
Towards Multicast Traffic Engineering?

Christian JACQUENET christian.jacquenet@orange-ft.com

Outline

- o Context and motivation
- o IP multicast reminder
- Approaches to multicast-inferred traffic engineering
 - DiffServ and MPLS-TE capabilities
 - Design considerations
- o Conclusion

- Around 200 Gbytes of traffic per VOD server per week
- o MPEG2-encoded TV traffic at ~4 Mbit/s per channel
 - Access any TV channel in less than 2s
 - Packet loss rate should not exceed 10⁻⁷
 - A three 9's+ (99,97%) availability
- o MPEG4-encoded HD TV is underway

o Resource optimization

 Moving from n x P2P communications to 1 x P2MP communication

—Data replication is performed as closely to the receivers as possible

- o Dynamics
 - Finer management of zapping behaviors
 - -Tradeoff between IGP performance and state maintenance

Application Spectrum

Tree-based multicast network design is somewhat application-dependent

1-to-n Group Communication

p-to-n Group Communication

SSM PIM-SM Bi-Dir PIM

- Rendezvous Point Trees (RPT), a.k.a. "shared trees"
 - A router of the multicast network is the root of the tree
 - Preferred design in case of numerous sources
 - Optimizes state maintenance in participating routers
- o Shortest Path Trees (SPT), a.k.a. "source trees"
 - The source is the root of the tree
 - Preferred design for path optimization purposes

 Assumes a few sources

- Requires a Rendezvous Point router to connect sources with receivers
 - By means of the dynamic establishment and maintenance of multicast distribution trees
 - Uses either RPT or SPT distribution trees
- o Explicit Join model
 - Source sends Register messages towards the RP router
 - DR routers send Join messages towards the RP to connect receivers
 - Assumes no one wants traffic unless explicitly requested

ITU-T

QoS Issues

- IP multicast provides no means to:
 - Take into account the receivers' access capabilities
 - Provide some guarantees about the resources' availability
 - Gracefully handle congestion occurrences
- Reliability of multicast traffic forecasts is hard to achieve because of:
 - The dynamics of multicast
 - The behavior of receivers

o Notify multicast sources

- When they should start and stop transmitting —According to IGMP(v3)-based interest expressed by potential receivers
- Make the subscription procedure evolve
 - -For a better usage of the bandwidth resources
 - -So as to enforce a subscription policy on a timely basis, for example

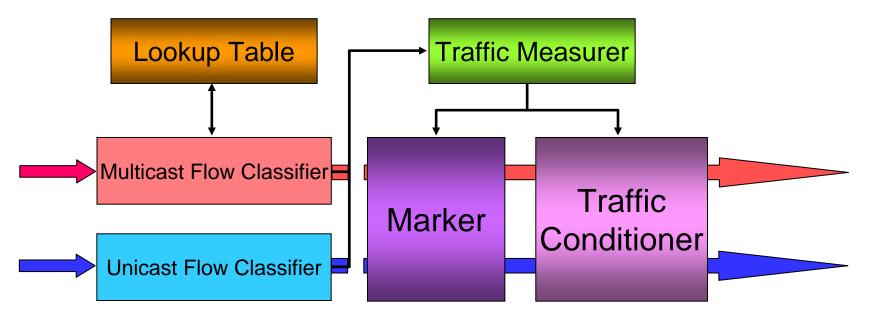
o Investigate traffic engineering techniques

- To address path restoration issues
- To comply with strict QoS guarantees
 - -*E.g.* TV broadcasting services

DiffServ-Inferred Distribution Trees

o Keeps the receiver-initiated principle

- Adds signaling capability
 - Based upon IGMP traffic
 - To notify leaf routers about access rate conditions
- Marking is enforced by aggregation devices (*e.g.* BRAS)
 - -Information is processed by the IGMP Querier
 - As per the corresponding PHB configuration
- o Mandates QoS-based routing
 - To preserve the QoS information during RPF checks
- o Yields "colored" distribution trees "EF" Receiver "AF" Receiver
 - Core region is hopefully shared


ITU-T IPTV Global Technical Workshop Seoul, Korea, 12-13 October 2006 S

G

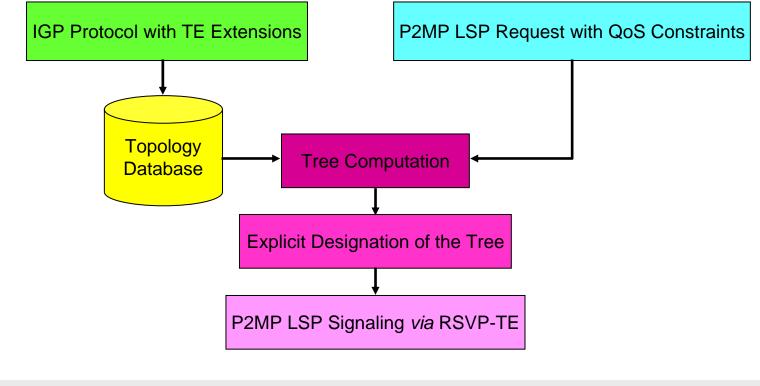
Multicast Traffic Conditioning

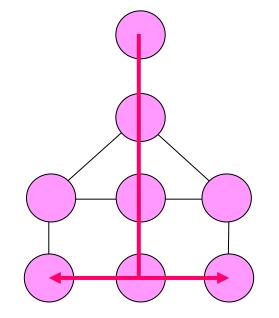
- Remains a local treatment
 - Indicates a router how to behave in case of congestion
- No strict guarantee

DiffServ-Inferred Tables

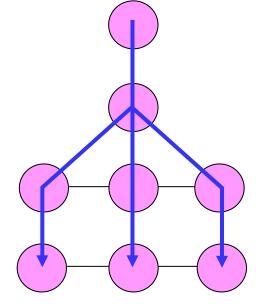
- When multicast traffic enters the DiffServ domain:
 - Processing done by the access router
 - Then enforces the traffic conditioning policy
 - –Multicast traffic volume can be estimated as many unicast flows as receivers


Group Address	PHB	Weight
233.12.144.2	EF	1
	AF ₁	3
	AF ₂	2
233.12.144.4	EF	1
	AF ₂	2
233.12.144.25	AF ₁	1
	AF ₂	2


- Compute and select paths to accommodate:
 - Network-wide QoS requirements
 - Application-specific constraints
 - One-way transit delay, inter-packet delay variation, packet loss rate, etc.
 - Restoration capabilities
 - Network planning considerations
- Provision resources accordingly
 - Towards automated configuration processes
- Make sure the TE policy is not CPU-intensive
 - Switching performances of the participating devices
 - Volume of solicitations per unit of time


- Implicit and attractive traffic engineering capabilities
 - IGP-inferred LSP path computation
 - TE extensions of RSVP with no scalability issues
 - Fast recovery mechanisms for both link and node protection
- o Commercial and operational implementations
 - Mostly for Fast Re-Route purposes
 - Claimed deployments of DiffServ-aware MPLS TE

- The IGP conveys information about routers' capabilities
- o P2MP LSP paths are established as per cost considerations

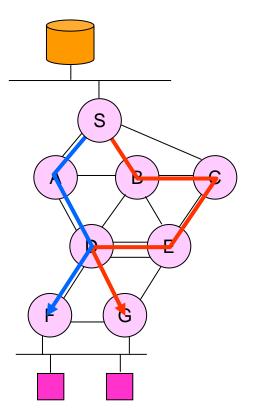


Steiner tree (low cost):

- 1. Cost = 5
- 2. Path cost = 4

Shortest Path Tree

- 1. Cost = 7
- 2. Path cost = 3



- o "Root" router-centric dynamic computation
 - Requires an adapted CSPF algorithm
 - May be CPU-intensive and yield performance issues
- Dynamic computation performed by an external entity
 - Notion of Path Computation Element (PCE)
 - —Downloads the subsequent configuration information to the "root" router
 - -Suggests a hopefully automated procedure
 - May yield robustness issues in case of frequent solicitations

P2MP LSP Establishment

- RSVP-TE-based:
 - "Source" router sends RSVP_PATH message that includes:
 - Sub-LSPs towards F and G
 - A sends RSVP_PATH message with sub-LSP towards F
 - B sends RSVP_PATH message with sub-LSP towards G
 - *Etc*.
- Leaf routers (F, G, D, E,...) send back RSVP_RESV messages to "source" router (S)
 - A and B send a single RSVP_RESV message towards S that compiles all the sub-LSPspecific information

• Technically, the number of RSVP states grows as the group subscription dynamics

• Yields scalability and performance issues

- o Practically, RSVP states could be decomposed into "sub-states":
 - Each sub-state corresponds to a subset of branches and leaves
 - Each sub-state can be dynamically refreshed independently
 - The global state is updated as per the grafting process

- Yields as many tree structures as (S, G_i) pairs
 - Dramatically increases the number of states to maintain
 - Addresses finer resource optimization concerns
- Well-suited for application-specific QoS requirements
 - E.g. VoD service and a few TV channels to broadcast
- Poorly adapted to massive deployments
 - *E.g.* several bouquets with hundreds of TV channels
 - Inevitably raises operational and scalability concerns

- Yields the maintenance of a single (*, *) Forwarding Equivalence Class (FEC) per source
 - Dramatically reduces the number of states to maintain
 - Network resource optimization is poorly addressed
- o Comparable to RPT tree structures in IP multicast
- Well-suited for massive deployments
 - *E.g.* several bouquets with hundreds of TV channels
- Poorly adapted to application-specific QoS requirements
 - No means to enforce traffic prioritization within the tree structure

• A FEC corresponds to a set of (S, G_i) pairs

ITU-T

- Presumably an attractive tradeoff, where:
 - Several bouquets of hundreds of TV channels need to be broadcast
 - Service subscription policy relies upon a thematic typology

-Movie channels, documentary channels, *etc*.

- RSVP-TE is not suited for high dynamics
 - Context of frequent leaf addition or removal of the tree structure
- RSVP-TE raises scalability issues when the number of PE routers is high
- RSVP-TE requires more states than the LDP approach

- o "Triple-play" services are key drivers for the:
 - Design and enforcement of QoS policies in access regions
 - Never-ending over-provisioning is not an option
 - Deployment of multicast-inferred transmission schemes
 - TV broadcasting is becoming more than just another hype
- DiffServ mechanisms remain an attractive option to deal with (probable) congestion
- Multicast-inferred MPLS TE capabilities are exciting, assuming:
 - Dynamic computation and configuration features
 - An adapted multicast packet forwarding scheme
 - To better address dynamics of subscription schemes