- 6 -

International Telecommunication Union

Open Communication Architecture Forum

OCAF Focus Group
CGOE Components

Tracer
Version 1.0

July 2006

Y.cgoe-cmpts-Annex trcr
Carrier grade open environment components

ANNEX trcr
The tracer CGOE component
Summary

This Annex specifies the tracer CGOE component.

Keywords

<Optional>

1
Scope

This Annex specifies the tracer CGOE component.

2
References

The following ITU-T Recommendations and other references contain provisions, which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published.

The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation

Editor’s note: To be completed
3
Definitions

Editor’s note: To be completed

This Recommendation defines the following terms:

3.1
Application: (See Recommendation Y.CGOE)
3.2
Carrier grade: (See Recommendation Y.CGOE)
3.3
CGOE component: (See Recommendation Y.CGOE)
3.4
End-to-End Security: End-to-end security refers to security between two Diameter nodes, possibly communicating through Diameter Agents.

3.5
Functional requirements: (See Recommendation Y.CGOE)
3.6
Middleware: (See Recommendation Y.CGOE)
3.7
Non-functional requirements: (See Recommendation Y.CGOE)
4
Abbreviations

Editor’s note: To be completed
	AAA
	Authentication, Authorization and Accounting

	CGOE
	Carrier Grade Open Environment

5
Conventions

This Recommendation uses the CGOE component diagram conventions detailed in clause 5 of the main body of this Recommendation.
6
The tracer CGOE component

6.1
General

A reliable and well maintained system needs to collect information about the behaviour of its application and platform software components during tests (both on test sites and operator premises) and during normal operation. This facilitates optimizations of system configuration, tracking of problems on running systems and post mortem fault analysis.

Data to be collected by a tracer for the above purpose can be related to performance, to errors detected at runtime, to special events, or just to the general behaviour of a software component.

The collection of trace data needs to be organized, it must be possible to switch collection of specific trace data on and off, and it is necessary to store and retrieve the trace data. Making the same or very similar trace functionality available to applica​tions and to components of low platform layers is advisable, since it facilitates post processing and correlation of trace data.

Since applications and platform components need to be instrumented to support the tracer, a standardized but flexible API to the tracer is essential for portable applications and reusable platform components.

Offline interpretation of trace data collected is usually dependent on the used programming environment, and especially the used programming language and OS. (Do we wish to analyze this further in OCAF, or do we feel it might sidetrack us?)

In contrast to the Event manager task, trace data are not relevant or visible to other components during run time. During normal situations there is little or no data collected. However, in case certain traces are enabled, a high number of incidents might occur in a short time period.

The function offers a building block wide capability. All SW incidents outside the building block are out of scope of this component.

The Tracer consists of at least four functions

1. Collecting trace data
2. Switching collection of particular trace data on and off

3. Storing and retrieving trace data

4. Interpreting retrieved trace data offline

· Standards:
OSDL CGL 2.0 requirement TLS 4.0 (prio 2) specifies that carrier grade Linux shall pro​vide support for interfaces to allow utilities to collect data from trace kernel and ap​pli​​cation level activity. There are a number of methods extant for providing these fea​tures, but none are accepted as mainstream Linux methods. (LTT, LKST trace only the kernel, other tools like GNU gprof require specific compilation of the trace target and are hence not usable in the field.)

OSDL DCL 1.1 requirement DC-7 (prio 2) specifies trace and profiling tools: “Trace tools that trace through all API calls, both user-level and kernel, provide de​velopers invaluable insight into how their code interacts with the operating system and all the other libraries and packages that code calls upon. A com​plete trace tool also traces and displays kernel events.” It does not specify or re​ference standards, though. OSDL DCL 1.1 requirement R.Dynamic Tracer (prio 1) further specifies the properties of a dynamic LINUX kernel tracer.

6.2
Relationship with other CGOE components

The following diagram shows the Tracer component relative to other system components.

[image: image1.emf]Tracer

any application

within

building block

Life CycleManager

OAM&P Middleware

Element

Manager

CLI

6.3
Internal functional properties

6.3.1
Collecting trace data

The Tracer gets the trace data from an application (component) which invokes the Tracer. If a particular trace encompassing the trace data is enabled, it adds administration information to it and stores the data in a persistent storage.
6.3.2
Switching collection of particular trace data on/off

The Tracer provides an API to other components to switch particular traces on and off. If the trace function is switched on for a component, the tracer is then able to distinguish the sources of the trace data.
6.3.3
Store trace information

The Tracer provides the capability to store the trace data for a later retrieval. Data should be presented in an alphanumeric form. The Tracer keeps track of where the data of a calling programs is stored. It allows query the information about stored data as well as to retrieve specified data.

6.4
Non-functional properties

6.5
Interfaces

6.5.1
Tracer-IF-01 <Collect Trace Data>
This interface provides an API for CGOE components to transmit data belonging to one or more specific traces to the Tracer, which these components deem to be neces​sa​ry to collect.

Standards

There are apparently no standards for this interface, but standards allowing to collect specific data to be stored through this interface do exist:

SAF AIS B.01.01 provides an interface to track objects within the AIS middleware.

6.5.2
Tracer-IF-02 <Configure Traces>
This interface allows software components (like Overload Control) to enable/disable the tracing and storing of data belonging to certain traces a CGOE component collects.

Standard

None known. Definition of an on/off configurable ‚trace’ combining the collection of diverse data for a given purpose would be at the basis of such a standard.

6.5.3
Tracer-IF-03 FTP <Life Cycle Manager>
This interface is used to attach to the Life Cycle Manager for SW upgrade and SW correction purposes.

Standard

See Life Cycle Manager
6.5.4
Tracer-IF-4 <OAM&P Middleware>
This interface provides the opportunity for remote configurability of the Tracer com​po​nent. It uses either the OAM&P component or a CLI interface for emergency access. It covers OAM&P/CLI access to Tracer-IF-02, but also allocates, de-allocates and assigns resources (e. g. CPU usage for tracing, buffer space and management, trace files, their names, properties and access rights, space reserved for trace file extensions).

Standard

· Gap - A standard neutral modelling technique is (missing see OAM&P middleware). Probably we will have to commit to a specific level of resource handling before finding a standard.
7
Security

Editor’s note: To be added

Bibliography

Editor’s note: To be added

[image: image2]
[image: image3]
CGOE Tracer Version 1.0

[image: image2][image: image3][image: image4.png]Open
Communication
Architecture
Forum

[image: image5.png]

_1190804215.ppt

Tracer

any application within

building block

Life Cycle Manager

OAM&P Middleware

Element Manager

CLI

