

联

몚

ITU-R P.526-13 建议书 (11/2013)

绕射传播

P 系列 无线电波传播

前言

无线电通信部门的职责是确保卫星业务等所有无线电通信业务合理、平等、有效、经济地使用无线电频谱,不受频率范围限制地开展研究并在此基础上通过建议书。

无线电通信部门的规则和政策职能由世界或区域无线电通信大会以及无线电通信全会在研究组的支持下履行。

知识产权政策(IPR)

ITU-R的IPR政策述于ITU-R第1号决议的附件1中所参引的《ITU-T/ITU-R/ISO/IEC的通用专利政策》。专利持有人用于提交专利声明和许可声明的表格可从<u>http://www.itu.int/ITU-R/go/patents/en</u>获得,在此处也可获取《ITU-T/ITU-R/ISO/IEC的通用专利政策实施指南》和ITU-R专利信息数据库。

	ITU-R 系列建议书							
(也可在线查询 <u>http://www.itu.int/publ/R-REC/en</u>)								
系列	标题							
BO	卫星传送							
BR	用于制作、存档和播出的录制; 电视电影							
BS	广播业务(声音)							
ВТ	广播业务(电视)							
F	固定业务							
Μ	移动、无线电定位、业余和相关卫星业务							
Р	无线电波传播							
RA	射电天文							
RS	遥感系统							
S	卫星固定业务							
SA	空间应用和气象							
SF	卫星固定业务和固定业务系统间的频率共用和协调							
SM	频谱管理							
SNG	卫星新闻采集							
TF	时间信号和频率标准发射							
V	词汇和相关问题							

说明:该ITU-R建议书的英文版本根据ITU-R第1号决议详述的程序予以批准。

电子出版 2014年,日内瓦

©国际电联 2014

版权所有。未经国际电联书面许可,不得以任何手段复制本出版物的任何部分。

ITU-R P.526-13 建议书

绕射传播

(ITU-R第202/3号课题)

(1978-1982-1992-1994-1995-1997-1999-2001-2003-2005-2007-2009-2012-2013年)

范围

本建议书介绍了多个模式,以方便读者对收到的场强的绕射效应进行评估。这些模式适用于各种障碍类型以及不同路径的几何图形。

国际电联无线电通信全会,

考虑到

需要提供工程资料以计算绕射路径上的场强,

建议

应用附件1中说明的方法,计算绕射路径中的场强,路径可包括球形地球表面或是有着各种障碍的不规则地形。

附件1

1 引言

虽然,绕射只发生于大地或其他障碍物的表面,但必须考虑到传输路径上平均的大气 层折射,以估计位于路径中垂直面内的几何参数(绕射角、曲率半径、障碍高度)。为此, 必须以合适的地球等效半径循迹路径剖面(ITU-R P.834建议书)。如果得不到可用的其他 信息,可用8 500 km的地球等效半径作为依据。

2 基本概念

无线电波在地球表面上的绕射受地形不规则度的影响。就此而言,在对这种传播机理进一步研究预测方法之前,本节内将给出几个基本概念。

2.1 菲涅耳椭圆和菲涅耳区

研究A与B两点之间的无线电波传播时,借助于以称为菲涅耳椭圆的椭圆曲线族划分干涉空间,所有菲涅耳椭圆的焦点都在A和B上,以使椭圆上的任何点M满足关系式:

$$AM + MB = AB + n\frac{\lambda}{2}$$
(1)

其中, *n*是表征椭圆全体数目的值, *n*=1对应于第一菲涅耳椭圆, 依此类推; λ为波长。

作为一个实际规则,假定传播发生于视距(LoS)内,即,如果在第一菲涅耳椭圆内没 有障碍,则忽略绕射现象。

在发射机与接收机之间的一个点上,椭圆的半径可近似用前后一致的单位表示为:

$$R_n = \left[\frac{n\lambda d_1 d_2}{d_1 + d_2}\right]^{1/2} \tag{2}$$

或者,按实际单位,有:

$$R_n = 550 \left[\frac{n d_1 d_2}{(d_1 + d_2) f} \right]^{1/2}$$
(3)

其中,f为频率(MHz), d_1 和 d_2 分别为计算椭圆半径(m)的点与发射机和接收机之间的距离(km)。

对于由一个平面与椭圆曲线族相交的区域,在某些问题上要考虑其菲涅耳区。其中, 阶序n的菲涅耳区是从n和n-1的椭圆上分别得到的两个曲线之间的部分。

2.2 半阴影区宽度

从明亮到阴暗的过渡区确定出半阴影区。该过渡区发生于沿几何阴暗区边界内的窄条 (半阴影宽度)上。图1示出在平滑的圆形地球面之上高度h处设置发射机场合下的半阴影区 宽度(W),它由下面公式给出:

$$w = \left[\frac{\lambda a_e^2}{\pi}\right]^{1/3} m \tag{4}$$

其中:

λ: 波长 (m)

ae: 地球有效半径(m)。

3

2.3 绕射区

发射机的绕射区从视距(LoS)距离上延伸,直至完全超出发射机视界之外;视距距离的路径间隔等于第一菲涅耳区半径(*R*₁)的60%,而发射机视界之外指对流层散射机理起支配作用的地方。

2.4 障碍物表面平滑度标准

如果障碍物表面的不规则度不超出下面公式的Δh,

其中:

$$\Delta h = 0.04 \left[R \lambda^2 \right]^{1/3} \qquad \text{m} \tag{5}$$

其中:

λ: 波长 (m)

则可以认为障碍物是平滑的,能应用第3节和第4.2节中所述的方法计算衰减。

2.5 孤立的障碍物

如果障碍物本身与周围地形之间没有相互影响,则可以认为该障碍物是孤立的。换言之,路径衰减仅由障碍物导致,其余的地形并无任何作用。这必须满足下面的条件:

- 在每个终端和障碍物顶部关联的各半阴影区之间没有重叠区域;
- 障碍物两侧处的路径间隔至少应为0.6倍第一菲涅耳区半径;

- 障碍物两侧没有镜面反射。

2.6 地形类型

依据用以确定地形不规则程度的参数Δh(见ITU-R P.310建议书)的数值,可将地形分为三种类型:

a) 平坦地形

如果地形不规则度等于或低于0.1*R*的量级,则地球的该表面可认为是平坦的;其中*R*是传播路径中第一菲涅耳区半径的最大值。此种场合下,预测模型是以圆形地球上的绕射(第3节)为基础的。

b) 孤立的障碍物

传播路径的地形剖面由一个或多个孤立的障碍物构成。此种场合下,依据对传播路径 中遇到的障碍物特性的理想化,应采用第4节中说明的预测模型。

c) 起伏地形

剖面中包含若干小山丘,但其中没有一个形成突出的障碍。在工作频率范围内,ITU-R P.1546建议书适合用于预测场强,但它不是一种绕射方法。

2.7 菲涅耳积分

复数菲涅耳积分由下面公式给出:

$$F_c(\mathbf{v}) = \int_0^{\mathbf{v}} \exp\left(j\frac{\pi s^2}{2}\right) \quad \mathrm{d}s = C(\mathbf{v}) + jS(\mathbf{v}) \tag{6}$$

其中, j为复数运算符, 等于√-1; C(v)和S(v)是菲涅耳积分的余弦项和正弦项, 定义为:

$$C(\mathbf{v}) = \int_{0}^{\mathbf{v}} \cos\left(\frac{\pi s^2}{2}\right) \, \mathrm{d}s \tag{7a}$$

$$S(\mathbf{v}) = \int_{0}^{\mathbf{v}} \sin\left(\frac{\pi s^{2}}{2}\right) ds$$
(7b)

通过具体值的积分可以得出复数菲涅耳积分*F_c*(**v**)的估值,或是应用下面公式能在大多数 情况下给出足够精确的正值**v**:

$$F_{c}(v) = \exp(jx) \sqrt{\frac{x}{4}} \sum_{n=0}^{11} \left[(a_{n} - jb_{n}) \left(\frac{x}{4}\right)^{n} \right] \qquad \qquad \forall \exists \exists 0 \le x < 4 \qquad (8a)$$

$$F_{c}(\nu) = \left(\frac{1+j}{2}\right) + \exp(jx)\sqrt{\frac{4}{x}} \sum_{n=0}^{11} \left[(c_{n} - jd_{n})\left(\frac{4}{x}\right)^{n} \right] \qquad \qquad \forall \exists \forall x \ge 4 \qquad (8b)$$

其中:

$$x = 0.5 \pi v^2$$
 (9)

以及, a_n , b_n , c_n 和 d_n 为Boersma系数, 给出如下:

a_0	= +1.595769140	b_{0}	= -0.00000033	C_0	= +0.00000000	$d_{\scriptscriptstyle 0}$	= +0.199471140
a_1	= -0.000001702	b_1	= +4.255387524	C_1	= -0.024933975	d_1	= +0.00000023
a_2	= -6.808568854	b_2	= -0.000092810	C_2	= +0.00003936	d_2	= -0.009351341
a_3	= -0.000576361	b_3	= -7.780020400	C_3	= +0.005770956	d_3	= +0.000023006
a_4	= +6.920691902	b_4	= -0.009520895	C_4	= +0.000689892	d_4	= +0.004851466
a_5	= -0.016898657	b_5	= +5.075161298	C_5	= -0.009497136	d_5	= +0.001903218
a_6	= -3.050485660	b_6	= -0.138341947	C_6	= +0.011948809	d_6	= -0.017122914
a_7	= -0.075752419	b_7	= -1.363729124	C_7	= -0.006748873	d_7	= +0.029064067
a_8	= +0.850663781	b_8	= -0.403349276	C_8	= +0.000246420	d_{8}	= -0.027928955
a_9	= -0.025639041	b_9	= +0.702222016	C_9	= +0.002102967	d_9	= +0.016497308
a_{10}	= -0.150230960	b_{10}	= -0.216195929	C_{10}	= -0.001217930	d_{10}	= -0.005598515
a_{11}	= +0.034404779	b_{11}	= +0.019547031	C_{11}	= +0.000233939	d_{11}	= +0.000838386

注意到下面的公式,可以给出负值的v估值*C*(v)和*S*(v):

$$C(-\mathbf{v}) = -C(\mathbf{v}) \tag{10a}$$

$$S(-\mathbf{v}) = -S(\mathbf{v}) \tag{10b}$$

3 圆形地球上的绕射

借助于经典的余数数列公式可以计算圆形地球上因绕射造成的附加传输损耗。从国际电 联可以得到计算机程序 GRWAVE,它给出完整的方法。该程序中输出的一个子集(天线贴 近地面并在低的频率上)在 ITU-R P.368 建议书中给出。

以下分节对可能用于 10 MHz 或更高频率的数字和列线图方式做了说明。对低于 10 MHz 的频率,须一成不变地使用 GRWAVE。第 3.1 节提出了视界上路径。第 3.1.1 节是 一种数字方法。而 第 3.1.2 节则是一种列线图方法。第 3.2 节列出的方法适用于 10 MHz 或 更高频率上任意距离的光滑地表的情况。这里使用的是第 3.1.1 节提出的数字方法。

3.1 视界上路径的绕射损耗

视界上的长距离内,只有余数数列中的第一项是重要的。即使是靠近或是处在视界上,仅考虑数列第一项的这种近似在大多数场合下都能应用,最大误差约2 dB。

这第一项可以写成距离项F与两个天线高度增益项G_T和G_R之积。第3.1.1和3.1.2节说明如何从简单公式或者从诺谟图中得到这些数据项。

3.1.1 数值计算

3.1.1.1 地球表面电特性的影响

地球表面电特性影响绕射损耗的程度可通过计算地球表面导纳的归一化系数*K*予以确定,*K*值的公式如下给出:

在独立单位中:

$$K_{H} = \left(\frac{2\pi a_{e}}{\lambda}\right)^{-1/3} \left[(\varepsilon - 1)^{2} + (60\lambda\sigma)^{2} \right]^{-1/4} \qquad 对于水平极化$$
(11)

和

或者,在实际单位中有:

$$K_H = 0.36(a_e f)^{-1/3} \left[(\varepsilon - 1)^2 + (18000\sigma/f)^2 \right]^{-1/4}$$
(11a)

$$K_V = K_H \left[\epsilon^2 + (18000\,\sigma/f)^2 \right]^{1/2}$$
(12a)

其中:

- ε: 有效相对介电常数;
- σ: 有效电导率 (S/m);
- f: 频率(MHz)。

典型K值在图2中示出。

图2 *K*值的计算

如果 *K* 小于 0.001, 地球的电特性就不重要。当 *K* 值大于 0.001 但小于 1 时,可采用 3.1.1.2 节中的适用公式。当 *K* 值大于大约 1 时,利用 3.1.1.2 节方式计算的绕射场强不同于 计算机程序 GRWAVE 给出的结果,而且差异会随 *K* 值的增加而迅速扩大。GRWAVE 须用 于大于 1 的 *K* 值。只有在海上频率低于 10 MHz 和陆上频率低于 200 kHz 的情况下,极化才 会出现这种情况。而第 3.1.1.2 节涉及的方法则适用于所有其它情况。

3.1.1.2 绕射场强公式

相对于自由空间场强E₀绕射场强E由下面的公式给出:

$$20\log\frac{E}{E_0} = F(X) + G(Y_1) + G(Y_2) \quad dB$$
(13)

其中,*X*是在归一化高度 Y_1 和 Y_2 的两天线之间路径的归一化长度(其中, 20 log $\frac{E}{E_0}$ 通常为负值)。

在独立单位中有:

$$X = \beta \left(\frac{\pi}{\lambda a_e^2}\right)^{1/3} d \tag{14}$$

$$Y = 2\beta \left(\frac{\pi^2}{\lambda^2 a_e}\right)^{1/3} h \tag{15}$$

或者,在实际单位中有:

$$X = 2.188\beta f^{1/3} a_e^{-2/3} d$$
 (14a)

$$Y = 9.575 \times 10^{-3} \,\beta \, f^{2/3} \, a_e^{-1/3} \, h \tag{15a}$$

其中:

$$a_e$$
: 地球有效半径(km);

- h: 天线高度(m);
- f: 频率(MHz)。

β是与地面类型和极化方式有关的参数。β与K的关系可由下面的半经验公式给出:

$$\beta = \frac{1 + 1.6 K^2 + 0.67 K^4}{1 + 4.5 K^2 + 1.53 K^4}$$
(16)

对于水平极化,在所有频率上β值可取为1。对于垂直极化,陆地上的20 MHz之上或者 海面上的300 MHz之上,β值可取为1。

对于垂直极化,陆地上的 20 MHz 之下或者海面上的 300 MHz 之下,必须计算 β 与 K之间的函数关系。然而,此时可以不考虑 ϵ ,写成:

$$K^2 \approx 6.89 \frac{\sigma}{k^{2/3} f^{5/3}}$$
 (16a)

其中, σ 表示为S/m,f(MHz),而k是地球半径的相乘系数。

距离数据项由下面的公式给出:

$$F(X) = 11 + 10 \log (X) - 17.6 X \qquad \forall \text{ } \text{ } \text{ } X \ge 1.6 \qquad (17a)$$

$$F(X) = -20 \log (X) - 5.6488 X^{1.425} \qquad \qquad \forall \forall \forall X < 1.6$$
(17b)

天线高度增益项G(Y)由下面的公式给出:

$$G(Y) \cong 17.6(B-1.1)^{1/2} - 5\log(B-1.1) - 8 \, \forall ∃ B > 2$$
(18)

$$G(Y)$$
 ≅ 20log(B+0.1B³) 对于 B ≤ 2 (18a)

如果 $G(Y) < 2 + 20 \log K$, 设G(Y)为值 $2 + 20 \log K$ 综上所述:

$$B = \beta Y \tag{18b}$$

公式 (13) 给出的绕射场强公式的准确性, 被固有近似局限于只使用余数数列的第一项。 就受公式限制的 X、Y₁和 Y₂ 值而言,公式 (13) 的准确度优于2 dB:

$$X - (\beta Y_1)^{1/2} \Delta(Y_1, K) - (\beta Y_2)^{1/2} \Delta(Y_2, K) > X_{lim}$$
⁽¹⁹⁾

其中:

$$X_{lim} = 1.096 - 1.280 \left(1 - \beta\right) \tag{19a}$$

$$\Delta(Y,K) = \Delta(Y,0) + 1.779 (1 - \beta) [\Delta(Y,\infty) - \Delta(Y,0)]$$
(19b)

Δ(*Y*,0) 和 Δ(*Y*,∞) 的公式如下:

$$\Delta(Y,0) = 0.5 \left[1 + \tanh\left(\frac{0.5\log(\beta Y) - 0.255}{0.3}\right) \right]$$
(19c)

$$\Delta(Y,\infty) = 0.5 \left[1 + \tanh\left(\frac{0.5\log(\beta Y) + 0.255}{0.25}\right) \right]$$
(19d)

因此,公式(13)适用的最小距离 dmin 的公式为:

$$X_{min} = X_{lim} + (\beta Y_1)^{1/2} \Delta(Y_1, K) + (\beta Y_2)^{1/2} \Delta(Y_2, K)$$
(19e)

而且 dmin 是利用公式(14a) 从Xmin 得出的。

3.1.2 诺谟图计算

在相同的近似条件下(余数数列第一项的数值是最主要的),也可应用下面公式进行 计算:

$$20\log \frac{E}{E_0} = F(d) + H(h_1) + H(h_2) \qquad dB \qquad (20)$$

其中:

E: 接收场强;

*E*₀: 同一距离上自由空间的场强;

d: 路径两端点之间的距离;

h₁和h₂: 天线在圆形地球上方的高度。

函数F(与距离相关联)和H(与高度增益相关联)由诺谟图在图3、4、5和6中给出。

这些诺谟图(图3至图6)对于k=1和k=4/3,以及对于约30 MHz以上的频率,直接给出 相对于自由空间的接收电平。这里,k为地球有效半径系数,在ITU-R P.310建议书内规定。 然而,对于k为其他值的接收电平,需应用k=1的频率刻度进行计算,但应将涉及的频率替 换以假想频率,在图3和图5中假想频率等于 f/k^2 ,在图4和图6中等于 f/\sqrt{k} 。

非常贴近地面的地方,场强实际上与天线高度无关。对于海面上的垂直极化电波,这 一现象特别重要。因此,图6中包括一条粗黑的垂直线AB。如果直线与粗黑线AB相交,则 真正的高度应由较大的值取代,以使得直线恰好在A点处接触该界限线的顶部。

注1 – 相对于自由空间的衰减由公式(20)中得到的负值给出。如果公式(20)给出的值高于自由空间场强,则该方法无效。

注2-AB线的效应被纳入3.1.1节给出的数字方式。

图 3 图形地球上的绕射-距离效应

陆地上和海面上的水平极化》 陆地上的垂直极化波

(由箭头结合的刻度应一起使用)

图 4 圆形地球上的绕射-天线高度增益

图5 圆形地球上的绕射-距离效应

图 6 圆形地球上的绕射-天线高度增益

频率		天线在: 之上的高	地面 度 (m)						
k = 1	k = 4/3	2 000	F						
15 -	È		-						
-	- 15	1 500	-						
GHz 10 -	-		-						
9	- - 10 GHz	高度增益(dB) 1000	-						
8 -	9	$H(h) = \frac{1}{2} \frac{H(h)}{2} = \frac{1}{2} \frac{H(h)}{2} = \frac{1}{2} 1$	1						
		180 = 700	1						
0	6	160600	1						
		140 -	1						
4 -	Ē	120	1						
1	E 4	100							
3 -	2	80 300	1						
1		70	1						
2	-	60 –	1						
-	2	50 = 200	-						
1,5 -		40 = 150	1						
-	– 1,5 E		-						
GHz 1	_	30 -							
900 800	1 GHz		1						
700	800 E 800	80	-						
600	700	70	-						
500	600	10 60	1						
400	500	50	-						
400	400	40							
300		0	1						
	- 300	30	1						
-	E 		-						
200		10 20	4						
-	- 200 E		3						
150 _	150	15	-						
-	- 150		-						
MHz 100	-	10	1						
90	- 100 MHz	A 20 9	-						
80	90								
70 _	80	6	1						
60 _	E 70	20 5	1						
50	60	- 30 -	=						
50	50	- 4							
40	F	3							
1	40								
20	F								
- 06	E 30	В							
	20	12							
垂直极化波-海面上									

3.2 10 MHz或更高频率上任意距离的绕射损耗

当有效地球半径 *a_e* > 0 时,以下的递进程序应该用于 10 MHz 或更高频率上任意长度的 圆形地球路径。该方法对于视界上的情况采用 第 3.1.1 节中的计划方法,否则则采用基于理 论的地球有效半径的内插程序。

该程序采用独立的单位,其过程如下:

计算下式给出的边际视距内距离:

$$d_{los} = \sqrt{2a_e} \left(\sqrt{h_1} + \sqrt{h_2} \right) \tag{21}$$

如 $d \ge d_{los}$,则采用第3.1.1节的方法计算绕射损耗。无需进一步计算。 否则继续:

计算曲面地表路径和天线间射线之间最小间距高度h(见图7),公式如下:

$$h = \frac{\left(h_1 - \frac{d_1^2}{2a_e}\right)d_2 + \left(h_2 - \frac{d_2^2}{2a_e}\right)d_1}{d}$$
(22)

$$d_1 = \frac{d}{2} (1+b)$$
 (22a)

$$d_2 = d - d_1 \tag{22b}$$

$$b = 2\sqrt{\frac{m+1}{3m}} \cos \left\{ \frac{\pi}{3} + \frac{1}{3} \arccos \left(\frac{3c}{2} \sqrt{\frac{3m}{(m+1)^3}} \right) \right\}$$
(22c)

$$c = \frac{h_1 - h_2}{h_1 + h_2}$$
(22d)

$$m = \frac{d^2}{4a_e(h_1 + h_2)}$$
 (22e)

计算绕射损耗 hreg所需的间距,公式如下:

$$h_{req} = 0.552 \sqrt{\frac{d_1 d_2 \lambda}{d}}$$
(23)

如 h > h_{req},路径的绕射损耗为零。无需进一步计算。 否则继续:

计算经修改的地球有效半径 aem, 以便在距离 d 上获得边际视距, 公式如下:

$$a_{em} = 0.5 \left(\frac{d}{\sqrt{h_1} + \sqrt{h_2}}\right)^2$$
 (24)

利用第 3.1.1 节所给的方法,为以经修改的地球有效半径 *a_{em}*取代地球有效半径 *a_e*的路 径计算绕射损耗,并将这一损耗确定为 *A_h*。

如 A_h 为负,路径的绕射损耗则为零。无需进一步计算。否则计算内插绕射损耗A (dB),公式如下:

$$A = \left[1 - h/h_{req}\right]A_h \tag{25}$$

4 孤立障碍物或一般地面路径上的绕射

许多传播路径上遇到一个障碍或几个分离的障碍时,对此类障碍造成的损耗进行估值 是有用的。为进行此种计算,需要将障碍物形状加以理想化,假设厚度可忽略的障碍物像刀 刀,或是假设厚而圆滑的障碍物在顶部具有能明确确定的曲率半径。当然,真正的障碍物具 有较复杂的形状,因而本建议书中提出的假设应只看作是一种近似。

在终端之间的直接路径远短于绕射路径的那些场合下,必需计算由较长路径引起的附 加传输损耗。

下面给出的数据适用于电波波长与障碍物尺寸相比显得相当小时,也即主要适用于 VHF波段内较短的波长 (*f* >30 MHz)上。

P: 反射点

4.1 单个刀刃形障碍物

此种极为理想的场合下(图8a)和8b)),全部几何参数均综合在通常以v标记的单个 归一化、无量纲的参数中,v可假设是根据所选择的几何参数的另一种等效形式:

$$\nu = h \sqrt{\frac{2}{\lambda} \left(\frac{1}{d_1} + \frac{1}{d_2} \right)}$$
(26)

$$v = \theta \sqrt{\frac{2}{\lambda \left(\frac{1}{d_1} + \frac{1}{d_2}\right)}}$$
(27)

$$v = \sqrt{\frac{2h\theta}{\lambda}}$$
 (v的符号决定于h和 θ) (28)

$$v = \sqrt{\frac{2d}{\lambda} \cdot \alpha_1 \alpha_2}$$
 (v的符号决定于 $\alpha_1 \pi \alpha_2$) (29)

其中:

- h: 连结路径两端的直线上方障碍物顶部的高度,若高度低于该直线,h为负值;
- d1和d2: 障碍物顶部与路径两端之间的距离;
 - d: 路径长度;
 - θ: 绕射角(弧度);其符号与h的符号相同;θ角假定小于约0.2弧度,或者大 致为12°;
- α₁和α₂: 从一端看出去时障碍物顶部与另一端之间形成的夹角(以弧度为单位); α₁和α₂的符号与上面公式中*h*的符号相同。
- 注1-公式(26)至(29)内包含的h、d、d₁、d₂和λ应有独立的单位。

图 8 几何参数

(θ, α₁, α₂, d, d₁, d₂和 R的定义见第4.1节和 4.2节)

图9示出绕射损耗J(v)(dB)与v的函数曲线关系。

J(v)的公式如下:

$$J(\nu) = -20 \log \left(\frac{\sqrt{\left[1 - C(\nu) - S(\nu)\right]^2 + \left[C(\nu) - S(\nu)\right]^2}}{2} \right)$$
(30)

19

其中,*C*(v)和*S*(v)分别是第2.7节中定义的复数菲涅耳积分*F*(v)中的实部和虚部。 v大于-0.78时,从下面的表达式中可得到*J*(v)的近似值:

$$J(\nu) = 6.9 + 20 \log \left(\sqrt{(\nu - 0.1)^2 + 1} + \nu - 0.1 \right) \qquad \text{dB} \qquad (31)$$

4.2 单个圆形障碍物

半径R的圆形障碍物的几何形状在图8c)中示出。需要指出,基线之上的距离*d*₁、*d*₂和 高度*h*都是对顶点测量的,在障碍物上方投影线于顶点处相交。此种几何形状造成的绕射损 耗可如下地计算:

$$A = J(v) + T(m,n) \qquad \text{dB}$$
(32)

其中:

a) J(v)为顶点处等效刀刃形障碍物尖峰造成的Fresnel-Kirchoff损耗。从公式(26)至(29)的任一个公式中可计算出无量纲参数v的值。例如,按实际单位,公式(26)可写成:

$$v = 0.0316 h \left[\frac{2(d_1 + d_2)}{\lambda d_1 d_2} \right]^{1/2}$$
(33)

其中,*h*和λ单位为m,*d*₁和*d*₂单位为km。 从图9或公式(27)中可得到*J*(v)。需要指出,对于阻挡视距传播的障碍,v值为正, 公式(27)有效。

b) *T(m,n)*是由障碍物的曲率造成的附加衰减,计算式为:

$$T(m,n) = 7.2m^{1/2} - (2 - 12.5n)m + 3.6m^{3/2} - 0.8m^2 \qquad \text{dB} \qquad \forall \neq mn \le 4$$
(34a)

 $T(m,n) = -6 - 20 \log (mn) + 7.2m^{1/2} - (2 - 17n)m + 3.6m^{3/2} - 0.8m^2 \text{ dB} \quad \text{$\%$T$ mn > 4}$ (34b)

以及

$$m = R \left[\frac{d_1 + d_2}{d_1 d_2} \right] / \left[\frac{\pi R}{\lambda} \right]^{1/3}$$
(35)

$$n = h \left[\frac{\pi R}{\lambda} \right]^{2/3} / R \tag{36}$$

R、 d_1 、 d_2 、h和 λ 具有独立单位。

注意当R趋向零时, T(m,n)也趋向零。因此,对于半径为零的圆柱体,公式(32)简化成刀刃形障碍物上的绕射。

障碍物曲率半径可对应于一种抛物体最高点处的曲率半径,只要该抛物体在顶部附近 能与障碍物剖面适配。该抛物体能与障碍物剖面适配时,在此计算方法中要应用的对最高点 的最大垂直距离,应在障碍物所处之处具有第一菲涅耳区半径值的量级。此种计算方法的例 子在图10中示出,其中:

$$y_i = \frac{x_i^2}{2r_i} \tag{37}$$

其中,*r_i*是与峰脊垂直剖面上样本*i*相对应的曲率半径。在有*N*个样本的场合下,障碍物曲率半径的中值由下面公式给出:

$$r = \frac{1}{N} \sum_{i=1}^{N} \frac{x_i^2}{2y_i}$$
(38)

4.3 双重孤立的刀刃形障碍物

可以将单个刀刃形障碍物绕射理论构成的方法继续用于两个障碍物上,第一个障碍物的顶部起电波源的作用,在第二个障碍物上绕射(见图11)。第一绕射路径由距离a、b和高度 h'1确定,给出损耗L1(dB)。第二绕射路径由距离b、c和高度h'2确定,给出损耗L2(dB)。L1和 L2用第4.1节中的公式进行计算。考虑到两个刀刃形障碍物之间有距离b,必须加上校正项Lc (dB)。Lc可以用下面公式进行估值:

$$L_{c} = 10 \log \left[\frac{(a+b)(b+c)}{b(a+b+c)} \right]$$
(39)

 L_1 和 L_2 中的每一个都超过大约15 dB时,该公式有效。于是,总绕射损耗由下面公式给出:

$$L = L_1 + L_2 + L_c (40)$$

当两个刀刃形障碍物给出类似的损耗时,上面的方法特别有用。

如果其中一个刀刃形障碍物占主导地位(见图12),则第一绕射路径由距离*a、b+c*和 高度*h*₁确定,第二绕射路径由距离*b、c*和高度*h*₂确定。

可以将单个刀刃形障碍物绕射理论构成的方法继续用于两个障碍物上。首先,由较高的*h*₁/r比确定主障碍物M;其中*h*如图12所示是直接路径*TxRx*之上的主障碍物高度,*r*是公式(2)中给出的第一菲涅耳椭圆半径。于是,可应用子路径MR之上的副障碍物高度*h*₂计算由副障碍物造成的损耗。考虑到两个刀刃形障碍物之间的间隔以及它们的高度,必须减去一个校正项*T*_c(dB)。*T*_c(dB)可由下面公式进行估值:

$$T_{c} = \left[12 - 20\log_{10}\left(\frac{2}{1 - \frac{\alpha}{\pi}}\right)\right] \left(\frac{q}{p}\right)^{2p}$$
(41)

其中:

$$p = \left[\frac{2}{\lambda} \frac{(a+b+c)}{(b+c)a}\right]^{1/2} h_1$$
(42a)

$$q = \left[\frac{2}{\lambda} \frac{(a+b+c)}{(a+b)c}\right]^{1/2} h_2 \tag{42b}$$

$$\tan \alpha = \left[\frac{b(a+b+c)}{ac}\right]^{1/2}$$
(42c)

 h_1 和 h_2 是直接路径发射机—接收机之上的刀刃形障碍物高度。

总绕射损耗由下面公式给出:

$$L = L_1 + L_2 - T_c \tag{43}$$

同样的方法可以适用于第4.3节中述及的圆形障碍物场合下。

在绕射障碍物能清楚地认定为平坦屋顶的建筑物场合下,采用单个刀刃形障碍物作为 近似状态是不够的。必须计算两个分量的相量和:一个是经受双重刀刃形障碍物的绕射,另 一个是受到的来自屋顶面的附加反射。事实已表明,在屋顶面反射率以及屋顶面与侧墙之间 的任何高度差不能精确知道的情况下,可以忽略屋顶面的反射分量,由双重刀刃形障碍物模 型能够对绕射场强做出很好的预测。

4.4 多个孤立的圆柱体

在不规则地形上形成有一个或多个阻挡视距传播的障碍物场合下,对绕射的计算建议 采用该方法。该方法中的每一个障碍物可由一个圆柱体代表,圆柱体的半径等于障碍物顶部 的曲率半径。当通过峰脊的精确垂直剖面能得到时,这种方法是可行的。

需得到海拔高度的样本集合,应用于地形高度剖面。第一个和最后一个是发射机和接收机两端点的海拔高度。应通过有效地球半径的概念考虑大气折射率的梯度。距离和高度 值的表述由从1到N存储于一个阵列内的指数给出,N为剖面上样本的数目。

下面说明系统使用下标符号的含义:

h_i:第i个样本点的海拔高度

d_i: 第i个样本点与发射机的距离

dii: 第i个到第j个样本点间的距离。

方法的第一步是进行剖面的"延伸样本串"分析,它可对发射机到接收机剖面上延伸的样本串所接触的样本点进行标识。可以按下面的程序做到这一点,其中,所有的高度和距离值都有独立单位,所有角度都以弧度为单位。方法中包括计算上的近似假设,它对较小水平倾角的无线电路径有效。如果路径的电波射线斜率超过大约5°,则采用更准确的几何学较适当。

从剖面上的一端开始到另一端终止,从当前一个样本串点看出去,对本地水平线之上 最大仰角的剖面点标识为各个样本串点。自点*s*看出去,第*i*个剖面样本(*i*>*s*)的仰角为:

$$e = [(h_i - h_s) / d_{si}] - [d_{si} / 2a_e]$$
(44)

其中:

a_e: 地球有效半径

 $= k \times 6371$ (km)

以及

k: 地球有效半径系数。

现在,实行一种测试以确定两个或多个样本串点的任何组群是否可代表同样的地形障碍。对于间隔为250 m或小些的样本点,除发射机和接收机之外,接连的剖面样本的样本串点任何组群,应按一个障碍予以对待。

如图13中所示,每个障碍现以圆柱体建模。每一个单个的圆柱体几何图分别对应于图 8c)。注意图13中每个圆柱体的相关距离*s*₁、*s*₂是各顶点间在水平方向上测量得的,而对于 近乎水平的射线,这些距离近似于图8c)中的倾斜距离*d*₁和*d*₂。对于水平倾角大于约5°的射 线,需将*s*₁和*s*₂设定为顶点间的倾斜距离*d*₁和*d*₂。

a)

类似地,图13中每个圆柱体的高度h是在垂直方向上测量得的、从圆柱体顶点到连接相邻顶点或终端的直线之间的距离。每个圆柱体的h值对应于图8c)中的h。又,对于近乎水平的射线,圆柱体高度可按垂直线计算,而对于较陡的射线角度,需要对其圆柱体基线做出法线以计算h。

图14说明了由一个以上样本串点构成障碍物的几何图。下面说明各样本串点的含义: w:发射机一侧障碍中最初的样本串点或即是端点,它实际不是障碍物的一部分;

- x: 构成障碍物部分的样本串点,它最靠近发射机;
- y: 构成障碍物部分的样本串点,它最靠近接收机;

z: 接收机一侧障碍中最末的样本串点或即是端点,它实际不是障碍物的一部分;

v: 障碍物之上关联的射线相交形成的顶点。

字母w、x、y和z也都是剖面内距离和高度样本陈列中的指数。对于由孤立的样本串点构成的障碍物, x和y有相同的值,可称为剖面点,它与顶点一致。注意对于级联圆柱体,点y和z属于一个圆柱体,而点w和x属于下一个圆柱体等。

使圆柱体适合于通用地形剖面的逐步分析方法在附件1的后附资料1中说明。每一个障碍由w、x、y和z加以表征。然后,应用附件1的后附资料1中的方法以得到圆柱体参数s₁、 s₂、h和R。如此对剖面进行建模后,路径的绕射损耗可按三项之和进行计算:

- 圆柱体上方绕射损耗之和;

圆柱体之间(以及圆柱体与相邻终端之间)子路径绕射损耗之和;

- 校正项。

相对于自由空间损耗的总绕射损耗(dB)可写成下面公式:

$$L_d = \sum_{i=1}^{N} L'_i + L''(wx)_1 + \sum_{i=1}^{N} L''(yz)_i - 20\log C_N \qquad \text{dB}$$
(45)

其中:

L'_i: 按第4.2节方法计算的第*i*个圆柱体上的绕射损耗;

L"(w x)1: 第一圆柱体的点w与x之间路径的子路径绕射损耗;

L"(yz)_i: 所有圆柱体的点y与z之间路径段的子路径绕射损耗;

C_N: 相继圆柱体上计算由于绕射造成的扩散损耗时的校正系数。

附件1的后附资料2中给出一种方法,用以对障碍物之间路径中的每一视距段计算L"子路径绕射损耗。

校正系数CN应用下面公式进行计算:

$$C_{N} = (P_{a} / P_{b})^{0.5} \tag{46}$$

其中:

$$P_a = s_1 \prod_{i=1}^{N} \left[(s_2)_i \right] \left(s_1 + \sum_{j=1}^{N} \left[(s_2)_j \right] \right)$$
(47)

$$P_b = (s_1)_1 (s_2)_N \prod_{i=1}^N \left[(s_1)_i + (s_2)_i \right]$$
(48)

圆括号内的下标指示单个圆柱体。

4.5 用于一般地面路径的方法

建议该方法用于以下情况,正如剖面中所定义的,任何类型路径的绕射损耗的预测过程 都要求是自动的,无论视距或跨视距,也不论地形是粗糙还是光滑。该模型基于Bullington 构建,也使用第3.2节中所描述的球形地球表面绕射模型。这些模型结合起来用于一个完全 光滑的路径,其结果与球形地球表面模型相同。

必须由剖面来描述路径,包括从一个终端到另一个终端的连续距离中,高于海平面的地 形高度的取样值,以米为单位。与第4.4节所需的剖面不同,该剖面的第一个和最后一个点 (*d*₁, *h*₁)和(*d*_n, *h*_n)必须给出下面两个天线的地形高度,而必须单独提供地面以上的天线高度。

在该模型中,并未有要求各剖面点等距排开。然而,重要的是,最大的点间距与从中提 取的地形数据的抽样间隔相比也并不大。若由一段路径中的平坦部分的长度分隔开的第一个 和最后一个点来代表一段不变的高度剖面,例如水,是特别不明智的。该模型不执行剖面点 之间的插值,由于地球曲率在剖面点之间的距离很大但很平,这可能会导致明显的错误。

在沿着剖面存在城市化或树荫覆盖的地方,通常会提高精确度,增加一个代表性的杂散 高度到裸露地形高度。在终端位置(开始和最后一些剖面点)不应该这样做,且需要关注靠 近终端的地方以确保增加覆盖高度不会导致水平仰角不切实际的增加,如每条天线中看到的 那样。如果一个终端与地面覆盖物处于同一区域并低于代表性覆盖高度,它可能首选把终端 提高到覆盖高度应用于该模型,并使用一个单独的高度增益校正用于终端在其实际位置(较 低)经历的额外损耗。

当没有先验信息包括传播路径的特性或可能的地形障碍物的性质时,应使用该方法。典型情况是,计算机程序用于从地形高度数据库中完全自动选择的剖面,而没有单独检查路径特性。该方法为所有类型的路径,LoS或跨视距、粗糙或光滑,海面或大范围的水面上,均提供了可靠的结果。

该方法包含两个子模型:

a) Bullington绕射方法用锥形校正提供LoS和跨视距之间的平稳过渡;

b) 第3.2节中给出的球形地球表面方法。

两次使用该方法的Bullington部分。以下小节给出了Bullington计算的一般性描述。

4.5.1 Bullington模型

在以下公式中,斜率的计算是发射机处的基线接合海平面与接收机处的海平面的比值,以m/km为单位。第*i*个剖面点的距离和高度分别为海平面以上*d_i* km和*h_i* m,*i*取值为1至*n*,其中*n*是指剖面点的个数,完整的路径长度为*d* km。为方便起见,在剖面开始和结束处的终端 被称为发射机和接收机,在海平面以上的高度分别为*h_{ts}和h_{rs}*,以米为单位。有效地球曲率 *C_e* km⁻¹为1/*r_e*,其中*r_e*是有效地球半径,以千米为单位。波长用λ表示,以米为单位。

找出中间剖面点,从发射机到该点线段的斜率最大。

$$S_{tim} = \max\left[\frac{h_i + 500C_e d_i (d - d_i) - h_{is}}{d_i}\right] \qquad \text{m/km}$$
(49)

其中剖面指数i取值2至n-1。

假定为视距路径计算从发射机到接收机的线段斜率:

$$S_{tr} = \frac{h_{rs} - h_{ts}}{d} \qquad \text{m/km}$$
(50)

现在必须考虑两种情况。

情况1. 路径为 LoS

若S_{tim} < S_{tr},则路径为LoS。

找出中间剖面点,绕射参数v最大:

$$v_{\max} = \max\left\{ \left[h_i + 500C_e d_i (d - d_i) - \frac{h_{ts}(d - d_i) + h_{rs} d_i}{d} \right] \sqrt{\frac{0.002d}{\lambda d_i (d - d_i)}} \right\}$$
(51)

其中剖面指数i取值2至n-1。

在这种情况下, Bullington点的刀刃形障碍物损耗由下式给出:

$$L_{uc} = J(\mathbf{v}_{\max}) \qquad \text{dB} \tag{52}$$

其中对于vb大于-0.78,函数J由公式(31)给出,否则为0。

情况2. 路径为跨视距

找出中间剖面点,从接收机到该点线段的斜率最大。

$$S_{rim} = \max\left[\frac{h_i + 500C_e d_i (d - d_i) - h_{rs}}{d - d_i}\right] \qquad \text{m/km}$$
(53)

其中剖面指数i取值2至n-1。

计算从发射机到Bullington点的距离:

$$d_b = \frac{h_{rs} - h_{ts} + S_{rim}d}{S_{tim} + S_{rim}} \qquad \text{km} \tag{54}$$

计算Bullington点的绕射参数vb:

$$v_{b} = \left[h_{ts} + S_{tim}d_{b} - \frac{h_{ts}(d - d_{b}) + h_{rs}d_{b}}{d}\right] \sqrt{\frac{0.002d}{\lambda d_{b}(d - d_{b})}}$$
(55)

在这种情况下, Bullington点的刀刃形障碍物损耗由下式给出:

$$L_{uc} = J(\mathbf{v}_b) \qquad \text{dB} \tag{56}$$

使用公式(52)或(56)来计算Luc,该路径的Bullington绕射损耗由下式给出:

$$L_b = L_{uc} + [1 - \exp(-L_{uc}/6)](10 + 0.02 d)$$
(57)

4.5.2 完整的方法

使用第 4.5.1节中的方法用于实际的地形剖面和天线高度。设实际路径所得的Bullington 绕射损耗*L_{ba}* dB为*L_b*,如公式(57)中给出。

找出发射机和接收机相对于一个契合该剖面的平滑表面的有效高度。

计算路径的发射机和接收机两端平坦表面高度的初始暂定值,如下所示:

$$v_{1} = \sum_{i=2}^{n} (d_{i} - d_{i-1}) (h_{i} + h_{i-1})$$
(58)

$$v_{2} = \sum_{i=2}^{n} (d_{i} - d_{i-1}) \Big[h_{i} (2d_{i} + d_{i-1}) + h_{i-1} (d_{i} + 2d_{i-1}) \Big]$$
(59)

$$h_{stip} = \left(\frac{2v_1d - v_2}{d^2}\right) \tag{60a}$$

$$h_{srip} = \left(\frac{v_2 - v_1 d}{d^2}\right) \tag{60b}$$

找出从发射机到接收机的直线路径上的最大障碍物高度*h*_{obs}和水平仰角*α*_{obt}, *α*_{obr}, 所有都 基于地球平面的几何形状,根据:

$$h_{obs} = \max\{h_{obi}\} \qquad m \qquad (61a)$$

$$\alpha_{obt} = \max\{h_{obi}/d_i\} \qquad \text{mrad} \qquad (61b)$$

$$\alpha_{obr} = \max\{h_{obi} / (d - d_i)\}$$
mrad (61c)

其中:

$$h_{obi} = h_i - [h_{ts}(d - d_i) + h_{rs}d_i]/d$$
 m (61d)

其中剖面指数*i*取值2至n-1。 计算路径的发射机和接收机两端平坦表面高度的暂定值: 若*h*_{obs} 小于或等于0,则:

$$h_{stp} = h_{stip}$$
 masl (62a)

$$h_{srp} = h_{srip}$$
 masl (62b)

否则:

$$h_{stp} = h_{stip} - h_{obs}g_t \qquad \text{masl} \tag{62c}$$

$$h_{srp} = h_{srip} - h_{obs}g_r \qquad \text{masl} \tag{62d}$$

其中:

$$g_t = \alpha_{obt} / (\alpha_{obt} + \alpha_{obr})$$
(62e)

$$g_r = \alpha_{obr} / (\alpha_{obt} + \alpha_{obr})$$
(62f)

计算路径的发射机和接收机两端平坦表面高度的最终值: 若*h_{stp}*大于*h*₁,则:

$$h_{st} = h_1$$
 masl (63a)

否则:

$$h_{st} = h_{stp}$$
 masl (63b)

若h_{srp}大于h_n,则:

$$h_{sr} = h_n$$
 masl (63c)

否则:

$$h_{sr} = h_{srp}$$
 masl (63d)

使用第4.5.1节规定的方法用于平滑剖面,设所有的剖面高度*h*_{*i*}为零,并修改了天线高度如下:

$$\dot{h_{ts}} = h_{ts} - h_{st}$$
 masl (64a)

$$\dot{h_{rs}} = h_{rs} - h_{sr}$$
 masl (64b)

设平滑路径产生的Bullington绕射损耗*L_{bs}* dB为*L_b*,如公式(57)中给出。 使用第3.2节中给出的球体表面的绕射方法用于实际路径长度*d* km:

$$h_{\rm l} = h_{ts} \qquad {\rm m} \qquad (65a)$$

$$h_2 = h'_{rs} \qquad m \qquad (65b)$$

设产生的球体表面绕射损耗Lsph dB为A,如公式(25)中给出。

一般路径的绕射损耗由下式给出:

$$L = L_{ba} + \max\{L_{sph} - L_{bs}, 0\} \qquad \text{dB}$$
(66)

5 薄屏蔽上的绕射

下面的方法中假定,障碍物的形状为薄的屏蔽。此种方法可以应用于围绕障碍物或是 穿过孔径的电波传播。

5.1 有限宽度的屏蔽

通过将有限宽度的人为屏蔽横挡于电波传播方向上,能够在接收地点(例如,小地球站)达到干扰抑制。此种场合,考虑存在三个刀刃形障碍物,也即屏蔽的顶部和两侧,能够计算屏蔽阴影区的场强。三个独立的障碍形成的建设性和破坏性干扰会使场强随波长量级的距离变化而快速起伏。下面的简化模型可以给出位置函数的平均和最小绕射损耗的估值。它包括单个干扰的幅度相加以得到最小绕射损耗估值,以及功率的相加以得到平均绕射损耗估值。对其模型已做出测试,与应用均匀绕射理论(UTD)和高精度测量得到的结果进行对比。

步骤1:应用公式(26)至(29)中的任一个对三个刀刃形障碍物之每一个(顶部、左侧和 右侧)计算几何参数v。

步骤2:按公式(31)计算与每一个刀刃形障碍物关联的损耗系数 $j(v) = 10^{J(v)/20}$ 。

步骤3:按下面公式计算最小绕射损耗Jmin:

$$J_{min}(\mathbf{v}) = -20 \log \left[\frac{1}{j_1(\mathbf{v})} + \frac{1}{j_2(\mathbf{v})} + \frac{1}{j_3(\mathbf{v})} \right] \qquad \text{dB}$$
(67)

或者,另一种情况下,

步骤4: 按下面公式计算平均绕射损耗Jav:

$$J_{av}(v) = -10 \log \left[\frac{1}{j_1^2(v)} + \frac{1}{j_2^2(v)} + \frac{1}{j_3^2(v)} \right] \qquad dV$$
(68)

5.2 矩形孔径和复合孔径或屏蔽的绕射

下面说明的方法可用于预测由薄屏蔽上的矩形孔径或是完全吸收的薄屏蔽造成的绕射 损耗。可以将方法扩展到包括几个矩形孔径或是有限的屏蔽上,因而是第5.1节内所述有限 宽度屏蔽的另一种计算方法。

5.2.1 单个矩形孔径的绕射

图15示出在有一个矩形孔径无限大的完全吸收薄屏蔽的几何图。

单个矩形孔径的几何图

P.0526-15

孔径刀刃的位置x₁、x₂、y₁和y₂以直角坐标示出,原点处于自发射机T到接收机R的直线 穿过屏蔽面的交点处,电波传播平行于Z轴。发射机T和接收机R两者在屏蔽面之后和之前的 距离分别为d₁和d₂。

接收机上的场强ea以自由空间的归一化线性单位给出,其复数形式为:

$$e_a(x_1, x_2, y_1, y_2) = 0.5(C_x C_y - S_x S_y) + j \ 0.5 \ (C_x S_y + S_x C_y) \tag{69}$$

其中:

$$C_x = C(\mathbf{v}_{x2}) - C(\mathbf{v}_{x1}) \tag{70a}$$

$$C_{y} = C(v_{y2}) - C(v_{y1})$$
(70b)

$$S_x = S(v_{x2}) - S(v_{x1})$$
(70c)

$$S_{y} = S(v_{y2}) - S(v_{y1})$$
(70d)

在公式(26)中以x₁、x₂、y₁和y₂分别代替h,得到4个v值,*C*(v)和*S*(v)给出于公式(7a)和(7b)中,并可应用公式(8a)和(8b)从复菲涅耳系数中做出估值。

相应的绕射损耗La由下面公式给出:

$$L_a = -20 \log (e_a) \qquad \text{dB} \tag{71}$$

5.2.2 复合孔径或屏蔽的绕射

用于单个矩形孔径的方法可如下地扩展:

由于在对公式(69)的自由空间进行归一化的线性单位中,自由空间场强表示为 1.0+j0.0,所以,由单个矩形屏蔽(对地悬浮)的归一化复场强e_s由下面公式给出:

$$e_s = 1.0 - e_a \tag{72}$$

其中, ea的计算应用公式(69), 按照与屏蔽上同样尺寸和位置的孔径进行分析。

- 由几个矩形孔径或孤立屏蔽的组合产生的归一化场强,可通过将公式(69)或
 (72)的结果相加进行计算。
- 任意形状的孔径或屏蔽可以用矩形孔径或屏蔽的合适组合做出近似。
- 由于v趋向无限时C(v)和S(v)的积分收敛于0.5+j 0.5,故公式(50)可应用于在
 一个或几个方向上无限延伸的矩形孔径中。

6 有限传导楔上的绕射

下面说明的方法能用于预测由有限传导楔造成的绕射损耗。合适的应用场合是当建筑物边角周围或是屋顶脊梁上、或是地形方面能由楔形山丘表征其产生的绕射时。方法中要求知道障碍楔的导电率和相对介电常数,并假定不发生穿过楔形材料的透射。

该方法基于均匀绕射理论(UTD)。它考虑到阴影区域和视距区域两者内的绕射,对 这类区域间的平滑过渡给出计算方法。

有限传导楔形障碍的几何图在图16中示出。

现场点上电场的UTD公式专门以二维表示:

$$e_{UTD} = e_0 \frac{\exp(-jks_1)}{s_1} D^{||} \cdot \sqrt{\frac{s_1}{s_2(s_1 + s_2)}} \cdot \exp(-jks_2)$$
(73)

其中:

eUTD: 现场点上的电场;

- s1: 发射源点到绕射脊的距离;
- s₂: 绕射脊到现场点的距离;
- *k*: 波数2π/λ;

 D^{\uparrow} : 取决于绕射脊上入射电场极化(平行或垂直于入射平面)的绕射系数; s_1 、 s_2 和 λ 具有独立单位。

有限传导楔的绕射系数,由下面公式给出:

$$D^{|||} = \frac{-\exp(-j\pi/4)}{2n\sqrt{2\pi k}} \begin{cases} \cot\left(\frac{\pi + (\Phi_2 - \Phi_1)}{2n}\right) \cdot F(kLa^+(\Phi_2 - \Phi_1)) \\ + \cot\left(\frac{\pi - (\Phi_2 - \Phi_1)}{2n}\right) \cdot F(kLa^-(\Phi_2 - \Phi_1)) \\ + R_0^{|||} \cdot \cot\left(\frac{\pi - (\Phi_2 + \Phi_1)}{2n}\right) \cdot F(kLa^-(\Phi_2 + \Phi_1)) \\ + R_n^{|||} \cdot \cot\left(\frac{\pi + (\Phi_2 + \Phi_1)}{2n}\right) \cdot F(kLa^+(\Phi_2 + \Phi_1)) \end{cases}$$
(74)

其中:

Φ₁: 入射角,从入射面(0面)上测量;

Φ₂: 绕射角,从入射面(0面)上测量;

n: 传导楔处部角, π 弧度的倍数(实际角= $n\pi$ (弧度));

$$j = \sqrt{-1}$$

其中F(x)是菲涅耳积分:

$$F(x) = 2j\sqrt{x} \cdot \exp(jx) \cdot \int_{\sqrt{x}}^{\infty} \exp(-jt^2) dt$$
(75)

$$\int_{\sqrt{x}}^{\infty} \exp(-jt^2) dt = \sqrt{\frac{\pi}{8}}(1-j) - \int_{0}^{\sqrt{x}} \exp(-jt^2) dt$$
(76)

该积分可以用数值积分进行计算。

另一种方法,可以用下面公式有效地近似:

$$\int_{\sqrt{x}}^{\infty} \exp(-jt^2) dt = \sqrt{\frac{\pi}{2}} A(x)$$
(77)

其中:

$$A(x) = \begin{cases} \frac{1-j}{2} - \exp(-jx)\sqrt{\frac{x}{4}}\sum_{n=0}^{11} \left[(a_n + jb_n)\left(\frac{x}{4}\right)^n \right] & \text{if } x < 4 \\ -\exp(-jx)\sqrt{\frac{4}{x}}\sum_{n=0}^{11} \left[(c_n + jd_n)\left(\frac{4}{x}\right)^n \right] & \text{otherwise} \end{cases}$$
(78)

系数a、b、c、d在第2.7节中给出。

$$L = \frac{s_2 \cdot s_1}{s_2 + s_1} \tag{79}$$

$$a^{\pm}(\beta) = 2\cos^2\left(\frac{2n\pi N^{\pm} - \beta}{2}\right) \tag{80}$$

其中:

$$\beta = \Phi_2 \pm \Phi_1 \tag{81}$$

在公式(45)中, N[±]是最接近满足下面公式的整数。

$$N^{\pm} = \frac{\beta \pm \pi}{2n\pi} \tag{82}$$

 R_0^{\perp}, R_n^{\perp} 是竖向极化或平行极化的反射系数,由下面两公式分别给出:

$$R^{\perp} = \frac{\sin(\Phi) - \sqrt{\eta - \cos(\Phi)^2}}{\sin(\Phi) + \sqrt{\eta - \cos(\Phi)^2}}$$
(83)

$$R^{\parallel} = \frac{\eta \cdot \sin(\Phi) - \sqrt{\eta - \cos(\Phi)^2}}{\eta \cdot \sin(\Phi) + \sqrt{\eta - \cos(\Phi)^2}}$$
(84)

其中:

対于 R_0 , $\Phi = \Phi_1$; 对于 R_n , $\Phi = (n\pi - \Phi_2)$; $\eta = \varepsilon_r - j \times 18 \times 10^9 \sigma / f$:

- ε_r: 楔形材料相对介电常数;
- **σ**: 楔形材料电导率 (S/m);
- f: 频率(Hz)。

注意必要时可以使传导楔的两侧面有不同的电性能。

在阴影边界和反射边界处,公式(74)中的余切函数之一会变成奇异式。

然而, D^[†]仍为有限值,可以方便地计算。对于小的ε,包含奇异余切函数的数据项由 下面公式给出:

$$\cot\left(\frac{\pi \pm \beta}{2n}\right) \cdot F(kLa^{\pm}(\beta)) \cong n \cdot \left[\sqrt{2\pi kL} \cdot \operatorname{sign}(\varepsilon) - 2kL\varepsilon \cdot \exp(j\pi/4)\right] \cdot \exp(j\pi/4)$$
(85)

其中, ε由下面的公式规定:

$$\varepsilon = \pi + \beta - 2\pi n N^{+} \qquad \qquad \forall \exists \beta = \Phi_{2} + \Phi_{1} \qquad (86)$$

$$\varepsilon = \pi - \beta + 2\pi n N^{-} \qquad \qquad \forall \exists \beta = \Phi_2 - \Phi_1 \tag{87}$$

计算反射射线时只要应用相同的反射系数,在阴影边界和反射边界处得到的绕射系数 将是连续的。

因绕射射线产生的电场 e_{LD} 由下面公式给出,当($\Phi_2 - \Phi_1$)< π 时要加上视距射线产生的电场:

$$e_{LD} = \begin{cases} e_{UTD} + \frac{\exp(-jks)}{s} & \forall \mathcal{F} \quad \Phi_2 < \Phi_1 + \pi \\ e_{UTD} & \forall \mathcal{F} \quad \Phi_2 \geq \Phi_1 + \pi \end{cases}$$
(88)

其中:

s: 发射源与现场点之间的直线距离。

注意($\Phi_2 - \Phi_1$)= π 时,公式(74)中的第二个余切项将变成奇异式,须采用公式(85)给出的另一种近似式。

相对于不存在楔形障碍时现场点上会有的场强(dB)(也即相对于自由空间的场强, dB),现场点上的场强借助于将公式(73)中的e₀设定为单位值,然后按下面公式进行计算:

$$E_{UTD} = 20 \log\left(\left|\frac{s \cdot e_{UTD}}{\exp(-jks)}\right|\right)$$
(89)

其中:

s: 发射源与现场点之间的直线距离。

需要指出, *n*=2和反射系数为零时, 应得到如图9所示的刀刃形障碍物绕射损耗的相同的结果。

从国际电联无线电通信局可以得到UTD方程式运算的MathCAD版本。

7 绕射传播运算流程

第3节和第4节中提及的绕射损耗的计算,其一般流程在图17中示出。该流程图对各种场合下采用的步骤做出概括。

分析

附件1的 后附资料1

圆柱体参数的计算

下面的方法可应用于计算图8c)中示出的圆柱体参数以及图14中每一个地形障碍的参数。计算中采用独立单位,所有角度的单位为弧度。对水平倾角5°之内的无线电路径,可以应用近似公式进行计算。

1 绕射角和顶点位置

虽然这两个数据没有直接用做圆柱体参数,但需要知道圆柱体上的绕射角和顶点位置。

障碍物上的绕射角由下面公式给出:

$$\theta = \alpha_w + \alpha_z + \alpha_e \tag{90}$$

其中, α_w和α_z是分别从点w和z看出去、对本地地平线上点x和y的仰角, 它们由下面的公式给出:

$$\alpha_w = \frac{(h_x - h_w)}{d_{wx}} - \frac{d_{wx}}{2a_e}$$
(91)

$$\alpha_{z} = \frac{(h_{y} - h_{z})}{d_{yz}} - \frac{d_{yz}}{2a_{e}}$$
(92)

又, α_e是点w和z之间的大圈距离对向的角度,由下面公式给出:

$$\alpha_e = \frac{d_{wz}}{a_e} \tag{93}$$

从点w到顶点的距离,根据障碍物是由单个剖面样本点或是由一个以上剖面样本点予以 表示而做出相应的计算。

对于单个样本点的障碍,有下面公式:

$$d_{wv} = d_{wx} \tag{94}$$

对于多个点的障碍,有必要保护其免受很小角度值的绕射:

$$d_{wv} = \frac{\left[\left(\frac{\alpha_z + \alpha_e}{2}\right) d_{wz} + h_z - h_w\right]}{0} \qquad \qquad \forall \forall \forall \Theta \cdot a_e \ge d_{xy} \qquad (95a)$$

$$d_{wv} = \frac{(d_{wx} + d_{wy})}{2} \qquad \qquad \forall \exists \Theta \cdot a_e \leq d_{xy} \qquad (95b)$$

从顶点v起到点z的距离由下面公式给出:

$$d_{vz} = d_{wz} - d_{wv} \tag{96}$$

海平面上顶点的高度,根据障碍物是由单个剖面样本点或是由一个以上剖面样本点予以表示而做出相应的计算。

对于单个样本点的障碍,有下面公式:

$$h_v = h_x \tag{97}$$

对于多个点的障碍,有下面公式:

$$h_{v} = \frac{d_{wv}\alpha_{w} + h_{w} + d_{2wv}}{2a_{e}}$$
(98)

2 圆柱体参数

现在,对于样本串分析中定义的每一个地形障碍可计算在图8c)中示出的圆柱体参数:

d₁和d₂分别是障碍物的发射机侧和接收机侧相对于起作用障碍物(或终端)顶点的距离,

并有:

$$h = h_{v} + \frac{d_{wv}d_{vz}}{2a_{e}} - \frac{(h_{w}d_{vz} + h_{z}d_{wv})}{d_{wz}}$$
(99)

为了计算圆柱体半径,进一步应用两个剖面样本点:

p: 在发射机一侧与x相邻的点;

以及:

q: 在接收机一侧与y相邻的点。

因此, 剖面指数p和q由下面的式子给出:

$$p = x - 1 \tag{100}$$

以及:

$$q = y + 1 \tag{101}$$

如果p或q给定的点为一个终端,则对应的h值应是该点处的地形高度,而不是天线的海拔高度。

对于圆柱体半径的计算,应是在考虑到地球的曲率下将剖面段*p*-*x*与*y*-*q*之间斜率的差值除以*p*与*q*间的距离。

该计算中需要的剖面样本点之间的距离为:

$$d_{px} = d_x - d_p \tag{102}$$

$$d_{yq} = d_q - d_y \tag{103}$$

$$d_{pq} = d_q - d_p \tag{104}$$

p-*x*与*y*-*q*剖面段之间斜率的差值由下面公式给出,单位为弧度:

$$t = \frac{(h_x - h_p)}{d_{px}} + \frac{(h_y - h_q)}{d_{yq}} - \frac{d_{pq}}{a_e}$$
(105)

其中, a_e为地球有效半径。

现在,圆柱体半径由下面公式给出:

$$R = \left[d_{pq} / t \right] \left[1 - \exp(-4\nu) \right]^3$$
(106)

其中,v是公式(32)中无量纲的刀刃形障碍物参数。

公式(106)中,第二个系数是应用于圆柱体半径上的一个经验性平滑函数,用以避免 LoS障碍在一定程度上的不连续性。

附件1的 后附资料2

子路径绕射损耗

1 引言

本后附资料给出一种方法,用于计算绕射路径中LoS子路段的子路径绕射损耗。绕射路径用级联圆柱体建模,每一个圆柱体由图13和14中示出的剖面点的w、x、y和z表征。对总路径中由w和x或者y和z表示的样本点之间的每个子路段,计算其子路径绕射损耗。这些是路径中障碍物之间或是终端与障碍物之间的LoS路段。

该方法也能应用于带有子路径绕射的LoS路段中。此种场合下,它适用于整个路径。

2 方法

对于指数为u和v的剖面样本点之间的视距剖面路段,首要工作是识别除u和v之外将会在 u到v的射线行程中使第一菲涅耳区内产生最大障碍成分的剖面样本点。

为了避免选择出已经建模成圆柱体的地面障碍之一内的主体部分,将u与v之间的剖面限制为两个附加指数p和q之间的路段,对它们如下地设定:

− 设定*p* = *u* + 1。

- 如果 $p < v \pi h_p > h_{p+1}$,则p加l,并重复计算;
- 设定q = v 1。
- 如果q > u和 $h_q > h_{q-1}$,则q减1,并重复计算。

如果p=q,则子路径障碍损耗设定为零。否则,计算如下地向前进行。

现在,需找出由独立单位的hz/F1给出的归一化间隔CF的最小值。

hz: 剖面样本点i上射线的高度

F₁: 第一菲涅耳区的半径。

最小的归一化间隔可写成下面公式:

$$C_F = \min_{i=p}^{q} \left[(h_z)_i / (F_1)_i \right]$$
(107)

其中:

$$(h_z)_i = (h_r)_i - (h_t)_i$$
(108)

$$(F_1)_i = \sqrt{\lambda \cdot d_{ui} \cdot d_{iv} / d_{uv}}$$
(109)

(*h_r*)_{*i*}是在第*i*个剖面样本点处连结*u*和*v*点处海平面的直线上方射线的高度,由下面公式给出:

$$(h_r)_i = (h_u \cdot d_{i\nu} + h_\nu \cdot d_{ui}) / d_{u\nu}$$
(110)

(*h*_t)_i是在第*i*剖面样本点处连结*u*和*v*点之海平面的直线上方的地形高度,由下面公式给出:

$$(h_t)_i = h_i + d_{ui} \cdot d_{iv} / 2a_e \tag{111}$$

最大子路经障碍刀刃形绕射的几何参数,是利用归一化间隔最小值计算得出的:

$$\mathbf{v} = -C_F \cdot \sqrt{2} \tag{112}$$

子路经绕射损耗"L"是从公式(31)或图9得出的。

某些应用不宜包括子路经绕射增强。在这种情况下, "L"值应在否则为负数时设置为零。