (16) into Equation 
(20) and the resultant into Equation (18). This 
indicates that the cross-polarized bi-static 
scattering coefficients based on PO have null values 
within the plane of incidence. The null values 
indicate that PO is not capable of predicting the 
cross-polarized bi-static scattering coefficients 
within the plane of incidence.  

5. DIFFUSE BI-STATIC SCATTERING 
COEFFICIENT BASED ON THE 
KIRCHHOFF APPROXIMATION 

When the validity conditions of either SPM, 
Equation (11), or PO, Equation (17), are not 
satisfied, the Kirchhoff approximation may be used 
to obtain the bi-static scattering coefficients. The 
validity conditions for KA may be written as 
Equation (21) based on [4]. 

 𝑘𝜎 >
√10

|𝑐𝑜𝑠 𝜃𝑖+𝑐𝑜𝑠𝜃𝑠|
,    𝑘ℓ > 6 (21) 

Under the above conditions, the major contribution 
to the bi-static scattering coefficient along the 

scattering direction 𝑘̂𝑠 (𝜃𝑠, 𝜑𝑠 ) stems from around 
the local normal to the surface 𝑛̂  

 𝑛 =  
𝑞𝑥 𝑥̂+ 𝑞𝑦𝑦̂+ 𝑞𝑧 𝑧̂

𝑞
 (22) 

with 

 𝑞𝑥 = (𝑠𝑖𝑛 𝜃𝑠 𝑐𝑜𝑠 𝜑𝑠 − 𝑠𝑖𝑛 𝜃𝑖 𝑐𝑜𝑠 𝜑𝑖), (23) 

 𝑞𝑦 = (𝑠𝑖𝑛 𝜃𝑠 𝑠𝑖𝑛 𝜑𝑠 − 𝑠𝑖𝑛 𝜃𝑖 𝑠𝑖𝑛 𝜑𝑖), (24) 
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 𝑞𝑧 = (𝑐𝑜𝑠 𝜃𝑠 + 𝑐𝑜𝑠 𝜃𝑖), (25) 

and 

 𝑞2 = 𝑞𝑥
2 + 𝑞𝑦

2 + 𝑞𝑧
2. (26) 

Those contributions can be captured through the 
KA with applying the stationary phase method 
technique1 yielding the diffuse bi-static scattering 
coefficient 𝛾𝑝𝑞

𝐾𝐴(𝑘̂𝑠, 𝑘̂𝑖) (Equation (9) of [10]) given 

in Equation (27) 

 𝛾𝑝𝑞
𝐾𝐴(𝑘̂𝑠, 𝑘̂𝑖) =  

1

2𝑚𝑥𝑚𝑦
|
𝑞

𝑞𝑧
|
4

|𝑈𝑝𝑞(𝑘̂𝑠, 𝑘̂𝑖)|
2

 

𝑒𝑥𝑝 {−
1

2𝑞𝑧
2 ({

𝑞𝑥

𝑚𝑥
}
2

+ {
𝑞𝑦

𝑚𝑦
}
2

)} . (27) 

where 𝑚𝑥  and 𝑚𝑦  are the slope variances along 𝑥 

and 𝑦̂  direction respectively. For isotropic surface 
𝑚𝑥 = 𝑚𝑦 = 𝑚  with 𝑚  given in Equation (5). 

Furthermore, 𝑈𝑝𝑞(𝑘̂𝑠, 𝑘̂𝑖) in Equation (27) are the 

KA polarization factors 

𝑈ℎℎ(𝑘̂𝑠, 𝑘̂𝑖) =
(𝑘̂𝑠⋅ 𝑣̂𝑖)(𝑘̂𝑖⋅𝑣̂𝑠)𝑟ℎℎ

′ +(𝑘̂𝑠⋅ℎ̂𝑖)(𝑘̂𝑖⋅ℎ̂𝑠)𝑟𝑣𝑣
′

𝐷0
2 , (28) 

𝑈𝑣ℎ(𝑘̂𝑠, 𝑘̂𝑖) =
−(𝑘̂𝑠⋅𝑣̂𝑖)(𝑘̂𝑖⋅ℎ̂𝑠)𝑟ℎℎ

′ + (𝑘̂𝑠⋅ℎ̂𝑖)(𝑘̂𝑖⋅𝑣̂𝑠)𝑟𝑣𝑣
′

𝐷0
2 , (29) 

𝑈ℎ𝑣(𝑘̂𝑠, 𝑘̂𝑖) =
−(𝑘̂𝑠⋅ ℎ̂𝑖)(𝑘̂𝑖⋅ 𝑣̂𝑠)𝑟ℎℎ

′ + (𝑘̂𝑠⋅𝑣𝑖)(𝑘̂𝑖⋅ℎ̂𝑠)𝑟𝑣𝑣
′

𝐷0
2 , (30) 

𝑈𝑣𝑣(𝑘̂𝑠, 𝑘̂𝑖) =
(𝑘̂𝑠⋅ℎ̂𝑖)(𝑘̂𝑖⋅ℎ̂𝑠)𝑟ℎℎ

′ +(𝑘̂𝑠⋅𝑣̂𝑖)(𝑘̂𝑖⋅𝑣̂𝑠)𝑟𝑣𝑣
′

𝐷0
2 , (31) 

and 

 𝐷0
2 = (𝑘̂𝑖 ⋅ 𝑣𝑠)

2
+ (𝑘̂𝑖 ⋅ ℎ̂𝑠)

2
. (32) 

In addition, 𝑟ℎℎ
′  and 𝑟𝑣𝑣

′  in equations (28) - (31) are 
the Fresnel reflection coefficients of Equation (10) 
evaluated for the surface normal 𝑛̂ of Equation (22). 
The local incident angle 𝜃𝑖

′ associated with such a 
normal and required for calculating Fresnel 
reflection coefficients 𝑟ℎℎ

′  and 𝑟𝑣𝑣
′  can be evaluated 

as follows: 

 𝑐𝑜𝑠 𝜃𝑖
′ = 𝑘̂𝑖 ⋅ 𝑛 =  𝑞|𝑞𝑧|/(2𝑘𝑞𝑧) (33) 

Furthermore, the vector scalar products reported in 
equations (28) – (32) can be obtained from the 

propagation vectors  𝑘̂𝑖,  and 𝑘̂𝑠 , the polarization 

vectors 𝑣𝑖, ℎ̂𝑖, 𝑣𝑠 , and ℎ̂𝑠 as in equations (6) – (7). 

(𝑘̂𝑠 ⋅ 𝑣̂𝑖) = − sin 𝜃𝑠 cos 𝜃𝑖 cos(𝜑𝑠 − 𝜑𝑖) − sin 𝜃𝑖 cos 𝜃𝑠 (34a) 

                                                             
1  The technique used in this section is also known as the 

geometric optics approach. 

(𝑘̂𝑠 ⋅ ℎ̂𝑖) =  sin 𝜃𝑠 sin(𝜑𝑠 − 𝜑𝑖) (34b) 

(𝑘̂𝑖 ⋅ 𝑣̂𝑠) = sin 𝜃𝑖 cos 𝜃𝑠 cos(𝜑𝑠 − 𝜑𝑖) + sin 𝜃𝑠 cos 𝜃𝑖   (34c) 

(𝑘̂𝑖 ⋅ ℎ̂𝑠) =  −sin 𝜃𝑖 sin(𝜑𝑠 − 𝜑𝑖) (34d) 

Fig. 4 depicts the values for the backscattering 
coefficient based on KA, Equation (27). 

 

Fig. 4 – Backscattering coefficient as a function of angle of 
incidence (εr=1.6, mx=my=m) 

Now the values of the cross-polarized bi-static 
scattering coefficients within the plane of incidence 
plane are examined. For a scattering direction 
aligned within the plane of incidence the identity, 
Equation (35), holds. 

 (𝑘̂𝑖 ⋅ ℎ̂𝑠) = (𝑘̂𝑠 ⋅ ℎ̂𝑖) = 0 (35) 

Introducing Equation (35) into Equation (32) yields  

 𝐷0
2 = (𝑘̂𝑖 ⋅ 𝑣𝑠)

2
. (36) 

Based on equations (35) and (36), for a scattering 
direction within the plane of incidence the cross-
polarized KA polarization factors given in equations 
(29) and (30) reduce to: 

 𝑈𝑣ℎ(𝑘̂𝑠, 𝑘̂𝑖) = 0 (37) 

and 

 𝑈ℎ𝑣(𝑘̂𝑠, 𝑘̂𝑖) = 0. (38) 

Introducing equations (37) – (38) into Equation (27) 
yields null values for the cross-polarized bi-static 
scattering coefficients within the plane of incidence. 
The null values indicate that KA is not capable of 
predicting the cross-polarized bi-static scattering 
coefficients within the plane of incidence. 
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6. SUMMARY AND CONCLUSION 

Analytical mathematical formulations for bi-static 
scattering coefficients from a randomly rough 
surface with complex relative permittivity were 
developed based on the following models: Small 
perturbation model (SPM), Physical optics model 
(PO), and Kirchhoff approximation (KA). Each 
formulation has its own applicability domain as 
given in equations (11), (17) and (21). Those 
applicability domains are provided in Table 1 for 
convenience. 

Table 1 – Validity domains of bi-static scattering models [1] 

Bi-static scattering 
model 

Validity range 

SPM (Small perturbation 
model) 

𝑘𝜎 < 0.3, 

and 𝑘ℓ> 4.71𝑘𝜎 

PO (Physical optics) 𝑘ℓ>6 and 

𝑘ℓ> 5.893𝑘𝜎 

KA (Kirchhoff  

approximation) 
𝑘𝜎 >

 3.16227

cos 𝜃𝑠+cos 𝜃𝑖
, 𝑘ℓ > 6, 

and, 𝑘ℓ > 4.17√𝑘𝜎 

Furthermore, mathematical analysis shows that 
each of these models predicts null values for the 
cross-polarized bi-static scattering coefficients 
within the plane of incidence. In order to extend the 
applicability domain of the above three models, 
they can be integrated through a two scale 
scattering model [11]. The two scale scattering 
model has the property of producing non-null 
values for the cross-polarized coefficients within 
the plane of incidence. 

Each of the three models can be used to predict the 
bi-static scattering coefficients of Earth surface 
within the validity domain of the model. In so doing, 
the complex relative permittivity of the Earth’s 
surface is required. In the case of land surface (soil), 
the complex relative permittivity can be obtained 
from equations (37) – (40) of [12] in terms of 
frequency, land surface temperature, water content, 
and composition. In the case of sea surface, the 
complex relative permittivity may be obtained from 
equations (14) – (27) of [12] in terms of frequency, 
sea water temperature and sea salinity. 
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