Joint ITU-T/IEEE Workshop on Next Generation Optical Access Systems

Optical Component Technology Review and Future Trends

David Li CTO, Ligent Photonics

Outline

- Introduction
- Key Components in OAN
- Conventional Transceiver Technologies
- Challenges in 10GPON
- Future Trends and Optical Integration
- Summary

Optical Access Network Trends

 Higher bandwidth/capacity technologies are required for HDTV, IPTV, VOD, PVR, digital home, etc.

Passive Optical Network Structure

10GEPON Quadplexer Structure

IOGEPON and IGEPON must be able to coexist in the existing fiber distribution network

EPON/GPON/10GEPON Review

	EPON		GPON		10GEPON
	PX-10	PX-20	Class B+	Class C+	PR-30
Link Budget	23dB	26dB	28/30dB	32/33dB	29dB
Data rate	1.25G	1.25G	2.5G/1.2 5G	2.5G/1.2 5G	10.3G
TX Laser	FP/DFB	DFB	DFB	H DFB	H EML H DML
RX PD/TIA	PIN/TIA	PIN/TIA	APD/TIA	H Sen. APD/TIA	APD+ TIA(S)+ FEC
Driver	Discrete/Integrated		Discrete	Discrete	Discrete
ΡΑ			Discrete	Discrete	Discrete
Cost	Low	Medium Low	High	High+ (OLT)	High++++ (ONU/OLT)

Key Components in the OAN

Key Issues in EPON/GPON Transceiver

Microelectronics

- Burst mode, short response time for detection and threshold adjustment
- Large dynamic range
- High sensitivity for small signal detection
- Relative high speed, up to 2.5Gbit/s
- Intelligence (e.g., FEC, EDC, Monitoring, etc.)

Active Optics

- Transmit laser diodes (high power, narrow spectral width, wide temperature, low noise, high speed, etc.)
- Receive photo diodes (high sensitivity, high linearity, high SNR, etc.)

Passive Optics

- Low loss
- Low polarization dependence
- Low temperature dependence
- Operating Temperature Range and Power Consumption

Low Cost, High Performance, and High Volume

FTTH Equipment Value Chain

Conventional Transceiver Technologies

- Complex, robust, improving, and yet reaching limit? >Discrete chips for LD, PD, lens, etc. >Separate integrated MICs for analog and digital functions **MIC Chip** >Stand-alone TO-cans for TX & RX >Manual module assembly and >TX, RX and bidirectional optical testing sub-assemblies based on coaxialpackages **OE Chips TO-Cans** BOSA Module Analog Detector in TO-can Laser in TO-can Laser in TO-can Glass lens 1555nm downstream analog 1310 nm upstream digital 1490 nm downstream digital Detector in TO-can Digital Detector in TO-can Capital intensive, Capital intensive, Labor intensive, Automated fab, Labor intensive, Automated assembly, Manual assembly, Manual processing Manual assembly, Manual test Manual test Manual test

Availability of 10GPON Components

Now 10GE CM transmission technologies and 1G/2G BM technologies are mature

Challenges in 10GEPON BM components

- Special 10G lasers to meet the IEEE802.3av requirements
 - 1577nm high power 10G EML laser for OLT
 - Low cost 1270nm 10G DML laser
- ✓ 10G burst mode drivers
- ✓ 10G/1G selective burst mode TIA and post amplifier
- 10G burst mode CDR and signal conditioner

Problem for 10G Eye Pattern

3av_0804_benamram_2

10G signal is much noisy – Electrical, Optical, Test Equipment

Challenges in 10GPON

- Signal degradation at 10G
- Link budget 29dB
- TX power high
- RX sensitivity high
- BM 1G/10G switching
- OSA Integration
- Cost low

High TX Power, High RX Sensitivity, Price

Optcal Module Packaging

Progress on the 10GEPON Laser

Pave = 5.06dBm, WL=1577.655nm, Rext = 10.34dB, Dp=1.03dB (50km)

Pave = 5.05dBm, WL=1275nm, Rext = 6.56dB

Geneva, 19-20 June 2008

06.02.2008

Integration Platform Technologies

Basic Building Blocks for PICs

- Packaging
 - Coupling to Fibers
 - Electrical Control
 - Thermal Management
 - Hermetic issue
 - Low cost assembly

The Dream Device:

Integrated Optical Transceivers based on Two-Chips

Summary

- The design and manufacturing of optical module in the access networks follows a process from discrete components to optical sub-assemblies and microelectronic chips, to module assembly and test
- The conventional transceiver technologies based on discrete optoelectronic chips and coaxial packaging are still the key enabler and continue to improve
- The emerging technologies based on planar packaging, hybrid/monolithic optical integration are under development and will have significant (not immediate) impact on the cost and performance
- The WDM, and other approaches are necessary for next generation access network beyond the 10Gbps.