Kick off presentation on ICT and Climate Change a wireless and mobile perspective

Hans-Otto Scheck Helmut Schink Margit Brandl

Geneva Meeting 1-3 September 2008

New services and applications are booming and require very high speed connections

>50Mbit/s

Consumer generated content

Social Networking

Subscriber's behavior has changed from pure consumption to active participation

Usage of Internet based services is growing

Top 5 Growth Areas

Interactivity adds value to an operator's service offering

Bandwidth requirements of modern public & business applications rise

Source: Telework Consortium / Own

ITU_{and} Climate Change

Nielsen's Law of rising bandwidth requirements can also be applied to the revenue generating business sector

Applications and mobility requirements

Fixed vs. mobile - it's a "last mile" discussion

The bulk of data traffic is served by fixed networks, the last mile to the enduser is fixed or wireless, depending on user requirements

Fixed broadband access will continue to offer higher data rates than wireless

The fixed user data rate is today some 30 times that of wireless, and both a have similar evolutionary trajectory

Data rates are only one part the story

- The data rate comparison ignores the impact of range / distance of different technologies
- Fixed access can provide significantly higher data rates over a considerably longer range
- Mobility can be only provided by wireless
- > Faster rollout of uncovered areas with wireless
- Cheaper coverage of scarcely populated areas with wireless
- Different CAPEX / OPEX distribution

Fixed and wireless are complementary technologies

Data rates vs. range for cellular systems

Wide area wireless systems are limited to ~100MB/s Higher data rates are only feasible for local area coverage

Energy efficiency of fixed and wireless

- 3B mobile subscriptions produce ~22Mt/a CO2
- 0.4B fixed broadband connections emit about the same amount
- There are more mobile subscriptions than users
- There are more users than broadband connections
- There's a completely different usage pattern of fixed and mobile networks

We have currently no suitable scale to compare energy efficiency of fixed and wireless access

Only fiber has the potential to cover the growing data traffic in future

- Fast Internet
- Media Streaming
- Tele-working
 - > Mbps
 - Voice POTS

ITU_{and} Climate

- Multimedia Home
- Broadcast TV / VoD
 - > TV Channels, VoD
 - > 10 Mbps
 - Voice POTS & VoIP

- Multi channel Entertainment
- Copper
- Fiber
- HDTV Channels, VoD
- 100 Mbps and more
- Voice VoIP
- Home Control & Security

Central Office Copper ADSL

Fiber to the Node (Curb / Building)

Copper / Fiber

ADSL2+ VDSL2

Fiber to the Home Fiber
PON, Ethernet ptp

2001 2004 2008 2010 Time

Change
Fiber is a "green technology": Enormous
energy savings reduce also OPEX

Example: 100.000 subscribers

ITU_{and} Climate

Copper access based on ADSL2+

- 16 Mbit/s
- Energy Consumption:1314 MWh/year = 775t CO2

FTTH network based on GPON

- 100 Mbit/s
- Energy Consumption: 262 MWh/year = 154t CO2

The telecom & ICT can leverage energy consumption

ICT's global footprint: ICT's abatement potential:

830MtCO2e (2007)

1430MtCO₂e (2020) 7800MtCO₂e (2020)

Thank You!

