

Recomendación UIT-R P.1240-2 (07/2015)

Métodos del UIT-R para la predicción de la MUF básica, de la MUF operacional (o MUF de explotación) y trayecto del rayo

Serie P

Propagación de las ondas radioeléctricas

Prólogo

El Sector de Radiocomunicaciones tiene como cometido garantizar la utilización racional, equitativa, eficaz y económica del espectro de frecuencias radioeléctricas por todos los servicios de radiocomunicaciones, incluidos los servicios por satélite, y realizar, sin limitación de gamas de frecuencias, estudios que sirvan de base para la adopción de las Recomendaciones UIT-R.

Las Conferencias Mundiales y Regionales de Radiocomunicaciones y las Asambleas de Radiocomunicaciones, con la colaboración de las Comisiones de Estudio, cumplen las funciones reglamentarias y políticas del Sector de Radiocomunicaciones.

Política sobre Derechos de Propiedad Intelectual (IPR)

La política del UIT-R sobre Derechos de Propiedad Intelectual se describe en la Política Común de Patentes UIT-T/UIT-R/ISO/CEI a la que se hace referencia en el Anexo 1 a la Resolución UIT-R 1. Los formularios que deben utilizarse en la declaración sobre patentes y utilización de patentes por los titulares de las mismas figuran en la dirección web http://www.itu.int/ITU-R/go/patents/es, donde también aparecen las Directrices para la implementación de la Política Común de Patentes UIT-T/UIT-R/ISO/CEI y la base de datos sobre información de patentes del UIT-R sobre este asunto.

Series de las Recomendaciones UIT-R							
(También disponible en línea en http://www.itu.int/publ/R-REC/es)							
Series	Título						
ВО	Distribución por satélite						
BR	Registro para producción, archivo y reproducción; películas en televisión						
BS	Servicio de radiodifusión (sonora)						
BT	Servicio de radiodifusión (televisión)						
\mathbf{F}	Servicio fijo						
M	Servicios móviles, de radiodeterminación, de aficionados y otros servicios por satélite conexos						
P	Propagación de las ondas radioeléctricas						
RA	Radioastronomía						
RS	Sistemas de detección a distancia						
\mathbf{S}	Servicio fijo por satélite						
SA	Aplicaciones espaciales y meteorología						
SF	Compartición de frecuencias y coordinación entre los sistemas del servicio fijo por satélite y del servicio fijo						
\mathbf{SM}	Gestión del espectro						
SNG	Periodismo electrónico por satélite						
TF	Emisiones de frecuencias patrón y señales horarias						
\mathbf{V}	Vocabulario y cuestiones afines						

Nota: Esta Recomendación UIT-R fue aprobada en inglés conforme al procedimiento detallado en la Resolución UIT-R 1.

Publicación electrónica Ginebra, 2016

© UIT 2016

Reservados todos los derechos. Ninguna parte de esta publicación puede reproducirse por ningún procedimiento sin previa autorización escrita por parte de la UIT.

RECOMENDACIÓN UIT-R P.1240-2

Métodos del UIT-R para la predicción de la MUF básica, de la MUF operacional (o MUF de explotación) y trayecto del rayo*

(Cuestión UIT-R 212/3)

(1997-2007-2015)

Cometido

La presente Recomendación define métodos para la predicción de las frecuencias máximas utilizables (MUF) en las capas ionosféricas.

La Asamblea de Radiocomunicaciones de la UIT,

considerando

- a) que para el diseño de circuitos radioeléctricos en ondas decamétricas, la planificación de los servicios y la selección de las bandas de frecuencias son necesarios métodos de predicción y datos ionosféricos de referencia a largo plazo;
- que la Recomendación UIT-R P.1239 contiene cartogramas de características ionosféricas,
 recomienda
- 1 que para la predicción de la MUF básica y operacional se haga uso de las fórmulas contenidas en el Anexo 1 (para las definiciones, véase la Recomendación UIT-R P.373);
- **2** que para la predicción de los trayectos del rayo se haga uso de las fórmulas contenidas en el Anexo 2.

Anexo 1

Predicción de las MUF básica y operacional

1 Introducción

Se presentan fórmulas empíricas para evaluar la mediana mensual de la MUF básica del trayecto de propagación.

Esta MUF se considera como el valor más elevado de la MUF básica para los modos de propagación que corresponden a la longitud del trayecto considerada.

^{*} Los programas de computadora asociados con los procedimientos de predicción y los datos descritos en la presente Recomendación están disponibles en la páginas del sitio web del UIT-R relativas a la Comisión de Estudio 3 de Radiocomunicaciones.

Se indica la relación entre la MUF operacional y la MUF básica y se describe un programa de computadora mediante el cual se proporcionan estimaciones de la MUF básica y la operacional y de la frecuencia de trabajo óptima en un trayecto de propagación punto a punto de cualquier longitud.

2 Consideraciones sobre el modo

Los modos considerados son los siguientes:

1F2	0 a $d_{m\acute{a}x}$
Modos de orden superior a F2	más de $d_{m\acute{a}x}$
1F1	2 000-3 400 km
1E	0-2 000 km
2E	2 000-4 000 km

donde el máximo alcance sobre el suelo $d_{m\acute{a}x}$ (km) para un solo salto en el modo F2 viene dado por la fórmula:

$$d_{max} = 4780 + (12610 + 2140/x^2 - 49720/x^4 + 688900/x^6) (1/B - 0.303)$$

con:

$$B = M(3000)F2 - 0.124 + \left[[M(3000F2)^{2}] - 4 \right] \cdot \left[0.0215 + 0.005 \operatorname{sen} \left(\frac{7.854}{x} - 1.9635 \right) \right]$$

y
$$x = \text{foF2/foE}$$
, o 2 (el mayor valor).

Se utilizan las características ionosféricas para el punto medio del trayecto de círculo máximo.

3 Predicción de MUF básica de la capa F2

3.1 Distancia sobre el suelo D hasta $d_{m\acute{a}x}$

La MUF básica de la capa F2 viene dada por la expresión:

F2(D)MПЧ =
$$\left[1 + \left(\frac{C_D}{C_{3000}}\right)(B-1)\right] \cdot \text{foF2} + \frac{f_H}{2}\left(1 - \frac{D}{d_{max}}\right),$$

siendo:

f_H: girofrecuencia adecuada (véase la Recomendación UIT-R P.1239)

y

$$C_D = 0.74 - 0.591 Z - 0.424 Z^2 - 0.090 Z^3 + 0.088 Z^4 + 0.181 Z^5 + 0.096 Z^6$$

$$con Z = 1 - 2D/d_{max}$$

 C_{3000} : valor de C_D para $D = 3\,000$ km, siendo D la distancia de círculo máximo (km).

Las fórmulas anteriores se aplican a la MUF básica para la onda x a distancia cero, para la onda o a distancias $d_{m\acute{a}x}$ y superiores y para algunas ondas compuestas a distancias intermedias. La correspondiente MUF básica de la onda o se obtiene para todas las distancias eliminando el último término en f_H de la primera fórmula.

3.2 Distancia sobre el suelo D superior a $d_{m\acute{a}x}$

Los valores de F2($d_{máx}$) MUF se determinan para dos ubicaciones de puntos de control a $d_0/2$ de cada terminal a lo largo del trayecto de círculo máximo de conexión, siendo d_0 la longitud de salto del modo F2 de orden inferior. La MUF del trayecto es el menor de los dos valores.

4 Predicción de la MUF básica de la capa F1

La propagación ionosférica por la capa F1 es importante para distancias de transmisión entre 2 000 y 3 400 km, en latitudes medias y elevadas, durante los meses de verano. Para las mencionadas distancias de transmisión la MUF básica de la capa F1 se considera como el producto del valor de foF1 en el punto mitad del trayecto (véase la Recomendación UIT-R P.1239) y el factor $M_{\rm F1}$. El factor M se ha deducido de cálculos de trazado de rayos en perfiles de densidad electrónica en función de la altura, obtenidos en base a ionogramas representativos de medio día en latitudes medias y altas. Se supone que estos factores se aplican a todos los ángulos cenitales del Sol. El factor M puede determinarse a partir de las siguientes expresiones numéricas:

$$M_{\rm F1} = J_0 - 0.01 (J_0 - J_{100}) R_{12}$$

donde:

$$J_0 = 0.16 + 2.64 \times 10^{-3} D - 0.40 \times 10^{-6} D^2$$

 $J_{100} = -0.52 + 2.69 \times 10^{-3} D - 0.39 \times 10^{-6} D^2$

y donde D es la distancia de círculo máximo (km) (entre 2 000 y 3 400 km).

5 Predicción de la MUF básica de la capa E

5.1 Distancia sobre el suelo inferior a 2 000 km

La propagación ionosférica vía reflexiones únicas de la capa E es importante para las distancias de transmisión inferiores a 2 000 km. La MUF básica de la capa E de un modo de propagación en particular puede determinarse como el producto del valor a medio trayecto de la foE (véase la Recomendación UIT-R P.1239) y el factor $M_{\rm E}$. El factor M se basa en cálculos del trayecto del rayo para un modelo parabólico de la capa E con hmE = 110 km, ymE = 20 km, despreciando los efectos del campo magnético de la Tierra. Se calcula mediante la ecuación:

$$M_{\rm E} = 3.94 + 2.80 x - 1.70 x^2 - 0.60 x^3 + 0.96 x^4$$

donde:

$$x = \frac{D - 1150}{1150}$$

siendo D la distancia de círculo máximo (km).

5.2 Distancia sobre el suelo entre 2 000 y 4 000 km

El modo 2E MUF para distancias entre 2 000 y 4 000 km se considera como el E(2000)MUF expresado en términos de foE a mitad de trayecto.

6 Predicción de la MUF operacional

Para formular predicciones, cuando se determina la MUF operacional (véase la Recomendación UIT-R P.373) para un modo F2 se expresa en términos de la MUF básica. En el Cuadro 1 se observa la relación entre la MUF operacional y la MUF básica para las diferentes estaciones del año, horas del día y potencia radiada del transmisor, relaciones que pueden utilizarse cuando no se dispone de información concreta sobre el circuito en cuestión. Cuando se determina la MUF operacional para un modo E o F1, se toma igual a la MUF básica correspondiente.

CUADRO 1 Relación (R_{op}) entre la MUF operacional mediana y la MUF básica mediana para un modo F2

	Verano		Equinoccio		Invierno	
Potencia isótropa radiada equivalente (dBW)	Noche	Día	Noche	Día	Noche	Día
≤ 30	1,20	1,10	1,25	1,15	1,30	1,20
> 30	1,25	1,15	1,30	1,20	1,35	1,25

7 Predicción de la frecuencia óptima de trabajo (FOT)

La FOT (Recomendación UIT-R P.373) se estima en términos de la MUF operacional, utilizando un factor de conversión F_l igual a 0,95 si la MUF básica del trayecto está determinada por un modo E o F1 y del valor indicado en el Cuadro 2 de la Recomendación UIT-R P.1239 si la MUF básica del trayecto está determinada por un modo F2.

8 Predicción de la frecuencia probable más elevada (FPME)

La FPME (Recomendación UIT-R P.373) se estima en términos de la MUF operacional, utilizando un factor de conversión F_1 igual a 1,05 si la MUF básica del trayecto está determinada por un modo E o F1 y del valor indicado en el Cuadro 3 de la Recomendación UIT-R P.1239 si la MUF básica del trayecto está determinada por un modo F2.

9 Programa de computadora

Los procedimientos descritos en el presente Anexo se realizan mediante el programa de computadora MUFFY que predice la MUF básica, la MUF operacional y la frecuencia óptima de trabajo en función de la hora del día, para un trayecto de propagación, mes y número de manchas solares determinados.

Anexo 2

Predicción del trayecto del rayo

Para realizar una estimación simplificada de los trayectos del rayo oblicuos, puede suponerse que la reflexión tiene lugar en un plano especular efectivo situado a la altura h_r .

En lo que sigue:

$$x = \text{foF2/foE}$$
 y $H = \frac{1490}{\text{M}(3000)\text{F2} + \Delta M} - 316$
$$\Delta M = \frac{0.18}{y - 1.4} + \frac{0.096 (R_{12} - 25)}{150}$$

con:

y y = x o 1,8 (el mayor valor).

a) Para x > 3,33 y $x_r = f/\text{foF2} \ge 1$, donde f es la frecuencia de la onda, se tiene:

 $h_r = h$ o 800 km, tomándose entre ambos el valor que sea menor

donde:
$$h = A_1 + B_1 2,4^{-a}$$
 para B_1 y $a \ge 0$
 $= A_1 + B_1$ en los demás casos
con: $A_1 = 140 + (H - 47) E_1$
 $B_1 = 150 + (H - 17) F_1 - A_1$
 $E_1 = -0.09707 x_r^3 + 0.6870 x_r^2 - 0.7506 x_r + 0.6$
 F_1 es tal que:
 $F_1 = -1.862 x_r^4 + 12.95 x_r^3 - 32.03 x_r^2 + 33.50 x_r - 10.91$ para $x_r \le 1.71$
 $F_1 = 1.21 + 0.2 x_r$ para $x_r > 1.71$

y a varía en función de la distancia d y de la distancia de salto d_s de acuerdo con:

$$a = (d - d_s)/(H + 140)$$

donde:
$$d_s = 160 + (H + 43) G$$

$$G = -2,102 x_r^4 + 19,50 x_r^3 - 63,15 x_r^2 + 90,47 x_r - 44,73 \text{ para } x_r \le 3,7$$

$$G = 19,25 \text{ para } x_r > 3,7$$

b) Para $x > 3,33 \text{ y } x_r < 1$

donde: $h = A_2 + B_2 b$ para $B_2 \ge 0$

 $h_r = h$ o 800 km, tomándose entre ambos el valor que sea menor

$$= A_2 + B_2$$
 en los demás casos
con: $A_2 = 151 + (H - 47) E_2$
 $B_2 = 141 + (H - 24) F_2 - A_2$
 $E_2 = 0,1906 Z^2 + 0,00583 Z + 0,1936$

$$F_2 = 0.645 Z^2 + 0.883 Z + 0.162$$

donde: $Z = x_r$ o 0,1, tomándose entre ambos el valor que sea mayor, y b varía en función de la distancia normalizada d_f , y de Z y H de acuerdo con:

$$b = -7,535 d_f^4 + 15,75 d_f^3 - 8,834 d_f^2 - 0,378 d_f + 1$$

donde: $d_f = \frac{0,115d}{Z(H+140)}$ o 0,65, tomándose entre ambos el valor que sea menor.

c) Para $x \le 3.33$ se tiene:

 $h_r = 115 + HJ + Ud$ o 800 km, tomándose entre ambos el valor que sea menor

con:
$$J = -0.7126 y^3 + 5.863 y^2 - 16.13 y + 16.07$$

y
$$U = 8 \times 10^{-5} (H - 80) (1 + 11 y^{-2,2}) + 1.2 \times 10^{-3} H y^{-3,6}$$