

George Paterson

Director of Sales, Axeon Power

Scope of today

- Alternative Lithium chemistries of the future
- Potential advantages
- o Issues to overcome
- o Impact on the design of batteries
- Other influencing factors
- What that means to the specification of future vehicles

Biography

- George Paterson, Director of Sales
- 28 years in industry of which 7 years as Engineering Manager with Axeon
- Last 4 years in sales roles
- o 11 years experience with batteries
- o gpaterson@axeon.com
- o +44 7788417873

About Axeon

Over one million vehicle miles driven since 2007

Volume production; conversion of a range of types of EVs

PHEV packs

- New technology development project funded by TSB
- Design and development of PHEV packs for JLR

Company overview

- Dundee HC
- £65m revenue (2009)
 - 450 employees
- 5 locations in Europe

Why Lithium ion?

- o High coulomic efficiency ⇒ 100%
- o Green
- o Low self-discharge

Cell Chemistry - The Challenges

- Reduce cost materials (raw and synthesis)
 - ⇒ reduce by 50% per kWh?
- o Improve safety short circuits
 - ⇒ thermal run away, over-charge, over-discharge
- o Cycle life cycle life 10,000s for HEVs
- o Calendar life 10 years (transport)
- o Power Density HEV, PHEV
- o Energy Density PHEV, EV, load leveling

Cell Chemistry – HEV Future Developments

- o Materials Chemistry Challenge → New Advanced Battery Materials
- o High Power Density HEV Future? → "Nano-Materials"
 - High surface area Internal = Meso-porous materials
 External = Nano-tubes/wires

- Next generation nano-phosphates Li-[Transition Metal]-Phosphates {Mn/Co/V}
- Hurdles- cost, energy density
- o Surface coatings SiO₂, RuO₂, etc

Alternative EV Battery Chemistries

High Energy Density EV - Future ? →

- Lithium Transition Metal Oxide Cathodes
 - E.g. Layered xLi₂MnO₃• (1-x)LiMO₂
 - An electrochemically inactive (Li₂M'O₃) component is integrated with an electrochemically active (LiMO₂)component to provide improved structural and electrochemical stability.
 - High energy density, High cell voltage, Long cycle life.
- Alloys of Li with Silicon (Si) or Tin (Sn) Nexilion, Sony Corporation (C/Sn/Co))
 - Amorphous Alloy Very high energy density / capacity
 - However very large volume expansions that need to be accommodated
 - Limited size/capacity cells produced commercially so far

New Improved Electrolyte - Higher operating voltages

- The use of high V cathodes limited by the solvent oxidation >4.4 V vs. Li/Li⁺. Requires new electrolytes \rightarrow **lonic liquids** show most promise.
- Poor conductivity limits rate capability.

Lithium-Air Batteries – High Energy Density?

- o Potentially 10 x Energy Density compared to current Li-ion tech
- Use of porous cathode, small % catalyst allows rechargeability
- Hurdles cycle life, rate capability.
- o "Battery 500" project: IBM, UC Berkeley and five US National Labs
- o Electric vehicle battery that gives up to 500 miles per charge
- IBM believes its nano-scale semiconductor fabrication techniques can
 - increase the surface area of the lithium-air battery's electrodes by 100 times.
- $o \Rightarrow$ achieve range goal
- o 2 year feasibility study

Relative theoretical energy densities

Dynamite = 1375 Wh/kg

Wood = 4000 Wh/kg

Petrol = 12000 Wh/kg – highly energy inefficient

EVs, HEVs, & PHEVs have different battery requirements

o Electric Vehicles:

- All electric, battery power/electric motor, 70 130 mile range
- Energy density important, 15-50kWh typical

o Hybrid Electric Vehicles:

- Internal combustion engine is main drive, 400 mile range
- Battery recovers some of the braking energy
- Electric motor and battery provide power boost
- Power density important, 0.5-5kWh typical

o Plug-in Hybrid Electric Vehicles:

- Battery/electric motor drive, with internal combustion engine electricity generator
- 30 mile range on battery, then internal combustion engine used to provide extended range.
- Both energy and power density important, 10-25kWh typical

Possible current/future cell options

	Short Term	Medium Term	Long Term
City EV	Large Format LFP LiMn₂O₄	NCM / TMO Pouch	
			Silicon/Tin-alloy
	2 T	NO.4 / T.40	Rechargeable
Urban Delivery EV	Large Format LFP	NCM / TMO Pouch	metal air
PHEV	NCM Pouch (Possible TSB Project)	NCM / TMO Pouch	systems
Performance HEV	Small Format LFP	Small Format LFP	Advanced Nano- Material electrodes

Future High Energy Density Chemistries

Zn-Air Batteries

- o Discharge powered by the oxidation of zinc with oxygen from the air
 - Usually primary and used for hearing aids.
 - Secondary Zinc-air technology is being pursued by ReVolt Technologies.

Lithium-Sulphur Batteries

- High capacity but may years of development have not solved problems.
 - Discharge products (lithium thiolate) soluble in electrolyte leading to self discharge
 - Is the focus of Sion Power and Oxys Energy, etc.

Li-Air Batteries

- o R&D stage only, potentially 5×10 energy density of today's Li-ion cells.
 - Recharge achieved by use of porous composite carbon and catlayst +ve electrode.
 - Fledgling technology with only demonstrated limited capacity retention on cycling.

Lithium Rechargeable Cell Constructions No Standards

Plastic case. Robust. Easy packaging,
 Inexpensive. Stacked or jelly roll electrodes.

Cylindrical/Prismatic metal case (steel / aluminium). Robust, Easy packaging, Expensive, Jelly roll or stacked electrodes. High energy density, Good heat dissipation,

Typical Battery Assembly

Main Parts of a Battery

- Contactors for switching
- Current shunt to measure amps in and out of the battery
- Busbars and traction cables
- **Connectors**
- **Fuses**
- Complete HVFE

Battery Housing

- Currently steel used in many designs.
- New high strength, lightweight steels and processes being developed for batteries.
- Aluminium fabrications and sections being developed for batteries with integrated thermal management.
- Increasing use of composites and carbon fibre used for high specification batteries, especially in performance cars.

Summary of components for a LiFePO4 27kWh battery

- Current mass 380Kg
- 10% of a battery volume and weight is BMS and HV components
- Another 5-10% is taken up with wiring and bus-bars
- o 15-20% is in the housing and support structure
- o 25-35% of battery weight is non cell content

Battery Charging

- o In theory you can charge a battery in 10 minutes, BUT:
 - Fast charging not always practical. Charging a 50kWh battery in 10 minutes would require a 300 kW power supply. However 50kW DC chargers are beginning to roll out
- Most EVs are used in city areas so 160 km range is more than adequate
- Lithium batteries can be charged at anytime, they do not suffer memory effect
- So, If opportunist charging is available then perhaps smaller capacity, lighter and less expensive batteries are the answer for urban environments

Fast Charging

- 50kW DC fast charger
- Could fully recharge small City EV in 30 minutes
- Or provide short boosts
- Located at service stations and supermarkets
- Battery capacity could be reduced, less cost, weight and size
- HV components and bus-bars have to be rated accordingly
- Cells may have to be actively cooled during charge

Inductive Charging

- System could be buried in the road surface
- Located at major junctions where traffic stops
- Can be used for taxis and buses as well as private EV's
- Location at supermarkets and car parks

Battery capacity could be reduced so less cost, weight and

size

Typical EV battery for mid-sized car

- 27 kWh LiFePO4 battery
 - 380Kg
 - Volume 0.3 m³
 - Range 160 km
- 27 kWh NCM battery
 - 270Kg
 - Volume 0.2 m³
 - Range 175 km
- o 27kWh Li Air battery
 - 70Kg (HV components still required)
 - Volume 0.15 m³
 - Range 200 km

Future pack concepts

2010 35kWh 250km

2015 35kWh 250km

2025 66kWh 500km

Summary

- Improvements in cell chemistry will make batteries, smaller, light and cheaper giving improved range and performance
- Electronic components within a battery also have to advance to save space and weight
- Charging methods can have a big impact on the size of batteries
- New materials and processes for the construction of battery housings will be required to fully benefit from advancements in cells
- Combining all the above will revolutionise EV's, HEV's and PHEV's of the future
- Target of 0.5kWh/Kg by 2030 would give a 27kWh battery a weight of 54Kg and 42l expected range 200km

Thank You

