ITU-T Kaleidoscope Conference Innovations in NGN

An Alternative Access Technology for Next Generation Networks based on Full-Optical Wireless Communication Links

Mitsuji Matsumoto¹, <u>Kamugisha Kazaura</u>¹, Pham Dat¹, Alam Shah¹, Kazunori Omae¹, Toshiji Suzuki¹, Kazuhiko Wakamori¹, Takeshi Higashino², Katsutoshi Tsukamoto² and Shozo Komaki² ¹Global Information and Telecommunication Institute (GITI),

²Graduate School of Engineering, Osaka University, Osaka, Japan

Contents

Broadband access technologies Optical wireless technologies Overview and application areas of OWC Conventional OWC systems New F-OWC systems Advanced DWDM RoF-OWC systems Experiments results and analysis Conclusion

Broadband Access Technologies

Broadband access technologies and other wireless technologies and standards

Communication distance

Geneva, 12-13 May 2008 First ITU-T Kaleidoscope Conference – Innovations in NGN

Overview of Optical Wireless Communications

OWC is the transmission of modulated visible or infrared (IR) beams through the atmosphere to obtain broadband communications.

Cosmic radiation T radiation

Advantages

- Secure wireless system not easy to intercept
- Easy to deploy, avoid huge costs involved in laying cables
- License free
- several kms
- Can transmit high data rate

Disadvantages

- High dependence on weather condition (rain, snow, fog, dust particles etc)
- Can not propagate through obstacles
- Susceptible to atmospheric effects (atmospheric fluctuations)

X ray radiatio 1016 Frequency_(Hz) Possible for communication up to

Visible light

IR radiation

Communications radiation

SW

Microwave, radar

V radiation

Electromagnetic spectrum

OWC technology application scenarios

Internet

Terrestrial

- Metro network extension
- Last mile access
- Enterprise connectivity
- Fiber backup
- Transmission of heterogeneous wireless services

Metro netwo IC transceiver and extension ase station mote Areas with no fiber connectivity **OWC link Optical fiber link RF based links OWC transceiver** Remote located settlements Data relay satellite Inter-satellite link Space station High-speed (10Gbs) **Demonstration of** optical feeder link 2.5 Gbps link AEN 5 **Ground station** with adaptive optics Fiber optic link

ountainous terrain

Space

- Inter-satellite communication (cross link)
- Satellite to ground data transmission (down link)
- Deep space communication

OWC technology

Conventional OWC system

- Operate near the 800nm wavelength band
- Uses O/E & E/O conversion
- Data rates up to 2.5 Gbps
- Bandwidth and power limitations

New F-OWC system

- Uses 1550nm wavelength
- Seamless connection of optical wireless beam and fiber.
- Multi gigabit per second data rates (using optical fiber technology)
- Compatible with existing fiber infrastructure
- Protocol and data rate independent

Advanced DWDM RoF-OWC system

Uses 1550nm wavelength Transport multiple RF signals using DWDM OWC channels

Realize heterogeneous wireless services e.g. WLAN, Cellular, terrestrial digital TV etc

Deployment environment characteristics

Atmospheric turbulence has a significant impact on the quality of the optical wireless beam propagating through the atmosphere.

Reduces the optical beam power at the receiver point and causes burst errors

Geneva, 12-13 May 2008 First ITU-T Kaleidoscope Conference – Innovations in NGN

Other effects include

- Beam broadening and
- Angle-of-arrival fluctuations

Mitigation techniques include:

- Aperture averaging
- Diversity techniques
- Adaptive optics
- Coding techniques

(c) Rooftop setup First ITU-T Kaleidoscope Conference – Innovations in NGN

(d) Experimental hardware setup

 Application data performance characteristics

Specifications of equipment

F-OWC system performance evaluation experimental setup

BER and receiver power characteristics

2.5 Gbps transmission

10 Gbps transmission

Single channel 1550 nm data link operating at 2.5 Gbps Single channel 1550 nm data link operating at 10 Gbps

Eye pattern characteristics

First ITU-T Kaleidoscope Conference – Innovations in NGN

WDM experiment

Four channel 1550 nm data link operating at 2.5 Gbps WDM

- 2.5 Gbps X 4 channels with output power 100mW/wavelength
- Stable communication was achieved with no fluctuation or interference between wavelengths

Conclusion

- Developed a transparent optical wireless communication system which is readily compatible with existing widely deployed PON access technology.
- Demonstrated that the systems offers stable and reliable transmission at single channel 2.5 and 10 Gbps as well as WDM transmission.
- Confirmed the technology can be used as alternative broadband access technology in the emerging NGN.
- Standardization activities with respect to transceivers and devices for ease in adaptability with existing broadband access technologies both wire-line and wireless based.
- Further work in research and development of advanced DWDM RoF-OWC system for heterogeneous wireless communication signals transmission.

ITU-T Kaleidoscope Conference Innovations in NGN

Supported by

This work is supported by a grant from the National Institute of Information and Communication (NICT) of Japan

Thank you for your attention

Backup slides

BER and receiver power characteristics

Single channel 1550 nm data link operating at 2.5 Gbps BER and received power characteristics under the influence of strong atmospheric turbulence and rain

BER and receiver power characteristics

Single channel 1550 nm data link operating at 2.5 Gbps BER and received power characteristics under snow event

Fluctuation suppression

Fiber received power after setting the antenna FPM tracking speed to 1 kHz

Tracking system reduces the pointing errors which suppresses the atmospheric induced scintillation effects.

Receiving Structure

Scintillation (intensity fluctuations)

A general fluctuation rate of variability is distributed within the range from several to 1kHz.

An quick change of 100Hz or more of received power decreases dramatically. However, the fiber direct coupling cannot be done without repairing of the fluctuation

Optical outline

