

IPTV related standardization activities in DVB

Jean-Francois Fleury Representing DVB

ITU-T

Agenda

- o Why and what should be standardized for IPTV
- o Activity of the various standardization bodies in relation with IPTV
- The DVB consortium and IPTV
- o DVB-TM: Setting the specifications for DVB-IP
 - What is in ETSI TS 102 034 ?
 - What is in the coming release?
 - Preparation of MHP-IPTV
- o DVB-CM: Setting the business case for DVB-IP
- o Conclusion

Why and what should be standardized for IPTV

- o Why standardization for IPTV
 - Achieve interoperability
 - Give confidence for investment
 - Avoid confusion in the market
 - Lower costs for everybody
- o What should be standardized
 - Layers in STB (protocols, data structures, application runtime, ...)
 - Parts of Home Network and Home Gateway
 - Parts of the End-to-end system
 QoS, ...
- However: Leave sufficient space for differentiation, according to market requirements

IP video related activities of the various standards bodies

Seoul, Korea, 12-13 October 2006

DVB's Video over IP initiatives

DVB-IP first release: Available now !

Philosophy of DVB-IP Phase 1

- o Keep as much as possible from existing DTV standards
- o Reuse existing IP specifications where possible
- o Focus on data & protocols
 - → Infrastructure layer is independent of high level Applications

DVB

IFTF

MPEG

- Well known technologies:
 - XML, IP protocols (IETF, …)
- o Optional Network Provisioning
 - Configuration
 - Notification of changes
 - HNED* inventory

* Home Network End Device

Service Discovery and Selection (SD&S)

- The SD&S specification covers:
 - Service (and Provider) discovery
 - Service selection

ITU-T

- Transport of the Discovery information (push and pull modes)
- Service discovery results in:
 - A list of available providers and services, with sufficient information to make a choice/select (user) and to enable access (system)
- Two types of Live Media Broadcast
 - TS full SI: DVB-SI embedded in the transport stream
 - TS optional SI: Only PSI must be embedded in the transport stream
- Service discovery information represented with and carried as XML records
- XML schemas specified in a normative file

Service Selection

- Live Media Broadcast services:
 - Data sent to a multicast group is only forwarded to receivers which explicitly joined the multicast group using the Internet Group Management Protocol (IGMP, RFC 3376)
 - DVB-IP supports IGMPv3
 - introduces source specific multicast (SSM) to optimise IP multicast network load
 - enables routers to filter on specific source addresses of senders of multicast groups.
 - Optionally RTSP may be used
- o Content on Demand services:
 - Delivered over IP unicast
 - Accessed via RTSP, DVB-IP profile specified

RTSP client (1)

- Application-level IETF session protocol to control delivery of data with real-time properties
- Why a DVB client?
 - Because RTSP (RFC2623) is quite complex and huge
 - It is not necessary to implement it all for the DVB service profiles
 - Current RTSP implementations have proprietary extensions to make systems work
- The specification defines minimal subsets for each profile:
 - Guarantee interoperability among DVB HNEDs
 - Reduce testing effort

RTSP client (2)

- Subsets for three DVB-IP profiles:
 - Live Media Broadcast
 - Live Media Broadcast with trick modes (pause, fast forward, ...)
 - On Demand delivery of audio and video (user initiated + trick modes)
- o DVB-specific usage of RTSP methods
 - Announce, Describe, Get_Parameter, Setup
- o Methods specified for Unicast and multicast
 - Methods in tables, differences with IETF usage clearly marked

Delivery of DVB-MPEG-2 based services

- o Based on IETF protocols
- MPEG2 TS encapsulated in RTP/UDP/IP according to RFC 3550 and RFC2250

IP	UDP	RTP	n * 188 bytes
20 bytes	8 bytes	12 bytes	
40 + n * 188 bytes			

- Delivery Control Protocol: RTCP associated with RTP for sending information on transmission statistics
 - No reports to be sent by receivers, in view of scalability
 - Sender reports used to accurately synchronize independent TSs
- o Network requirements and QoS
 - Defines key quality of experience guidelines e.g. jitter and multicast join timings
 - Defines Quality of Service markings to allow prioritization of IPTV carriage

ETSI TS 102 034 V1.2.1 (2006-09)

- Adds support for new advanced codecs in addition to MPEG-2 (e.g. H264, VC-1, E-AC3, AC3, AAC, HE-AAC,...)
- Enables the use of a Broadband Content Guide compliant with TV-Anytime to describe content via a separate specification (DVB Bluebook A106)
- As in the first release of ETSI TS 102 034, the phase 1.2 work is limited to DVB services encapsulated in MPEG-2 TS and covers Live Media Broadcast services, Media Broadcast with Trick Modes and Content on Demand services

June 2006 - DVB Bluebook A106: Carriage of BCG information over IP

- o BCG Definition
 - The term Broadband Content Guide (BCG) refers to a Content Guide that is delivered over an always-on bi-directional IP network
 - However, it can be used to describe content that is delivered over any network (e.g. IP, DVB-S, DVB-T...)
- o BCG data model:
 - Based on TV-Anytime XML Schema (ETSI TS 102 822)
- BCG encapsulation:
 - All BCG data is segmented and carried inside Data Delivery Units
 - A Data Delivery Unit is composed of a compression wrapper and a BCG data structure
- BCG transport:
 - Uses existing DVB-IP transport for SD&S, i.e.
 - DVBSTP for push mode
 - HTTP for pull mode
 - Defines an optional query mechanism for BCG metadata acquisition, based on TV Anytime part 6-1, i.e. SOAP over HTTP

June 2006 - DVB Bluebook A106: Carriage of BCG information over IP

- Describes content, including:
 - Programme Information (title, synopsis, genre, keywords, cast...)
 - Service Information (name, genre, description, URL...)
 - Schedules (time, date, channel, reruns, free/encrypted...)
 - Purchase Information (price, currency, link to a price server...)
 - Segmentation Information (chapters of a movie, highlights of a sports event...)
 - Program Reviews, Credits Information...
- o Compliant with the TV-Anytime XML schema
- o Indexes may be transmitted to accelerate access to metadata
- o BiM-encoded

Current

Current focus in technical TM-IPI group

- On-going:
 - Application Layer FEC
 - DVB-IP Profiling
 - SD&D extensions for Logical Channel Numbers and Regional Services
 - Remote Management System Firmware Upgrade System
 - Content Downloading System
 - Guidelines on DVB-IP 1.2
- o On-going: DVB-Home Network based on DLNA
 - DVB-HN Architecture
 - Mapping with DLNA
 - Identification of DVB complement
 - Content protection using DVB-CPCM

MHP-IPTV

- o Commercial Module-MHP
 - Released commercial requirements for extending the MHP to IPTV
 - These requirements include
 - Hybrid devices supporting both DVB broadcast and DVB-IP devices
 - DVB-IP only devices
- o Technical Module TAM/MUG
 - Draft MHP-IPTV specification produced, aligned with DVB-IP profiles
 - Includes notably the connection from the MHP APIs to SD&S and BCG and extended life cycle model
 - Defining a subset of the MHP-IPTV specification to be used by applications for markets which are using IPTV protocols defined by organizations other than DVB or which are not using standardized protocols at all

Finalizing in CM-IPTV: DVB - Remote Management System

- Remote management covers the following aspects:
 - Configuration and firmware upgrade (unicast & multicast mechanisms)
 - Device management including alarms
 - Troubleshooting including diagnostics
- o RM includes the management of devices on the HN
- o Efforts should be made
 - To align with existing standards where possible (e.g. DSL-Forum)
 - To support all kinds of Broadband Networks
 - Support different kinds of Broadband Devices (e.g. Modems, Gateways, STB, ...)
 - To align with RM Systems for other broadband applications e.g. voice etc

Finalizing in CM-IPTV: DVB - Content Downloading System

- o Enable delivery of non real time IPTV services
 - To a local cache over non real-time broadband IP channels
 - Data rate can be variable and even intermittent.
- o Targets the downloading
 - DVB A/V formats and modes
 - Pure audio content
 - Metadata
- Both push and pull delivery models are in the scope. Multicast and Unicast delivery should be supported.
- The system should be aligned with the DVB BCG specification, based on TV-A metadata format for the description of services.

In preparation...

- Hybrid IPTV services
 - The aim of this task force is to provide use cases and commercial requirements for hybrid TV services (Broadband/Broadcast)
- Security (focus on content security in collaboration with CM-SEC)
- o DVB-IP Phase II
 - The aim of DVB-IP Phase I was to build an IPTV system widely based on proven technologies from the broadcast world (e.g. TS layer, DVB-SI, ...).
 - The aim of DVB-IP Phase II is to build on new technologies such as direct IP streaming, supporting the convergence of fixed – mobile TV networks, web services, ... (indicative)

Conclusion

- Today there is a rising call for worldwide standardization of IPTV, where DVB was one of the first to start work
- The DVB project builds a complete ecosystem for IPTV complementing existing industry achievements and standards
- o Establishing liaisons with the right partners is seen as key in DVB
- DVB-IP's base layer enables IPTV industry players to create competitive differentiated offers while addressing interoperability needs

Questions

murield@microsoft.com

ralf.schaefer@thomson.net

jean-francois.fleury@thomson.net