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RECOMMENDATION  ITU-R  P.526-12 

Propagation by diffraction 

(Question ITU-R 202/3) 

 

(1978-1982-1992-1994-1995-1997-1999-2001-2003-2005-2007-2009-2012) 

 

Scope 

This Recommendation presents several models to enable the reader to evaluate the effect of diffraction on 
the received field strength. The models are applicable to different obstacle types and to various path 
geometries. 

 

The ITU Radiocommunication Assembly, 

considering 

a) that there is a need to provide engineering information for the calculation of field strengths 
over diffraction paths, 

recommends 

1 that the methods described in Annex 1 be used for the calculation of field strengths over 
diffraction paths, which may include a spherical earth surface, or irregular terrain with different 
kinds of obstacles. 

 

 

 

Annex 1 

1 Introduction 

Although diffraction is produced only by the surface of the ground or other obstacles, account must 
be taken of the mean atmospheric refraction on the transmission path to evaluate the geometrical 
parameters situated in the vertical plane of the path (angle of diffraction, radius of curvature, height 
of obstacle). For this purpose, the path profile has to be traced with the appropriate equivalent Earth 
radius (Recommendation ITU-R P.834). If no other information is available, an equivalent Earth 
radius of 8 500 km may be taken as a basis. 

2 Basic concepts 

Diffraction of radiowaves over the Earth’s surface is affected by terrain irregularities. In this 
context, before going further into the prediction methods for this propagation mechanism, a few 
basic concepts are given in this section. 
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2.1 Fresnel ellipsoids and Fresnel zones 

In studying radiowave propagation between two points A and B, the intervening space can be 
subdivided by a family of ellipsoids, known as Fresnel ellipsoids, all having their focal points at 
A and B such that any point M on one ellipsoid satisfies the relation: 
 

  
2

AB MBAM
λ+=+ n  (1) 

 

where n is a whole number characterizing the ellipsoid and n = 1 corresponds to the first Fresnel 
ellipsoid, etc., and λ is the wavelength. 

As a practical rule, propagation is assumed to occur in line-of-sight (LoS), i.e. with negligible 
diffraction phenomena if there is no obstacle within the first Fresnel ellipsoid. 

The radius of an ellipsoid at a point between the transmitter and the receiver can be approximated in 
self-consistent units by: 
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or, in practical units: 
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where f is the frequency (MHz) and d1 and d2 are the distances (km) between transmitter and 
receiver at the point where the ellipsoid radius (m) is calculated. 

Some problems require consideration of Fresnel zones which are the zones obtained by taking the 
intersection of a family of ellipsoids by a plane. The zone of order n is the part between the curves 
obtained from ellipsoids n and n – 1, respectively. 

2.2 Penumbra width 

The transition from light to shadow defines the penumbra region. This transition takes place along 
a narrow strip (penumbra width) in the boundary of geometric shadow. Figure 1 shows the 
penumbra width (W) in the case of a transmitter located a height, h, above a smooth spherical earth, 
which is given by: 
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π
λ= ea

w m (4) 

 

where: 

 λ:  wavelength (m); 

 ae: effective Earth radius (m). 
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FIGURE 1 

Definition of penumbra width 
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2.3 Diffraction zone 

The diffraction zone of a transmitter extends from the LoS distance where the path clearance is 
equal to 60% of the first Fresnel zone radius, (R1), up to a distance well beyond the transmitter 
horizon where the mechanism of troposcatter becomes predominant. 

2.4 Obstacle surface smoothness criterion 

If the surface of the obstacle has irregularities not exceeding Δh, 

where: 

  [ ] 3/12λ04.0 Rh =Δ                 m (5) 

where: 

 R: obstacle curvature radius (m); 

  λ: wavelength (m); 

then the obstacle may be considered smooth and the methods described in § 3 and 4.2 may be used 
to calculate the attenuation. 

2.5 Isolated obstacle 

An obstacle can be considered isolated if there is no interaction between the obstacle itself and the 
surrounding terrain. In other words, the path attenuation is only due to the obstacle alone without 
any contribution from the remaining terrain. The following conditions must be satisfied: 

– no overlapping between penumbra widths associated with each terminal and the obstacle 
top; 

– the path clearance on both sides of the obstacles should be, at least, 0.6 of the first Fresnel 
zone radius; 

– no specular reflection on both sides of the obstacle. 

2.6 Types of terrain 

Depending on the numerical value of the parameter Δh (see Recommendation ITU-R P.310) used to 
define the degree of terrain irregularities, three types of terrain can be classified: 

a) Smooth terrain 

The surface of the Earth can be considered smooth if terrain irregularities are of the order or less 
than 0.1R, where R is the maximum value of the first Fresnel zone radius in the propagation path. 
In this case, the prediction model is based on the diffraction over the spherical Earth (see § 3). 
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b) Isolated obstacles 

The terrain profile of the propagation path consists of one or more isolated obstacles. In this case, 
depending on the idealization used to characterize the obstacles encountered in the propagation 
path, the prediction models described in § 4 should be used. 

c) Rolling terrain 

The profile consists of several small hills, none of which form a dominant obstruction. Within its 
frequency range Recommendation ITU-R P.1546 is suitable for predicting field strength but it is not 
a diffraction method. 

2.7 Fresnel integrals 

The complex Fresnel integral is given by: 
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where j is the complex operator equal to √–1, and C(ν) and S(ν) are the Fresnel cosine and sine 
integrals defined by: 
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The complex Fresnel integral Fc(ν) can be evaluated by numerical integration, or with sufficient 
accuracy for most purposes for positive ν using: 
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where: 

  x = 0.5π ν2 (9) 

and an, bn, cn and dn are the Boersma coefficients given below: 

a0 = +1.595769140 b0 = -0.000000033 c0 = +0.000000000 d0 = +0.199471140
a1 = -0.000001702 b1 = +4.255387524 c1 = -0.024933975 d1 = +0.000000023
a2 = -6.808568854 b2 = -0.000092810 c2 = +0.000003936 d2 = -0.009351341
a3 = -0.000576361 b3 = -7.780020400 c3 = +0.005770956 d3 = +0.000023006
a4 = +6.920691902 b4 = -0.009520895 c4 = +0.000689892 d4 = +0.004851466
a5 = -0.016898657 b5 = +5.075161298 c5 = -0.009497136 d5 = +0.001903218
a6 = -3.050485660 b6 = -0.138341947 c6 = +0.011948809 d6 = -0.017122914
a7 = -0.075752419 b7 = -1.363729124 c7 = -0.006748873 d7 = +0.029064067
a8 = +0.850663781 b8 = -0.403349276 c8 = +0.000246420 d8 = -0.027928955
a9 = -0.025639041 b9 = +0.702222016 c9 = +0.002102967 d9 = +0.016497308
a10 = -0.150230960 b10 = -0.216195929 c10 = -0.001217930 d10 = -0.005598515
a11 = +0.034404779 b11 = +0.019547031 c11 = +0.000233939 d11 = +0.000838386
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C(ν) and S(ν) may be evaluated for negative values of νby noting that: 

  C(–ν) = – C(ν) (10a) 
 

  S(–ν) = – S(ν) (10b) 

3 Diffraction over a spherical Earth 

The additional transmission loss due to diffraction over a spherical Earth can be computed by the 
classical residue series formula. A computer program GRWAVE, available from the ITU, provides 
the complete method. A subset of the outputs from this program (for antennas close to the ground 
and at lower frequencies) is presented in Recommendation ITU-R P.368.  

The following subsections describe numerical and nomogram methods which may be used for 
frequencies 10 MHz and above. For frequencies below 10 MHz, GRWAVE should always be used. 
Section 3.1 gives methods for over-the-horizon paths. Section 3.1.1 is a numerical method. 
Section 3.1.2 is a nomogram method. Section 3.2 is a method applicable for the smooth earth case 
for any distance and for frequencies 10 MHz and above. This utilizes the numerical method 
in § 3.1.1. 

3.1 Diffraction loss for over-the-horizon paths 

At long distances over the horizon, only the first term of the residue series is important. Even near 
or at the horizon this approximation can be used with a maximum error around 2 dB in most cases. 

This first term can be written as the product of a distance term, F, and two height gain terms, GT 
and GR. Sections 3.1.1 and § 3.1.2 describe how these terms can be obtained from simple formula or 
from nomograms. 

3.1.1 Numerical calculation 

3.1.1.1 Influence of the electrical characteristics of the surface of the Earth 

The extent to which the electrical characteristics of the surface of the Earth influence the diffraction 
loss can be determined by calculating a normalized factor for surface admittance, K, given by the 
formulae: 

in self-consistent units: 
 

 [ ] 4/1–
22

3/1–

)60()1–(
2 σλ+ε








λ
π= e

H
a

K  for horizontal polarization (11) 

and 

 [ ] 2/1
22 )60( σλ+ε= HV KK   for vertical polarization (12) 

or, in practical units: 

  [ ] 4/1–
223/1– )/00018()1–()(36.0 ffaK eH σ+ε=  (11a) 

 

  [ ] 2/1
22 )/00018( fKK HV σ+ε=  (12a) 
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where: 

 ae : effective radius of the Earth (km); 

 ε : effective relative permittivity; 

 σ : effective conductivity (S/m); 

 f : frequency (MHz). 

Typical values of K are shown in Fig. 2. 

FIGURE 2 

Calculation of K 
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If K is less than 0.001, the electrical characteristics of the Earth are not important. For values of K 
greater than 0.001 and less than 1, the appropriate formulae given in § 3.1.1.2 can be used. When K 
has a value greater than about 1, the diffraction field strength calculated using the method of 
§ 3.1.1.2 differs from the results given by the computer program GRWAVE, and the difference 
increases rapidly as K increases. GRWAVE should be used for K greater than 1. This only occurs 
for vertical polarization, at frequencies below 10 MHz over sea, or below 200 kHz over land. In all 
other cases the method of § 3.1.1.2 is valid. 

3.1.1.2 Diffraction field strength formulae 

The diffraction field strength, E, relative to the free-space field strength, E0, is given by the formula: 
 

  dB)()()(log20 21
0

YGYGXF
E

E ++=  (13) 

 

where X is the normalized length of the path between the antennas at normalized heights Y1 and Y2 

(and where 
0

log20
E
E

 is generally negative). 

In self-consistent units: 
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or, in practical units: 
 

  dafX e
3/2–3/1β188.2=  (14a) 

 

  hafY e
3/1–3/23– β10575.9 ×=  (15a) 

 

where: 

 d : path length (km); 

 ae : equivalent Earth’s radius (km); 

 h : antenna height (m); 

 f : frequency (MHz). 

β is a parameter allowing for the type of ground and for polarization. It is related to K by the 
following semi-empirical formula: 
 

  
42

42

53.15.41

67.06.11
β

KK

KK

++
++=  (16) 

 

For horizontal polarization at all frequencies, and for vertical polarization above 20 MHz over land 
or 300 MHz over sea, β may be taken as equal to 1. 
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For vertical polarization below 20 MHz over land or 300 MHz over sea, β must be calculated as 
a function of K. However, it is then possible to disregard ε and write: 
 

  
3/53/2

2 89.6
fk

K
σ≈  (16a) 

 

where σ is expressed in S/m, f (MHz) and k is the multiplying factor of the Earth’s radius. 

The distance term is given by the formula: 
 

  F(X) = 11 + 10 log (X) – 17.6 X for X ≥ 1.6 (17a) 
 

  F(X) = –20 log (X) – 5.6488X1.425 for X < 1.6 (17b) 
 

The height gain term, G(Y ) is given by the following formulae: 
 

  8)1.1log(5)1.1(6.17)( 2/1 −−−−≅ BBYG for  B  >  2 (18) 
 

  )1.0log(20)( 3BBYG +≅ for  B  ≤  2 (18a) 
 

If KYG log202)( +< , set )(YG  to the value Klog202 +  

In the above: 
 

  YB β=  (18b) 
 

The accuracy of the diffracted field strength given by equation (13) is limited by the approximation 
inherent in only using the first term of the residue series. Equation (13) is accurate to better than 
2 dB for values of X, Y1 and Y2 that are constrained by the formula: 
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21
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where: 
 

  ( )β1280.1096.1 −−=limX  (19a) 
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Δ(Y,0) and Δ(Y,∞) are given by: 
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Consequently, the minimum distance dmin for which equation (13) is valid is given by: 
 

  ),()β(),()β( 2
2/1

21
2/1

1 KYYKYYXX limmin Δ+Δ+=  (19e) 
 

and dmin is obtained from Xmin using equation (14a). 

3.1.2 Calculation by nomograms 

Under the same approximation condition (the first term of the residue series is dominant), the 
calculation may also be made using the following formula: 
 

  )(H)(H)(Flog20 21

0

hhd
E

E ++=                 dB (20) 

 

where: 

 E : received field strength; 

 E0 : field strength in free space at the same distance; 

 d : distance between the extremities of the path; 

 h1 and h2 : heights of the antennas above the spherical earth. 

The function F (influence of the distance) and H (height-gain) are given by the nomograms in 
Figs. 3, 4, 5 and 6. 

These nomograms (Figs. 3 to 6) give directly the received level relative to free space, for k = 1 and 
k = 4/3, and for frequencies greater than approximately 30 MHz. k is the effective Earth radius 
factor, defined in Recommendation ITU-R P.310. However, the received level for other values of k 
may be calculated by using the frequency scale for k = 1, but replacing the frequency in question by 
a hypothetical frequency equal to f / k2 for Figs. 3 and 5 and ,/ kf for Figs. 4 and 6. 

Very close to the ground the field strength is practically independent of the height. 
This phenomenon is particularly important for vertical polarization over the sea. For this reason 
Fig. 6 includes a heavy black vertical line AB. If the straight line should intersect this heavy line 
AB, the real height should be replaced by a larger value, so that the straight line just touches the top 
of the limit line at A. 

NOTE 1 – Attenuation relative to free space is given by the negative of the values given by equation (20). If 
equation (20) gives a value above the free-space field, the method is invalid. 

NOTE 2 – The effect of line AB is included in the numerical method given in § 3.1.1. 
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FIGURE 3 

Diffraction by a spherical Earth – effect of distance 
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FIGURE 4 

Diffraction by a spherical Earth – height-gain 

P.0526-04

1.5

1.5

Height of antenna
above ground (m)

Height-gain (dB)
H( )h

Horizontal polarization – land and sea
Vertical polarization – land 

Frequency for
k = 1    k = 4/3

2 000

1 500

1 000
900
800

700

600

500

400

300

200

150

100
90
80

70

60

50

40

30

20

15

10
9
8

7

6

5

4

3

180

160

140

120

100
90

80

70

60

50

40

30

20

10

0

– 10

– 20

– 30

15

GHz    10
9
8

7

6

5

4

3

2

900
800

700

600

500

400

300

200

150

MHz 100
90
80
70

60

50

40

30

30

40

50

60

70

80
90
100 MHz

150

200

300

400

500

600

700

800
900
1    GHz

2

3

4

5

6

7

8
9
10  GHz

15

GHz     1

 



12 Rec.  ITU-R  P.526-12 

FIGURE 5 

Diffraction by a spherical Earth – effect of distance 
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FIGURE 6 

Diffraction by a spherical Earth – height-gain 
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3.2 Diffraction loss for any distance at 10 MHz and above 

The following step-by-step procedure should be used for a spherical-earth path of any length at 
frequencies of 10 MHz and above. The method uses the calculation in § 3.1.1 for over-the-horizon 
cases, and otherwise an interpolation procedure based on a notional effective-earth radius. 

The procedure uses self-consistent units and proceeds as follows: 

Calculate the marginal LoS distance given by: 
 

  ( )212 hhad elos +=  (21) 
 

If d ≥ dlos calculate diffraction loss using the method in § 3.1.1.  No further calculation is necessary. 

Otherwise continue: 

Calculate the smallest clearance height between the curved-earth path and the ray between the 
antennas, h (see Fig. 7), given by: 
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Calculate the required clearance for zero diffraction loss, hreq, given by: 
 

  
d

dd
hreq

λ
552.0 21=  (23) 

 

If h>hreq the diffraction loss for the path is zero.  No further calculation is required. 
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Otherwise continue: 

Calculate the modified effective earth radius, aem, which gives marginal LoS at distance d given by: 
 

  

2

21

5.0 










+
=

hh

d
aem  (24) 

 

Use the method in § 3.1.1. to calculate the diffraction loss for the path using the modified effective 
earth radius aem in place of the effective earth radius ae, and designate this loss Ah. 

If Ah is negative, the diffraction loss for the path is zero, and no further calculation is necessary. 

Otherwise calculate the interpolated diffraction loss, A (dB), given by: 
 

  [ ] hreq AhhA /1 −=  (25) 

4 Diffraction over isolated obstacles or a general terrestrial path 

Many propagation paths encounter one obstacle or several separate obstacles and it is useful to 
estimate the losses caused by such obstacles. To make such calculations it is necessary to idealize 
the form of the obstacles, either assuming a knife-edge of negligible thickness or a thick smooth 
obstacle with a well-defined radius of curvature at the top. Real obstacles have, of course, more 
complex forms, so that the indications provided in this Recommendation should be regarded only 
as an approximation. 

In those cases where the direct path between the terminals is much shorter than the diffraction path, 
it is necessary to calculate the additional transmission loss due to the longer path.  

The data given below apply when the wavelength is fairly small in relation to the size of the 
obstacles, i.e., mainly to VHF and shorter waves ( f > 30 MHz). 

 

FIGURE 7 

Path clearance 
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4.1 Single knife-edge obstacle 

In this extremely idealized case (see Figs. 8a) and 8b)), all the geometrical parameters are combined 
together in a single dimensionless parameter normally denoted by ν which may assume a variety of 
equivalent forms according to the geometrical parameters selected: 
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where: 

 h : height of the top of the obstacle above the straight line joining the two ends of 
the path. If the height is below this line, h is negative; 

 d1 and d2 : distances of the two ends of the path from the top of the obstacle; 

 d : length of the path; 

 θ : angle of diffraction (rad); its sign is the same as that of h. The angle θ is 
assumed to be less than about 0.2 rad, or roughly 12º; 

 α1 and α2 : angles in radians between the top of the obstacle and one end as seen from the 
other end. α1 and α2 are of the sign of h in the above equations. 

NOTE 1 – In equations (26) to (29) inclusive h, d, d1, d2 and λ should be in self-consistent units. 
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FIGURE 8 

Geometrical elements 
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Figure 9 gives, as a function of ν, the loss J(ν) (dB). 

J(ν) is given by: 

  
[ ] [ ]
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J  (30) 

where C(ν) and S(ν) are the real and imaginary parts respectively of the complex Fresnel integral 
F(ν) defined in § 2.7. 

For ν greater than –0.78 an approximate value can be obtained from the expression: 
 

  dB1.0–1)1.0–(log209.6)( 2 




 +++= νννJ  (31) 

FIGURE 9 

Knife-edge diffraction loss 
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4.2 Single rounded obstacle 

The geometry of a rounded obstacle of radius R is illustrated in Fig. 8c). Note that the distances d1 
and d2, and the height h above the baseline, are all measured to the vertex where the projected rays 
intersect above the obstacle. The diffraction loss for this geometry may be calculated as: 
 

  dB),()( nmTvJA +=  (32) 

where: 

a) J(ν) is the Fresnel-Kirchoff loss due to an equivalent knife-edge placed with its peak at the 
vertex point. The dimensionless parameter ν may be evaluated from any of equations (26) 
to (29) inclusive. For example, in practical units equation (26) may be written: 
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 where h and λ are in metres, and d1 and d2 are in kilometres. 

 J(ν) may be obtained from Fig. 9 or from equation (31). Note that for an obstruction to LoS 
propagation, ν is positive and equation (31) is valid. 

b) T(m,n) is the additional attenuation due to the curvature of the obstacle: 
 

 22/32/1 8.06.3)5.122(2.7),( mmmnmnmT −+−−= dB               for mn ≤ 4  (34a) 
 

22/32/1 8.06.3)172(2.7)(log206),( mmmnmmnnmT −+−−+−−= dB     for mn > 4  (34b) 
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 and R, d1, d2, h and λ are in self-consistent units. 

Note that as R tends to zero, T(m,n) also tend to zero. Thus equation (32) reduces to knife-edge 
diffraction for a cylinder of zero radius. 

The obstacle radius of curvature corresponds to the radius of curvature at the apex of a parabola 
fitted to the obstacle profile in the vicinity of the top. When fitting the parabola, the maximum 
vertical distance from the apex to be used in this procedure should be of the order of the first 
Fresnel zone radius where the obstacle is located. An example of this procedure is shown in Fig. 10, 
where: 
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and ri is the radius of curvature corresponding to the sample i of the vertical profile of the ridge. 
In the case of N samples, the median radius of curvature of the obstacle is given by: 
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2
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 (38) 

 

FIGURE 10 

Vertical profile of the obstacle 
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4.3 Double isolated edges 

This method consists of applying single knife-edge diffraction theory successively to the two 
obstacles, with the top of the first obstacle acting as a source for diffraction over the second obstacle 
(see Fig. 11). The first diffraction path, defined by the distances a and b and the height ,1h′  gives a 
loss L1 (dB). The second diffraction path, defined by the distances b and c and the height ,2h′  gives 
a loss L2 (dB). L1 and L2 are calculated using formulae of § 4.1. A correction term Lc (dB) must be 
added to take into account the separation b between the edges. Lc may be estimated by the following 
formula: 
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log10

cbab

cbba
Lc  (39) 

 

which is valid when each of L1 and L2 exceeds about 15 dB. The total diffraction loss is then given 
by: 
 

  L  =  L1  +  L2  +  Lc (40) 
 

The above method is particularly useful when the two edges give similar losses. 
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FIGURE 11 

Method for double isolated edges 
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If one edge is predominant (see Fig. 12), the first diffraction path is defined by the distances a and 
b + c and the height h1. The second diffraction path is defined by the distances b and c and the 
height 2h′ . 

 

FIGURE 12 

Figure showing the main and the second obstacle 
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The method consists of applying single knife-edge diffraction theory successively to the two 
obstacles. First, the higher h/r ratio determines the main obstacle, M, where h is the edge height 
from the direct path TxRx as shown in Fig. 12, and r is the first Fresnel ellipsoid radius given by 
equation (2). Then 2h′ , the height of the secondary obstacle from the sub-path MR, is used to 
calculate the loss caused by this secondary obstacle. A correction term Tc (dB) must be subtracted, 
in order to take into account the separation between the two edges as well as their height. Tc (dB) 
may be estimated by the following formula: 
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with: 
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h1 and h2 are the edge heights from the direct path transmitter-receiver. 

The total diffraction loss is given by: 
 

  cTLLL –21 +=  (43) 
 

The same method may be applied to the case of rounded obstacles using § 4.3. 

In cases where the diffracting obstacle may be clearly identified as a flat-roofed building a single 
knife-edge approximation is not sufficient. It is necessary to calculate the phasor sum of two 
components: one undergoing a double knife-edge diffraction and the other subject to an additional 
reflection from the roof surface. It has been shown that, where the reflectivity of the roof surface 
and any difference in height between the roof surface and the side walls are not accurately known, 
then a double knife-edge model produces a good prediction of the diffracted field strength, ignoring 
the reflected component. 

4.4 Multiple isolated cylinders 

This method is recommended for diffraction over irregular terrain which forms one or more 
obstacles to LoS propagation where each obstacle can be represented by a cylinder with a radius 
equal to the radius of curvature at the obstacle top, being advisable when detailed vertical profile 
through the ridge is available. 

The terrain height profile should be available as a set of samples of ground height above sea level, 
the first and last being the heights of the transmitter and receiver above sea level. Atmospheric 
refractivity gradient should be taken into account via the concept of effective Earth radius. Distance 
and height values are described as though stored in arrays indexed from 1 to N, where N equals the 
number of profile samples.  

In the following a systematic use of suffices is made: 

 hi : height above sea level of the i-th point; 

 di : distance from the transmitter to the i-th point; 

 dij : distance from the i-th to the j-th points. 

The first step is to perform a “stretched string” analysis of the profile. This identifies the sample 
points which would be touched by a string stretched over the profile from transmitter to receiver. 
This may be done by the following procedure, in which all values of height and distance are in self-
consistent units, and all angles are in radians. The method includes approximations which are valid 
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for radio paths making small angles to the horizontal. If a path has ray gradients exceeding about 5º 
more exact geometry may be justified. 

Each string point is identified as the profile point with the highest angular elevation above the local 
horizontal as viewed from the previous string point, starting at one end of the profile and finishing 
at the other. Viewed from point s, the elevation of the i-th profile sample (i>s) is given by: 
 

  e  =  [(hi  –  hs) / dsi ]  –  [dsi / 2ae ] (44) 
 

where: 

 ae: effective Earth radius, given by: 

 = k × 6 371 (km) 

and 

 k : effective Earth-radius factor. 

A test is now applied to determine whether any group of two or more string points should represent 
the same terrain obstruction. For samples at spacings of 250 m or less any group of string points 
which are consecutive profile samples, other than the transmitter or receiver, should be treated as 
one obstruction. 

Each obstruction is now modelled as a cylinder, as illustrated in Fig. 13. The geometry of each 
individual cylinder corresponds with Fig. 8c). Note that in Fig. 13 the distances s1, s2 for each 
cylinder are shown as measured horizontally between the vertex points, and that for near-horizontal 
rays these distances approximate to the slope distances d1 and d2 in Fig. 8c). For ray angles to the 
horizontal greater than about 5º it may be necessary to set s1 and s2 to the inter-vertex slope 
distances d1 and d2. 
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FIGURE 13 

The cascaded cylinder model a), overall problem b), details 
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Similarly in Fig. 13, the height h of each cylinder is shown as measured vertically from its vertex 
down to the straight line joining the adjacent vertex or terminal points. The value of h for each 
cylinder corresponds to h in Fig. 8c). Again, for near-horizontal rays the cylinder heights may be 
computed as though vertical, but for steeper ray angles it may be necessary to compute h at right 
angles to the baseline of its cylinder. 

Figure 14 illustrates the geometry for an obstruction consisting of more than one string point. 
The following points are indicated by: 

 w: closest string point or terminal on the transmitter side of the obstruction which is not 
part of the obstruction; 

 x: string point forming part of the obstruction which is closest to the transmitter; 

 y: string point forming part of the obstruction which is closest to the receiver; 
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 z: closest string point or terminal on the receiver side of the obstruction which is not part 
of the obstruction; 

 v: vertex point made by the intersection of incident rays above the obstruction. 

FIGURE 14 

Geometry of a multipoint obstacle 
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The letters w, x, y and z will also be indices to the arrays of profile distance and height samples. 
For an obstruction consisting of an isolated string point, x and y will have the same value, and will 
refer to a profile point which coincides with the vertex. Note that for cascaded cylinders, points y 
and z for one cylinder are points w and x for the next, etc. 

A step-by-step method for fitting cylinders to a general terrain profile is described in Appendix 1 to 
Annex 1. Each obstruction is characterized by w, x, y and z. The method of Appendix 1 to Annex 1 
is then used to obtain the cylinder parameters s1, s2, h and R. Having modelled the profile in this 
way, the diffraction loss for the path is computed as the sum of three terms: 

– the sum of diffraction losses over the cylinders; 

– the sum of sub-path diffraction between cylinders (and between cylinders and adjacent 
terminals); 

– a correction term. 

The total diffraction loss, in dB relative to free-space loss, may be written: 
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d CzyLxwLLL ′′+′′+′= 

==
 (45) 

where: 

 L'i : diffraction loss over the i-th cylinder calculated by the method of § 4.2; 

 L"(w x)1 : sub-path diffraction loss for the section of the path between points w and x for 
the first cylinder; 

 L"(y z)i : sub-path diffraction loss for the section of the path between points y and z for 
all cylinders; 

 CN : correction factor to account for spreading loss due to diffraction over 
successive cylinders. 

Appendix 2 to Annex 1 gives a method for calculating L" for each LoS section of the path between 
obstructions. 
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The correction factor, CN, is calculated using: 
 

  CN=  (Pa / Pb)0.5 (46) 

where: 
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and the suffices to round brackets indicate individual cylinders. 

4.5 Method for a general terrestrial path 

This method is recommended for situations where an automatic process is required to predict 
diffraction loss for any type of path as defined by a profile, whether LoS or trans-horizon, and 
whether the terrain is rough or smooth. This model is based on the Bullington construction, but also 
makes use of the spherical Earth diffraction model as described in § 3.2. These models are 
combined so that for a completely smooth path, the result will be the same as the spherical Earth 
model. 

The path must be described by a profile consisting of samples of terrain height in metres above sea 
level for a succession of distances from one terminal to the other. Unlike the profile required in 
§ 4.4, the first and last points of this profile, (d1, h1) and (dn, hn), must give terrain height underneath 
the two antennas, and the antenna heights above ground must be supplied separately. 

In this model, there is no requirement for the profile points to be equally spaced. However, it is 
important that the maximum point spacing is not large compared to the sample spacing of the 
topographic data from which it is extracted. It is particularly inadvisable to represent a section of 
constant height profile, such as water, by a first and last point separated by the length of the flat 
section of the path. The model performs no interpolation between profile points, and due to Earth 
curvature a large distance between profile points, however flat the profile between, can lead to 
significant errors. 

Where urbanization or tree cover exists along the profile, it will normally improve accuracy to add a 
representative clutter height to bare earth terrain heights. This should not be done for the terminal 
locations (first and last profile points) and care is needed close to the terminals to ensure that the 
addition of cover heights does not cause an unrealistic increase in the horizon elevation angles as 
seen by each antenna. If a terminal is in an area with ground cover and below the representative 
cover height, it may be preferable to raise the terminal to the cover height for the application of this 
model, and to use a separate height-gain correction for the additional loss actually experienced by 
the terminal in its actual (lower) position. 

This method should be used when there is no a priori information as to the nature of the 
propagation path or of possible terrain obstructions. This is typical of the case where a computer 
program is used for profiles selected from a terrain height database on a fully automatic basis, with 
no individual inspection of path characteristics. The method gives reliable results for all types of 
path, LoS or trans-horizon, rough or smooth, or over the sea or large bodies of water. 
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The method contains two sub-models: 

a) the Bullington diffraction method used with a tapered correction to provide a smooth 
transition between LoS and trans-horizon; 

b) the spherical Earth method given in § 3.2. 

The Bullington part of the method is used twice. The following subsection gives a general 
description of the Bullington calculation. 

4.5.1 Bullington model 

In the following equations slopes are calculated in m/km relative to the baseline joining sea level at 
the transmitter to sea level at the receiver. The distance and height of the i-th profile point are di km 
and hi m above sea level respectively, i takes values from 1 to n where n is the number of profile 
points, and the complete path length is d km. For convenience the terminals at the start and end of 
the profile are referred to as transmitter and receiver, with heights in m above sea level hts and hrs, 
respectively. Effective Earth curvature Ce km−1 is given by 1/re where re is effective Earth radius in 
km. Wavelength in metres is represented by λ. 

Find the intermediate profile point with the highest slope of the line from the transmitter to the 
point. 
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where the profile index i takes values from 2 to n − 1. 

Calculate the slope of the line from transmitter to receiver assuming an LoS path: 
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Two cases must now be considered. 

Case 1.  Path is LoS 

If Stim < Str the path is LoS. 

Find the intermediate profile point with the highest diffraction parameter ν: 
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where the profile index i takes values from 2 to n − 1. 

In this case, the knife-edge loss for the Bullington point is given by: 

  ( )maxν= JLuc            dB (52) 

where the function J is given by equation (31) for νb greater than −0.78, and is zero otherwise. 

Case 2.  Path is trans-horizon 

If Stim ≥ Str the path is trans-horizon. 

Find the intermediate profile point with the highest slope of the line from the receiver to the point. 
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where the profile index i takes values from 2 to n − 1. 

Calculate the distance of the Bullington point from the transmitter: 
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Calculate the diffraction parameter, νb, for the Bullington point: 
 

  ( )
( )bb

brsbts

ddd
d

d
dhddh

btimtsb dSh −λ
+−





 −+=ν 002.0  (55) 

 

In this case, the knife-edge loss for the Bullington point is given by: 
 

  ( )buc JL ν=                 dB (56) 
 

For Luc calculated using either equation (52) or (56), Bullington diffraction loss for the path is now 
given by: 

  Lb = Luc + [1 − exp(−Luc/6)](10 + 0.02 d) (57) 

4.5.2 Complete method 

Use the method in § 4.5.1 for the actual terrain profile and antenna heights. Set the resulting 
Bullington diffraction loss for the actual path, Lba dB, to Lb as given by equation (57). 

Calculate effective transmitter and receiver heights relative to a smooth surface fitted to the profile, 
as follows. 

Calculate the mean height of the profile: 

  
=

−+





=

n

i
iiiia hhdd

d
h

1
11– )()–(

2

1
         masl (58) 

 

The slope of the least-squares regression fit is given by: 
 

 

[ ]
=

−−−−− −−+−+−+−







=

n

i
iiiiaiiiiii hhddhhhddddd

d
m

1
1

2
11113

)()()2()()(3
1    m/km(59) 

 

Calculate initial provisional values for the heights of the smooth surface at the transmitter and 
receiver ends of the path: 

  mdhh astip 5.0−=                 masl (60a) 
 

  mdhh asrip 5.0+=                 masl (60b) 

Find the highest obstruction height above the straight-line path from transmitter to receiver hobs, and 
the horizon elevation angles αobt, αobr , all based on flat-Earth geometry, according to 

  { }obiobs hh max=                 m (61a) 

  { }iobiobt dh /max=α                 mrad (61b) 
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  ( ){ }iobiobr ddh −=α /max                 mrad (61c) 

where: 

  ( )[ ] ddhddhhh irsitsiobi /+−−=                m (61d) 

and the profile index i takes values from 2 to (n–1). 

Calculate provisional values for the heights of the smooth surface at the transmitter and receiver 
ends of the path: 

If hobs is less than or equal to zero, then: 

  stipstp hh =                 masl (62a) 

  sripsrp hh =                 masl (62b) 

otherwise: 

  tobsstipstp ghhh −=                 masl (62c) 

  robssripsrp ghhh −=                 masl (62d) 

where: 

  ( )obrobtobttg α+αα= /  (62e) 

  ( )obrobtobrrg α+αα= /  (62f) 

Calculate final values for the heights of the smooth surface at the transmitter and receiver ends of 
the path: 

If hstp is greater than h1 then: 

  1hhst =                 masl (63a) 

otherwise: 

  stpst hh =                 masl (63b) 

If hsrp is greater than hn then: 

  nsr hh =                 masl (63c) 

otherwise: 

  srpsr hh =                 masl (63d) 

Use the method in § 4.5.1 for a smooth profile by setting all profile heights hi to zero, and with 
modified antenna heights: 

  strsts hhh −='                 masl (64a) 

  srrsrs hhh −='                 masl (64b) 

Set the resulting Bullington diffraction loss for the smooth path, Lbs dB, to Lb as given by 
equation (57). 
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Use the method for diffraction over spherical earth given in § 3.2 for the actual path length d km 
and with: 

  '
1 tshh =                 m (65a) 

  '
2 rshh =                 m (65b) 

Set the resulting spherical-earth diffraction loss, Lsph dB, to A as given by equation (25). 

The diffraction loss for the general path is now given by: 

  }0,max{ bssphba LLLL −+=                 dB (66) 

5 Diffraction by thin screens 

The following methods assume that the obstruction is in the form of a thin screen. They can be 
applied to propagation around an obstacle or through an aperture. 

5.1  Finite-width screen 

Interference suppression for a receiving site (e.g. a small earth station) may be obtained by 
an artificial screen of finite width transverse to the direction of propagation. For this case the field 
in the shadow of the screen may be calculated by considering three knife-edges, i.e. the top and the 
two sides of the screen. Constructive and destructive interference of the three independent 
contributions will result in rapid fluctuations of the field strength over distances of the order of 
a wavelength. The following simplified model provides estimates for the average and minimum 
diffraction loss as a function of location. It consists of adding the amplitudes of the individual 
contributions for an estimate of the minimum diffraction loss and a power addition to obtain 
an estimate of the average diffraction loss. The model has been tested against accurate calculations 
using the uniform theory of diffraction (UTD) and high-precision measurements. 

Step 1:  Calculate the geometrical parameter ν for each of the three knife-edges (top, left side and 
right side) using any of equations (26) to (29). 

Step 2:  Calculate the loss factor j(ν) = 10 J(ν)/20 associated with each edge from equation (31). 

Step 3:  Calculate minimum diffraction loss Jmin from: 
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or, alternatively, 

Step 4:  Calculate average diffraction loss Jav from: 
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5.2 Diffraction by rectangular apertures and composite apertures or screens 

The method described below can be used to predict the diffraction loss due to a rectangular aperture 
in an otherwise totally absorbing thin screen. The method can be extended to cover several 
rectangular apertures or finite screens, and is thus an alternative method for the finite-width screen 
discussed in § 5.1. 
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5.2.1 Diffraction by a single rectangular aperture 

Figure 15 shows the geometry used to represent a rectangular aperture in an infinite totally 
absorbing thin screen. 

FIGURE 15 

Geometry for a single rectangular aperture 
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The positions of the aperture edges, x1, x2,y1 and y2, are given in a Cartesian coordinate system with 
origin at the point where the straight line from transmitter T to receiver R passes through the screen, 
with propagation parallel to the Z axis. T and R are at distances d1 and d2 respectively behind and in 
front of the screen. 

The field strength, ea, at the receiver in linear units normalized to free space is given in complex 
form by: 

  ea(x1,x2,y1,y2) = 0.5(CxCy – SxSy) + j 0.5 (CxSy + SxCy) (69) 

where: 

  Cx = C(νx2) – C(νx1) (70a) 

  Cy = C(νy2) – C(νy1) (70b) 

  Sx = S(νx2) – S(νx1) (70c) 

  Sy = S(νy2) – S(νy1) (70d) 
 

The four values of ν are as given by equation (26) substituting x1, x2, y1 and y2 in turn for h, 
and C(ν) and S(ν) are as given in equations (7a) and (7b) and may be evaluated from the complex 
Fresnel coefficient using equations (8a) and (8b). 

The corresponding diffraction loss La is given by: 
 

  La = – 20 log (ea)                 dB (71) 
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5.2.2 Diffraction by composite apertures or screens  

The method for a single rectangular aperture can be extended as follows: 

Since in the linear units normalized to free space of equation (69) the free-space field is given by 
1.0 + j0.0, the normalized complex field es due to a single rectangular screen (isolated from ground) 
is given by: 
 

  es = 1.0 – ea (72) 
 

where ea is calculated using equation (69) for an aperture of the same size and position as the 
screen. 

– The normalized field due to combinations of several rectangular apertures or isolated 
screens can be calculated by adding the results of equation (69) or (72). 

– Arbitrarily shaped apertures or screens can be approximated by suitable combinations of 
rectangular apertures or screens. 

– Since the C(ν) and S(ν) integrals converge to 0.5 + j 0.5 as ν approaches infinity, 
equation (50) can be applied to rectangles of unlimited extent in one or more directions. 

6 Diffraction over a finitely conducting wedge 

The method described below can be used to predict the diffraction loss due to a finitely conducting 
wedge. Suitable applications are for diffraction around the corner of a building or over the ridge of 
a roof, or where terrain can be characterized by a wedge-shaped hill. The method requires the 
conductivity and relative dielectric constant of the obstructing wedge, and assumes that no 
transmission occurs through the wedge material.  

The method is based on UTD. It takes account of diffraction in both the shadow and line-of-sight 
region, and a method is provided for a smooth transition between these regions. 

The geometry of a finitely conducting wedge-shaped obstacle is illustrated in Fig. 16. 

FIGURE 16 

Geometry for application of UTD wedge diffraction 
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The UTD formulation for the electric field at the field point, specializing to two dimensions, is: 
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where: 

 eUTD : electric field at the field point; 

 e0 : relative source amplitude; 

 s1 : distance from source point to diffracting edge; 

 s2 : distance from diffracting edge to field point; 

 k : wave number 2π/λ; 

 
⊥
⏐⏐D : diffraction coefficient depending on the polarization (parallel or perpendicular 

to the plane of incidence) of the incident field on the edge; 

and s1, s2 and λ are in self-consistent units. 

The diffraction coefficient for a finitely conducting wedge is given as: 
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where: 

 Φ1 : incidence angle, measured from incidence face (0 face); 

 Φ2 : diffraction angle, measured from incidence face (0 face); 

 n : external wedge angle as a multiple of π radians (actual angle = nπ (rad)); 

 j = 1− ; 

and where F(x) is a Fresnel integral: 
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The integral may be calculated by numerical integration. 

Alternatively a useful approximation is given by: 
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where: 
 

  












































+−−

<

















+−−−

=





=

=

11

0

11

0

otherwise
4

)j(
4

)jexp(

4if
4

)j(
4

)jexp(
2

j1

)(

n

n

nn

n

n

nn

x
dc

x
x

x
x

ba
x

x

xA  (78) 

and the coefficients a, b, c, d are given in § 2.7. 
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where: 

  12β Φ±Φ=  (81) 

In equation (45), ±N are the integers which most nearly satisfy the equation. 
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nRR ,0 are the reflection coefficients for either perpendicular or parallel polarization given by: 
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where: 

 1Φ=Φ forR0 and )π( 2Φ−=Φ n  for Rn; 

 fr /1018j 9σ××−ε=η ; 

 εr : relative dielectric constant of the wedge material; 

 σ : conductivity of the wedge material (S/m); 
 f : frequency (Hz). 

Note that if necessary the two faces of the wedge may have different electrical properties. 

At shadow and reflection boundaries one of the cotangent functions in equation (74) becomes 
singular. 



 Rec.  ITU-R  P.526-12 35 

However 
⊥
⏐⏐D  remains finite, and can be readily evaluated. The term containing the singular 

cotangent function is given for small ε as: 
 

  [ ] )4/jexp()4/jexp(2)ε(signπ2))β((
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with ε defined by: 

 +π−β+π=ε nN2  for 12 Φ+Φ=β  (86) 

 −π+β−π=ε nN2  for 12 Φ−Φ=β  (87) 

The resulting diffraction coefficient will be continuous at shadow and reflection boundaries, 
provided that the same reflection coefficient is used when calculating reflected rays. 

The field eLD due to the diffracted ray, plus the LoS ray for π,)( 12 <Φ−Φ  is given by: 
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where: 

 s : straight-line distance between the source and field points. 

Note that at π)( 12 =Φ−Φ  the 2nd cotangent term in equation (74) will become singular, and that 
the alternative approximation given by equation (85) must be used. 

The field strength at the field point (dB) relative to the field which would exist at the field point in 
the absence of the wedge-shaped obstruction (i.e. dB relative to free space) is given by setting e0 to 
unity in equation (73) and calculating: 
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where: 

 s : straight-line distance between the source and field points. 

Note that, for n = 2 and zero reflection coefficients, this should give the same results as the knife 
edge diffraction loss curve shown in Fig. 9. 

A MathCAD version of the UTD formulation is available from the Radiocommunication Bureau. 

7 Guide to propagation by diffraction 

A general guide for the evaluation of diffraction loss corresponding to § 3 and 4 is shown in Fig. 17. 
This flow chart summarizes the procedure to be adopted in each case. 



36 Rec.  ITU-R  P.526-12 

FIGURE 17 

Guide to propagation by diffraction 
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Appendix 1 
to Annex 1 

 
Calculation of cylinder parameters 

 

The following procedure can be used to calculate the cylinder parameters illustrated in Figs. 8c) 
and 14 for each of the terrain obstructions. Self-consistent units are used, and all angles are in 
radians. The approximations used are valid for radio paths which are within about 5º of horizontal. 

1 Diffraction angle and position of vertex 

Although not used directly as cylinder parameters, both the diffraction angle over the cylinder and 
the position of the vertex are required. 

The diffraction angle over the obstacle is given by: 
 

  θ = αw + αz + αe (90) 

where αw and αz are the angular elevations of points x and y above the local horizontal as viewed 
from points w and z respectively, given by: 
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and αe is the angle subtended by the great-circle distance between points w and z given by: 
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The distance of the vertex from point w is calculated according to whether the obstruction is 
represented by a single profile sample or by more than one. 

For a single-point obstruction: 

  dwv = dwx (94) 

For a multipoint obstruction it is necessary to protect against very small values of diffraction: 
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The distance of point z from the vertex point is given by: 

  dvz  =  dwz  –  dwv (96) 

The height of the vertex point above sea level is calculated according to whether the obstruction is 
represented by a single profile sample or by more than one. 

For a single point obstruction: 

  hv = hx (97) 

For a multipoint obstruction: 
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2 Cylinder parameters 

The cylinder parameters illustrated in Fig. 8c) can now be calculated for each of the terrain 
obstacles defined by the string analysis:  

d1 and d2 are the positive inter-vertex distances to the obstacles (or terminals) on the transmitter and 
receiver sides of the obstacle respectively, 

and: 
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To calculate the cylinder radius use is made of two further profile samples: 

 p:  the point adjacent to x on the transmitter side, 

and: 

 q: the point adjacent to y on the receiver side. 

Thus the profile indices p and q are given by: 
 

  p  =  x  –  1 (100) 

and: 
 

  q  =  y  +  1 (101) 
 

If a point given by p or q is a terminal, then the corresponding value of h should be the terrain 
height at that point, not the height above sea level of the antenna. 

The cylinder radius is calculated as the difference in slope between the profile section p-x and y-q, 
allowing for Earth curvature, divided by the distance between p and q. 

The distances between profile samples needed for this calculation are: 
 

  dpx  =  dx  –  dp (102) 
 

  dyq  =  dq  –  dy (103) 
 

  dpq  =  dq  –  dp (104) 
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The difference in slope between the p-x and y-q profile sections is given in radians by: 
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where ae is the effective Earth radius. 

The cylinder radius is now given by: 
 

  [ ] [ ]3)4(exp–1/ ν−= tdR pq  (106) 

where ν is the dimensionless knife-edge parameter in equation (32). 

In equation (106), the second factor is an empirical smoothing function applied to the cylinder 
radius to avoid discontinuities for marginally LoS obstructions. 

 

 

Appendix 2 
to Annex 1 

 
Sub-path diffraction losses 

1 Introduction 

This Appendix provides a method for computing the sub-path diffraction loss for a LoS subsection 
of a diffraction path. The path has been modelled by cascaded cylinders each characterized by 
profile points w, x, y and z as illustrated in Figs. 13 and 14. The sub-path diffraction is to be 
calculated for each subsection of the overall path between points represented by w and x, or by y 
and z. These are the LoS sections of the path between obstructions, or between a terminal and 
an obstruction. 

The method can also be used for a LoS with sub-path diffraction, in which case it is applied to the 
entire path. 

2 Method 

For a LoS section of the profile between profile samples indexed by u and v, the first task is to 
identify the profile sample between but excluding u and v which obstructs the largest fraction of the 
first Fresnel zone for a ray travelling from u to v. 

To avoid selecting a point which is essentially part of one of the terrain obstacles already modelled 
as a cylinder, the profile between u and v is restricted to a section between two additional indices p 
and q, which are set as follows: 

– Set p = u + 1. 

– If both p<v and hp>hp+1, then increase p by 1 and repeat. 

– Set q = v – 1. 

– If both q>u and hq>hq–1, then decrease q by 1 and repeat. 
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If p = q then the sub-path obstruction loss is set to 0. Otherwise the calculation proceeds as follows. 

It is now necessary to find the minimum value of normalized clearance, CF, given by hz / F1, where 
in self-consistent units: 

 hz: height of ray above profile point; 

 F1: radius of first Fresnel zone. 

The minimum normalized clearance may be written: 
 

  [ ]iiz

q

F Fh
pi

C )(/)(min 1
=

=  (107) 

where: 
 

  (hz)i  =  (hr)i  –  (ht)i (108) 
 

  uvivuii dddF /)( 1 ⋅⋅λ=  (109) 
 

 (hr)i, the height of the ray above a straight line joining sea level at u and v at the i-th profile point is 
given by: 
 

  (hr)i  =  (hu · div+hv · dui) / duv (110) 
 

(ht)i, the height of the terrain above a straight line joining sea level at u and v at the i-th profile point 
is given by: 
 

  (ht)i  =hi+dui · div / 2ae (111) 
 

The minimum value of normalized clearance is used to compute the knife-edge diffraction 
geometrical parameter for the most significant sub-path obstruction: 
 

  2– ⋅=ν FC  (112) 
 

The sub-path diffraction loss L" is now obtained from equation (31) or Fig. 9. 

For some applications it may be undesirable to include sub-path diffraction enhancements. In this 
case a value of L" should be set to zero when it would otherwise be negative. 
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