- 9 -

International Telecommunication Union

Open Communication Architecture Forum

OCAF Focus Group
CGOE Components

Load Balancer
Version 1.0

July 2006

Y.cgoe-cmpts-Annex ld-blnc

Carrier grade open environment components

ANNEX ld-blnc

The load balancer CGOE component

Summary

This Annex specifies the load balancer CGOE component.

Keywords

<Optional>

1
Scope

This Annex specifies the load balancer CGOE component.

2
References

The following ITU-T Recommendations and other references contain provisions, which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published.

The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation

Editor’s note: To be completed

3
Definitions

Editor’s note: To be completed

This Recommendation defines the following terms:

3.1
Application: (See Recommendation Y.CGOE)

3.2
Carrier grade: (See Recommendation Y.CGOE)

3.3
CGOE component: (See Recommendation Y.CGOE)

3.4
End-to-End Security: End-to-end security refers to security between two Diameter nodes, possibly communicating through Diameter Agents.

3.5
Functional requirements: (See Recommendation Y.CGOE)

3.6
Middleware: (See Recommendation Y.CGOE)

3.7
Non-functional requirements: (See Recommendation Y.CGOE)

4
Abbreviations

Editor’s note: To be completed

	AAA
	Authentication, Authorization and Accounting

	CGOE
	Carrier Grade Open Environment

5
Conventions

This Recommendation uses the CGOE component diagram conventions detailed in clause 5 of the main body of this Recommendation.

6
The load balancer CGOE component

6.1
General

Load balancing takes advantage of having multiple service points that can provide identical service, and distributing among them a series of incoming requests. The distribution is based upon some policy chosen from among many that are possible. Although these policies may differ greatly in how they decide to balance the traffic, they all share the goal of keeping the load on all service points as equal as possible. A simple example policy is pure round-robin, and each request is forwarded to the next web server in turn.

The simplest common example is a web serving farm, with a front end load balancer for http requests. In this case, each web server is an identical copy, thus any one can answer any relevant query directed at the web server. For the examples in this writeup call it www.wombat.org. The www.wombat.org address is actually a front-end machine that is the load balancer. For each request that is directed at http://www.wombat.org the load balancer will apply some policy to decide which actual web server will handle that request. In terms of returning the response, it is possible to have the web server return it to the load balancer which then forward it back to the remote requestor, or the web server will reply directly back to the remote requestor bypassing the load balancer on the outbound path.

Current research into this component yields results that there is no specific standard or body which has addressed this component. This indicates that a GAP exists, identified by the OCAF process. The resultant information is a beginning take at what needs to be addressed. The expectation is that this would be done in conjunction with the SAF.

This does not imply that no implementations exist. In fact, many exist, both in commercial products and as open source projects. There are significant similarities amongst these that would point the way toward defining a standard. Further, these do depend on various networking standards, or aspects of networking standards that would not need to be modified.

6.2
Relationship with other CGOE components

Load Balancing is an element of an HSS installation that may be seen as residing “outside” of the main functional path. Rather than offering a direct service to other CGOE software components (e.g. Applications), Load Balancing mediates traffic that comes into the running system. In addition, using a Load Balancing “front end” only makes sense when the services are deployed across multiple related independent servers, e.g., in a clustered environment.

Load Balancing is a part of the Industry Agnostic and belongs to the Base Carrier Grade Platform, and here to the Platform Services. Load Balancing has interfaces to the Operating System and may have interfaces to other Platform Services which also belong to the Base Carrier Grade Platform. Furthermore Load Balancing has or may have interfaces to protocols and/or to the Industry Specific Applications, i.e. to the Middleware and to the Application Services and/or to the Industry Applications, respectively.

· Areas of likely interaction

That said, Load Balancing needs to interact with a number of base components on the various systems used to deploy an HSS solution:

HA/Cluster Software in multiple ways:

Manage the front-end load balancers in a highly-available fashion.

Monitor the set of service point machines to avoid assigning work to a an unavailable service point.

Operating System on each service point machine to be able to monitor “load”.

In addition, Load Balancing and Overload Protection become entwined, with the former needing to adjust if the latter indicates one or more service points has become overloaded.

Alarming, notifications and Logging are triggered by the Load Balancer during normal and exception processing and given out to the operator via OA&M software components.

The Load Balancer may also offer interactions with application stacks to allow fine-tuning of the balancing efforts. This is not something done in general today, but as part of a standards exercise such “call-out / call-in” capabilities would need to be explored. This would also be necessary to easily customize a single implementation for different environments.

Related to Overload, is Dynamic Provisioning (or in IBM-speak, OnDemand).

This would support the cluster bringing online additional resources where needed, and conversely returning those resources to an "idle" pool when no longer needed.

Involved in this is billing for those services, e.g., on an SMP CPUs that are only charged for when needed, or in a cluster individual machines that are provisioned and brought online temporarily. In a 'grid' environment these can be resources that are shared among multiple potential customers.

Many vendors support some version of this in both SMP and cluster/grid cases, but there are no specific standards in how it all should work.

6.3
Internal functional properties

6.3.1
Requirements for Load Balancing

There are five types of requirements which must be fulfilled by the Load Balancer:

general requirements,

requirements to the Load Balancing front end,

requirements to the operating system,

requirements to the applications and

requirements to OA&M software components for alarming and notifications and logging.

6.3.1.1
General Requirements

Minimize load necessary to handle each request on front-end nodes

keep the service point node loads as balanced as possible

sustain high throughput

avoid uncontrolled message loss

guarantee acceptable call failure rate

ensure recovery of front-end and service point nodes

reject overload as near as possible at the traffic sources

6.3.1.2
Requirements to Load Balancing

Load Balancing front-ends are generally dedicated machines, rather than being shared with other function

evaluate the measurements of the operating system in such a way

that relevant measurements from each service point node are normalized to allow proper comparison

and the measurements are updated fast enough so that the general requirements can be fulfilled

The key focus of the Load Balancing is:

distribution of load states of the processor and of the task groups and/or overload levels from the individual processor to all relevant others

Copying from Basic Overload Control are these necessary related functions:

offer load states of the processor and of the tasks groups and/or overload level information to the applications and, if applicable, to protocols (e.g. H.248)

offer information for alarming and notifications to the concerning OA&M software components

provide appropriate parameters for different rejection measures (see Section 0)

6.3.1.3
Requirements to operating system

Load Balancing requires reporting of the load on each service point machine. Taken from the Basic Overload Control section, these are appropriate measurements:

CPU load measurements

total load

load per task group (e.g. call processing, OA&M)

per different time intervals, e.g. 50 ms, 250 ms, 1 s, 4 s etc (this depends on CPU speed and application types)

buffer occupancy

resource utilizations per interval or per event for:

heap

timers

etc

6.3.1.4
Requirements to applications

handling of overload rejection measures

provide several rejection measures, e.g. call gapping, leaky bucket, quoted thin out, rejection according to priorities, token etc (dependent on the hardware and software architecture and on the types of applications)

preferred rejection of new tasks and continuing processing of already accepted tasks

6.3.1.5
Requirements to OA&M

provide functions to define CPU load model, i.e. runtime slices for different task groups

provide functions to give out overload alarms and notifications to the operator

· Functional Description

The picture in Illustration 1A View of the www.wombat.com Load Balancer shows an example of a simple Load Balancing deployment. The service point machines hold the various components in addition to matching service point end-points. The next few paragraphs refer to this illustration as [image: image2]necessary.

[image: image3]
Each individual http://www.wombat.org request is assumed to be independent and idempotent. Thus, there are no 'transactions' that require multiple individual http://www.wombat.org requests to satisfy them.

To handle transations, it is necessary for the load balancer to 'remember' the source of a request, and to ensure that all subsequent requests from that source are directed to the same web server.

This would in effect bind the remote requestor to a single web server, for example, to maintain a shopping cart on a web commerce site.

Alternately, the web servers themselves may operate across shared storage or some other medium that allows them to synchronize and match up a 'session' from a single remote requestor.

The load balancer needs to understand the nature of the requests that will come in and the nature of the servers that handle those requests to ensure that the proper handling is performed.

The load balancer will usually need more involved policy capabilities than simply round-robin. There will usually be the need for each web server to indicate to the load balancer how busy it is. The example above assumed each request to http://www.wombat.org would result in the same amount of load to handle, but this is clearly not sufficient for all cases.

However, note that some loads, such as home location lookups, will very likely be quite consistent since the response will almost always be the same size, and the load involved in calculating the response will be the same.

There is also the issue of failure, for both the load balancer and the individual servers. The usual answer to this is to cluster them.

The load balancer 'front end' will therefore be at least two machines, with an active and a backup server. The www.wombat.org address will be a virtual IP address residing on a network interface on the active machine. The two machines will need to use clustering software (or some similar method) to monitor each other. Upon failure of the active machine, the backup will takeover the www.wombat.org IP address and continue accepting requests.

Depending on the complexity of the policies and the need (or not) for transactions, the two servers may have shared storage (some sort of multi-tailed disks or the like) to hold this data. A simple load balancer may not need this.

The servers providing the service points do themselves not necessarily need to have backups.

Where each has a completely independent image, then when one fails the load balancer simply quits sending it requests until it reboots. This assumes the load balancer has some level of active monitoring capability of each server.

In more complex cases, the individual servers may have shared storage (e.g., to maintain shopping carts) and defined backups. The load balancer will need to be aware of these relationships to ensure that a chain of requests that were going to one server can then be directed to the server that has taken over its work.

Finally, the load balancer is dependent upon the network that it uses. The most common case of IP networks provides a number of methods for the packets to be redirected, and for TCP connection requests to be forwarded to a specific server.

· A Simple SIP Protocol Stack with a Load Balancer

The picture in Figure 1 – Three tiered SIP load-balancing architecture shows an example of a load balanced setup. The above example of stateless http requests would match this model as well. A note that should be added is that the “IP Load Balancer” component (or tier) itself will almost always be a cluster in itself, to provide redundancy of the load balancer itself.

[image: image1.wmf]
Figure 1 – Three tiered SIP load-balancing architecture

In addition to load balancing, this support relates to peripheral functionality:

Overload - what is the total load that can be handled by the entire set of servers.

Additional policies need to be defined on how to handle this.

· Specifications for the Load Balancer Cluster and the Service Point Cluster

The nodes used to provide the Load Balancer front-end must be defined in an HA cluster using appropriate hardware and software clustering techniques. The list of service point nodes to be used must also be identified to the Load Balancer.

The service point nodes may, or may not, be clustered in an HA environment. This will depend on the service(s) being provided. However, it is required that the Load Balancer be able to monitor these nodes for loads and for liveness to make request balancing decisions.

· Specifications of task groups, relevant buffers and measurement intervals

In conjunction with Basic Load Control, Load Balancing depends on “load” measurements on the nodes so shares this requirement. It will be sufficient that the specifications can be done in the system declaration phase and the activations while system initializing.

In the declaration phase each task must be assign to a task group, to each task group should be assigned an individual runtime slice and the relevant buffers must be registered for supervision by the operating system. Additionally the declaration of the measurement intervals must be made. Concerning buffers it must be specified if the observation should be done per measurement interval or per event. While initialization these declarations must be made available to the operating system.

· Alarming and notifications

It is required that the operator should be informed of overload situations by alarms and notifications. The beginning of an overload situation should be alarmed. During an overload situation notifications should optionally be sent to the operator. The end of an overload situation should be indicated by the end of alarm.

Overload situations can be both on the front-end nodes and on the service point nodes:

It is possible for too many requests to come in for the front-end node to handle and it should indicate it is in an overload situation, and likewise indicate end of the situation.

One or more service point nodes may become overloaded, forcing the load balancer to temporarily exclude it from receiving additional requests. Likewise, once this situation has been cleared it should also be indicated.

· Logging

It is required that the Load Balancer log its activities. On the Load Balancer front-end nodes, it should log requests at the level of detail desired by the system operator. This might be every request or summaries, and the requests as forwarded to each service point. The policy (or policies) in force at initialization, and whenever changed, must also be logged.

In addition, actions related to the service point nodes must also be logged:

The list of service point nodes.

Any changes in status (failure, reintegration, overload, etc.) that require the Load Balancer to change its activities.

If desired, the loads and other monitor information regarding the individual service point nodes.

6.4
Non-functional properties

6.5
Interfaces

The SA Forum currently provides the specifications to build the appropriate Service Groups (SGs) that would encapsulate the load balancer front-end cluster and service point node services. The discussion about specific failover of IP addresses and shared storage is covered by the capabilities there.

Beyond the HA and cluster definitions are the interfaces needed to standardize the Load Balancing “functionality”. What is needed is to translate the current product-specific interfaces and capabilities into standards specifications.

· Balancing policy definitions.

The simplest example is round-robin. This would in its simplest case be a count of the number of servers.

More complex policies then involve elements of the below 'Load' and 'Stickiness' definitions.

Note also that the 'Service-based' discussion below can tie into the policy, in that the load balancer may have insight into the traffic and use that to help guide it's decisions.

· Network usage.

Using the above terms, 'NAT', 'Tunneling' or 'Direct'. And depending on the kinds of networks (non-IP potentially) you may need to generalize this in even more interesting manners.

· Load definitions.

What is 'load'. Is it in terms of CPU, network packets, bits, bytes, requests, etc? Clearly this will be done in conjunction with the Basic Load Control service, but there are unique aspects as described here.

There are a couple of directions to go with this:

Service-agnostic: define in terms of CPU usage, network traffic, etc., with no consideration for the application. In cases such as web serving (http) where requests are small and responses can be (very) large, this can sometimes lead to poor balancing of actual server resources based on the granularity of measurements.

Service-based: provide definitional capabilities where the administrator can provide 'hints' about how to identify different kinds of traffic and how to use that to balance load. Note that to do this for a general case can be complex (c.f. the Application Management Framework (AMF) in the SA Forum's Application Interface Specification, where we provide all of the capabilities to define services and group them for recovery and management. You'd need something akin to this for Service-based load balancing.)

· Stickiness.

This refers to the level of affinity for a requester's series of requests to a particular server. The need for this will depend on the nature of the traffic being load balanced, but this could be done in a manner agnostic to that traffic. The result is that the load balancer needs to remember where (to which server) it sends requests and make sure that requester's traffic continues to the same server.

This is a definite case where Overload can come into play, since long transactions might tie up increasing numbers of servers.

· Failure/recovery policies.

This is the place where the Load Balancer needs to tie into the HA middleware (e.g., SA Forum AIS). However, if you're looking to be a bit more agnostic, you'd want to define more generic items:

Number of load balancer images.

Shared data (or not).

Number of server images.

Redundancy policy -- this refers to whether or not a failed system needs to be failed over. In the above http serving example, the load balancer would be what SA Forum AMF calls a 2N redundancy, and the web servers themselves simply No Redundancy redundancy model since they are all identical, and we merely want to have all (of the alive ones) online. However, there are additional SA Forum redundancy models that can be used to support failover amongst the servers.

Also necessary, is how does the load balancer monitor the individual servers?

In a No Redundancy model, it does no good for the Load Balancer to send requests to a dead server.

Note that the SA Forum AIS offers services that can be used to enable this, e.g., the Event Service. In addition, future SA Forum Systems Management interfaces can also support this. Additional Peripheral Protocols Needed additional peripheral protocols involve the capabilities to manipulate the network traffic to:

Identify the sender

Forward the packet

Have the server bypass the load balancer by identifying the original source sender

Most of these are parts of the IP standards, although I don't have all of the specific RFPs to cite. However, the Linux Virtual Server (LVS) page at http://www.linuxvirtualserver.org/how.html provides description of common techniques that support this. To summarize here, those techniques are introduced in the following sections. This list is not meant to be all-inclusive, however it does provide broad coverage of what is usually done.

· Virtual Server via NAT

The advantage of the virtual server via NAT is that real servers can run any operating system that supports TCP/IP protocol, real servers can use private Internet addresses, and only an IP address is needed for the load balancer. In the virtual server via NAT, request and response packets all need to pass through the load balancer, the load balancer may be a new bottleneck based on the number and size of requests and responses.

· Virtual Server via IP Tunneling

In the virtual server via IP tunneling, the load balancer just schedules requests to the different real servers, and the real servers return replies directly to the users, making it more scalable than using NAT. However, all servers must have "IP Tunneling" (IP Encapsulation) protocol enabled, which allows the servers to know the "original" sender of the packet, and not return the response to the load balancer from whom they received the forwarded request. Due to security, or due to implementation problems (not all systems properly implement IP Encapsulation) this is sometimes problematic. It is known to work on Linux though.

· Virtual Server via Direct Routing

In the virtual server via Direct Routing, the load balancer just schedules requests to the different real servers, and the real servers return replies directly to the users, making it also more scalable than using NAT. Compared to the virtual server via IP tunneling approach, this approach doesn't have tunneling overhead (In fact, this overhead is minimal in most situations), but requires that one of the load balancer's interfaces and the real servers' interfaces must be in the same physical segment to support the direct forward routing of the requests. The responses then need to be delivered through an interface that can reach the original sender.

7
Security

Editor’s note: To be added

Bibliography

Editor’s note: To be added

� EMBED opendocument.DrawDocument.1 ���

Illustration � SEQ "Illustration" *Arabic �1�A View of the www.wombat.com Load Balancer

[image: image2]
[image: image3]
CGOE Load Balancer Version 1.0

[image: image4.png][image: image5.png][image: image6.emf]Load Balancer

Primary

SIP, HTTP/HTTPS, TCP/IP

HA Middleware

Policy Manager

Overload Control

Log Management

Performance Mgmt

Life Cycle Mgmt

IF1

IF5

IF4

IF3

IF2

IF6

Bruce Anthony/Peter Badovinatz

Load Balancer

Secondary

HA Cluster

middleware

www.wombat.com

www.wombat.com

Service Point 1

Service Point 2

Service Point 3

Service Point 4

Service Point 5

Service Point 6

_-1379541988.unknown

_-1379813584.unknown

