

ITU-T Study Group 05

Earthing and bonding

Claude Monney
Switzerland

Technical Session, Protection Buenos Aires, 12/04/2010

Introduction

Earthing and especially bonding are the prerequisite for the protection of equipments. It insures that no dangerous voltages (both for the equipment and for people) appear between ports.

TECHNICAL SESSION - PROTECTION - BUENOS AIRES

Relationship between earthing, bonding and surges

Relevant Recommendations

- K.27: Bonding configurations and earthing inside a telecommunication building (1996)
- K.35: Bonding configurations and earthing at remote electronic sites (1996)
- K.56: Protection of radio base stations against lightning discharges (2010)
- K.66: Protection of customer premises from overvoltages (2004)
- Earthing and Bonding handbook (2003)
- IEC 60364-4-44: Protection against voltage disturbances and electromagnetic disturbances (2007)

TECHNICAL SESSION - PROTECTION - BUENOS AIRES

Differences between earthing and bonding

Though both terms are commonly used together, a clear distinction should be done

Bonding: Electrical connection putting various exposed conductive parts and extraneous conductive parts at a substantially equal potential. Earthing: Connecting the bonding network or bonding conductor to an earth electrode to provide a defined path for the current flow and reduce potential differences

Differences between earthing and bonding

Bonding network

Mesh-BN installation inside a telecommunication building

Bonding networks

- Bonding is key to survive to overvoltages and overcurrents
- As shown in the film, earthing is secondary.

There are mainly 2 bonding networks' families

oln addition, one can either link all connections together or isolate them from the structure

ITU-T Study Group 05

Bonding networks

Maintenance of bonding networks

- Small changes that occur in the CBN generally have only a small effect on its shielding capability.
- Additional shielding may be obtained by introduction of additional conductors (e.g. bonding conductors, cable trays, and conduit). Such modifications are usually straightforward.
- o IBN systems are more difficult to maintain, because craft-person activity is liable to result in inadvertent interconnections between IBN and CBN, violating the desired single point connection, and introducing surge currents into the IBN.
- o It is recommended that systematic verification be performed on all bonding configurations and earthing connections inside a telecommunications building.

Study Group 05

AC power distribution

 From an EMC perspective, TN-S systems should be preferred

TN-S inside the building

Earthing

The main functions of earthing are:

- Provide a safe path to the flow of surge current to earth (e.g., from lightning)
- Reduce the current and voltage propagating along a transmission line (e.g., a telecom cable)
- Reduce the voltage between the telecom line and local earth
- Provide sufficient current for the tripping of circuit breakers in case of a power to earth fault.

ITU-T

Study Group 05

Earthing

In the preference order

1) Armoured concrete

3) Vertical rod

Example for a small telecom center

- ① Earthing conductor
- Equipment bonding conductor
- ③ Protective conductor

Study Group 05

Example for a base station

ITU-T

Study Group 05

Example for a base station

Example for a base station

Overvoltage protection

- It isn't possible to integrate live conductors into the bonding network
- In order to limit the overvoltage to a defined level, surge protection devices are required