Joint ITU-T/IEEE Workshop on Next Generation Optical Access Systems

Overview of Mass-Market Silicon Development Economics

Denis Beaudoin
DMTS
Texas Instruments

The Questions?

- What is the impact of supporting multiple standards?
- What does history tell us?
- Conclusions

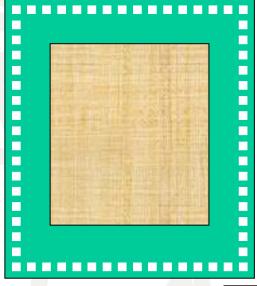
Breakdown of Costs

- Product Development
 - Definition
 - IP development
 - Silicon Development
 - Software Development
 - Verification
 - Interoperability (is also an ongoing cost)
- Device
 - Die
 - Package
 - Final Assembly
- Other Factors
 - Ongoing Costs
 - Volume
 - Availability Vs Development Time
 - Customers Viewpoint

Product Development

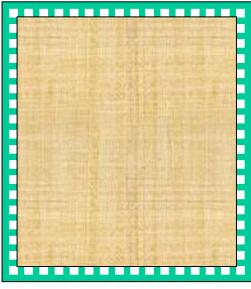
- Lets consider two scenarios and calculate the overall impact to development cost
 - Develop two different devices
 - Develop a single chip to support two standards

Def IP Silicon SW Verify Interop						
% Total	5%	20%	25%	25%	5%	20%
2 nd Device	90%	100%	100%	50%	100%	100%
2:1 Device	150%	120%	20%	50%	100%	100%


- ■Assume the cost of developing a single device is US\$20M
- ■Second device is US\$17.4 M, Total = US\$37.4M
- ■Single chip with two standards US\$34.8M

Dual Standard Design Impact

- Multiple clocking schemes
- Multiplexed or reconfigured I/O
- Memory size
- Powering down unused blocks
- complex power supply
- Complex configuration registers
- Design compromises


Device Cost - Die

- Die area of a device is driven by the number of gates and I/O
- With geometries shrinking to 45nm and added functionality increasing I/O, most devices are pad limited

Pad Limited – less silicon gates than pads

Not Pad Limited

Geneva, 19-20 June 2008

Device Cost - Package

- The package cost is defined by many factors:
 - Application (operational, environment etc)
 - Power Dissipation
 - Die Size
 - Pin count
- Multiple standards effect all of these factors!

Device Cost – Final Assembly

- The final assembly costs are driven by several factors:
 - Yield
 - Wafer and Final Test
 - Packaging
- Supporting multiple standards will affect test times, mostly at final test which is a functional test of the device

Other Factors

- Ongoing Costs
 - Software Feature Support
 - Interoperability
- Availability Vs Development Time
 - Time to Revenue is longer for a single device with two standards than developing two single devices, whether in parallel or in series. (The penalty is device cost)
- Volume
 - There is a large penalty for sharing the volume (as much as 10%)

Impact Conclusion

- Multiple standards affect the price
 - Development cost
 - Device cost
 - Ongoing support costs
 - Willingness to pay for functionality not used
- Multiple standards affect availability
- Multiple standards affects the attractiveness of the market
 - Manufacturers and buyers sit on the fence, waiting for the winner
 - Competition needed to lower prices

What Does History Tell Us?

- There are winners and losers
 - ISDN encoding 2B1Q Vs 4B3T
 - Token Ring Vs Ethernet
 - VHS Vs Betamax
 - Blu-ray Vs HD
- General observations
 - It is hard to sell a dual standard device as no-one wants to pay for unused silicon for their application
 - Decisions are not necessarily based upon the best technology
 - Sometimes the buyers or end users end up making the decision based on marketing dollars spent
 - The volume market did not take off
 - Sometimes never or not until a winner was identified
 - When the decision was finally made the industry rallied around the chosen and there were only winners

Overall Conclusions

- There is a development and device cost to develop and maintain multiple standard silicon
- There is development cost and a volume impact to develop two different devices
- This deters competition
- History tells us that the turning point is when a single standard is adopted

A&P

Denis Beaudoin

DMTS

Texas Instruments

dbeaudoin@ti.com