

Electrical interfaces: Charting a course to the next generation

Adam Healey
Joint ITU-T/IEEE Workshop on The Future of Ethernet Transport
Geneva, Switzerland
May 2010

Landscape for electrical interfaces

- Industry convergence on next generation interfaces based on operation in the range of 25 to 28 Gb/s per lane
 - Ethernet 100GBASE-LR4 (-ER4)
 - Fibre Channel 32GFC
 - Infiniband EDR
 - ITU-T OTL4.4
- A variety of interface types
 - Chip-to-chip or chip-to-module
 - Board-to-board, backplane
 - Direct attach copper cable
- Different requirements for different interfaces and applications
 - e.g. interface reach, backwards compatibility
 - On-going efforts to drive commonality where appropriate

Headwinds for increasing speed: Channel performance

- Channel insertion loss is roughly doubling for each new speed <u>despite</u> improvements in channel technology
- Thus for a fixed insertion loss budget the link distance is <u>halved</u>
 - Even "holding the line" on the budget presents challenges with increasing speeds
- Further improvements in channel performance may not be "mainstream"
 - Cost pressures are unrelenting

Modulation

Lessons learned from 10 Gb/s Ethernet operation over electrical backplanes...

Modulation	Symbol rate	Symbol distance	Equalization
NRZ	1	1	Requires highest equalization gain
Duobinary	1	1/2	 Requires lower equalization gain due to 1+D target Requires more precise equalization to compensate for reduced symbol distance
PAM-4	1/2	1/3	 Requires lower equalization gain due to reduced loss Requires more precise equalization to compensate for reduced symbol distance Higher jitter when symbol transitions are unconstrained

- For channels of interest at 10 Gb/s, NRZ yielded the largest absolute margins
 - Receiver assumed to be based on decision feedback equalizer technology
- Considering higher speeds, improving the modulation efficiency reduces the symbol rate and offers the potential to use more advanced signal processing
 - Operation at lower signal-to-noise ratios
- Total solution cost and application constraints must be considered (channel, power, area, latency)

LSI

- Desire continuity of modulation between electrical and optical domains
- Embed a re-timer in the module transmit path
 - Transmitted jitter has an influence on optical reach
- Limitations of thermal management imply limits on the power dissipation of electronics embedded in the modules
 - Re-timer in the receive path may not available and the burden would be passed to PHY (or ASIC) receiver
- Chip to module reach may constrained to "A" by channel insertion loss and module architecture
- Extend reach to "A + B" using an intermediate PHY device

LSI

Looking ahead

Bit rate, Gb/s	Bit rate per lane, Gb/s	Number of lanes	Comments
100	10	10	Starting point for 100 Gb/s
100	25	4	
400	25	16	
400	40	10	Intersects with serial 40 Gb/s Ethernet
400	50	8	2 x 25 Gb/s
1000	50	20	

- Trends indicate that the distance supported by NRZ will continue to shrink with increasing speed
 - Assumes that the circuit implementation challenges can be met and the loss budget remains constant
- Intermediate re-timing circuitry and (or) very high performance channels may not yield the best total solution cost
- A <u>paradigm shift</u> may be required to enable these higher speed interfaces
 - The analysis performed for 10 Gb/s must be revisited for each new speed
 - New options should be considered

LSI

Closing thoughts

- There are strong incentives to minimize the number of lanes on the electrical interface
 - Considerable pressure to move from 10 x 10 Gb/s to 4 x 25 Gb/s
- Increasing the bit rate per lane presents multiple challenges at the system level
 - High speed circuit implementation, signal integrity, thermal management
 - Total solution cost relative to the application requirements
- Approaches to these challenges are currently being considered for 25 Gb/s
 - Partition the link into multiple segments using re-timers (chip-to-module)
 - Other solutions are yet to be explored
- These things take time
 - Building blocks for lower-cost higher-density 100 Gb/s Ethernet are just being developed
 - Also fundamental for the next Ethernet speed

