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RECOMMENDATION  ITU-R  P.526-7 

Propagation by diffraction 
(Question ITU-R 202/3) 

(1978-1982-1992-1994-1995-1997-1999-2001) 

The ITU Radiocommunication Assembly, 

considering 

a) that there is a need to provide engineering information for the calculation of field strengths 
over diffraction paths, 

recommends 

1 that the methods described in Annex 1 be used for the calculation of field strengths over 
diffraction paths, which may include a spherical earth surface, or irregular terrain with different 
kinds of obstacles. 

 

ANNEX  1 

1 Introduction 
Although diffraction is produced only by the surface of the ground or other obstacles, account must 
be taken of the mean atmospheric refraction on the transmission path to evaluate the geometrical 
parameters situated in the vertical plane of the path (angle of diffraction, radius of curvature, height 
of obstacle). For this purpose, the path profile has to be traced with the appropriate equivalent Earth 
radius (Recommendation ITU-R P.834). If no other information is available, an equivalent Earth 
radius of 8 500 km may be taken as a basis. 

2 Fresnel ellipsoids and Fresnel zones 
In studying radiowave propagation between two points A and B, the intervening space can be 
subdivided by a family of ellipsoids, known as Fresnel ellipsoids, all having their focal points at A 
and B such that any point M on one ellipsoid satisfies the relation: 

  
2

AB MBAM λ+=+ n  (1) 

where n is a whole number characterizing the ellipsoid and n = 1 corresponds to the first Fresnel 
ellipsoid, etc., and λ is the wavelength. 

As a practical rule, propagation is assumed to occur in line-of-sight, i.e. with negligible diffraction 
phenomena if there is no obstacle within the first Fresnel ellipsoid. 

The radius of an ellipsoid at a point between the transmitter and the receiver is given by the 
following formula: 
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or, in practical units: 
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where f is the frequency (MHz) and d1 and d2 are the distances (km) between transmitter and 
receiver at the point where the ellipsoid radius (m) is calculated. 

Some problems require consideration of Fresnel zones which are the zones obtained by taking the 
intersection of a family of ellipsoids by a plane. The zone of order n is the part between the curves 
obtained from ellipsoids n and n – 1, respectively. 

3 Diffraction over a spherical earth 
The additional transmission loss due to diffraction over a spherical earth can be computed by the 
classical residue series formula. A computer program GRWAVE, available from the ITU, provides 
the complete method. A subset of the outputs from this program (for antennas close to the ground 
and at lower frequencies) is presented in Recommendation ITU-R P.368. At long distances over the 
horizon, only the first term of this series is important. This first term can be written as the product 
of a distance term, F, and two height gain terms, GT and GR. Sections 3.1 and 3.2 describe how 
these terms can be obtained either from simple formulae or from nomograms. 

It is important to note that: 
– the methods described in § 3.1 and  3.2 are limited in validity to transhorizon paths; 
– results are more reliable in the deep shadow area well beyond the horizon; 
– attenuation in the deep shadow area will, in practice, be limited by the troposcatter 

mechanism. 

3.1 Numerical calculation 

3.1.1 Influence of the electrical characteristics of the surface of the Earth 

The extent to which the electrical characteristics of the surface of the Earth influence the diffraction 
loss can be determined by calculating a normalized factor for surface admittance, K, given by the 
formulae: 
in self-consistent units: 
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or, in practical units: 
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where: 

 ae : effective radius of the Earth (km) 

 ε : effective relative permittivity 

 σ : effective conductivity (S/m) 

 f : frequency (MHz). 

Typical values of K are shown in Fig. 1. 
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If K is less than 0.001, the electrical characteristics of the Earth are not important. For values of K 
greater than 0.001, the appropriate formulae given below should be used. 

3.1.2 Diffraction field strength formulae 

The diffraction field strength, E, relative to the free-space field strength, E0, is given by the 
formula: 
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E
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where X is the normalized length of the path between the antennas at normalized heights Y1 and Y2 

(and where 
0

log20
E
E  is generally negative). 

In self-consistent units: 
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or, in practical units: 

  dafX e
3/2–3/1β2.2=  (7a) 

  hafY e
3/1–3/23– β106.9 ×=  (8a) 

where: 

 d : path length (km) 

 ae : equivalent Earth’s radius (km) 

 h : antenna height (m) 

 f : frequency (MHz). 

β is a parameter allowing for the type of ground and for polarization. It is related to K by the 
following semi-empirical formula: 
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For horizontal polarization at all frequencies, and for vertical polarization above 20 MHz over land 
or 300 MHz over sea, β may be taken as equal to 1. 

For vertical polarization below 20 MHz over land or 300 MHz over sea, β must be calculated as a 
function of K. However, it is then possible to disregard ε and write: 
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where σ is expressed in S/m, f (MHz) and k is the multiplying factor of the Earth’s radius. 
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The distance term is given by the formula: 

  XXXF 6.17–)(log1011)( +=  (10) 

The height gain term, G(Y ) is given by the following formulae: 

 8–)1,1–(log5–)1,1–(6,17)( 2/1 YYYG ≅  for Y  >  2 (11) 

For Y < 2 the value of G(Y ) is a function of the value of K computed in § 3.1.1: 

 )1.0(log20)( 3YYYG +≅    para    10 K    <  Y  < 2 (11a) 

 [ ]1)/(log)/(log9log202)( +++≅ KYKYKYG   para    K / 10  <  Y  <  10 K (11b) 

 KYG log202)( +≅    para                    Y  <  K / 10 (11c) 

3.2 Calculation by nomograms 

Under the same approximation condition (the first term of the residue series is dominant), the 
calculation may also be made using the following formula: 

  )(H)(H)(Flog20 21
0

hhd
E
E ++=           dB (12) 

where: 

 E : received field strength 

 E0 : field strength in free space at the same distance 

 d : distance between the extremities of the path 

 h1 and h2 : heights of the antennas above the spherical earth. 

The function F (influence of the distance) and H (height-gain) are given by the nomograms in 
Figs. 2, 3, 4 and 5. 

These nomograms (Figs. 2 to 5) give directly the received level relative to free space, for k = 1 and 
k = 4/3, and for frequencies greater than approximately 30 MHz. k is the effective Earth radius 
factor, defined in Recommendation ITU-R P.310. However, the received level for other values of k 
may be calculated by using the frequency scale for k = 1, but replacing the frequency in question by 
a hypothetical frequency equal to f / k2 for Figs. 2 and 4 and ,/ kf for Figs. 3 and 5. 

Very close to the ground the field strength is practically independent of the height. This 
phenomenon is particularly important for vertical polarization over the sea. For this reason Fig. 5 
includes a heavy black vertical line AB. If the straight line should intersect this heavy line AB, the 
real height should be replaced by a larger value, so that the straight line just touches the top of the 
limit line at A. 

NOTE 1 – Attenuation relative to free space is given by the negative of the values given by equation (12). If 
equation (12) gives a value above the free-space field, the method is invalid. 
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Diffraction by a spherical earth – effect of distance
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4 Diffraction over obstacles and irregular terrain 

Many propagation paths encounter one obstacle or several separate obstacles and it is useful to 
estimate the losses caused by such obstacles. To make such calculations it is necessary to idealize 
the form of the obstacles, either assuming a knife-edge of negligible thickness or a thick smooth 
obstacle with a well-defined radius of curvature at the top. Real obstacles have, of course, more 
complex forms, so that the indications provided in this Recommendation should be regarded only as 
an approximation. 

In those cases where the direct path between the terminals is much shorter than the diffraction path, 
it is necessary to calculate the additional transmission loss due to the longer path.  

The data given below apply when the wavelength is fairly small in relation to the size of the 
obstacles, i.e., mainly to VHF and shorter waves ( f > 30 MHz). 

4.1 Single knife-edge obstacle 

In this extremely idealized case (Figs. 6a) and 6b)), all the geometrical parameters are combined 
together in a single dimensionless parameter normally denoted by ν which may assume a variety of 
equivalent forms according to the geometrical parameters selected: 
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where: 

 h : height of the top of the obstacle above the straight line joining the two ends of 
the path. If the height is below this line, h is negative 

 d1 and d2 : distances of the two ends of the path from the top of the obstacle 

 d : length of the path 

 θ : angle of diffraction (rad); its sign is the same as that of h. The angle θ is 
assumed to be less than about 0.2 rad, or roughly 12° 

 α1 and α2 : angles between the top of the obstacle and one end as seen from the other end. 
α1 and α2 are of the sign of h in the above equations. 

NOTE 1 – In equations (13) to (16) inclusive h, d, d1, d2 and λ should be in self-consistent units. 
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Figure 7 gives, as a function of ν, the loss (dB) caused by the presence of the obstacle. For ν greater 
than – 0.7 an approximate value can be obtained from the expression: 

  dB1.0–1)1.0–(log209.6)( 2
�
�

�
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� ν++ν+=νJ  (17) 
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4.2 Finite-width screen 

Interference suppression for a receiving site (e.g. a small earth station) may be obtained by an 
artificial screen of finite width transverse to the direction of propagation. For this case the field in 
the shadow of the screen may be calculated by considering three knife-edges, i.e. the top and the 
two sides of the screen. Constructive and destructive interference of the three independent 
contributions will result in rapid fluctuations of the field strength over distances of the order of a 
wavelength. The following simplified model provides estimates for the average and minimum 
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diffraction loss as a function of location. It consists of adding the amplitudes of the individual 
contributions for an estimate of the minimum diffraction loss and a power addition to obtain an 
estimate of the average diffraction loss. The model has been tested against accurate calculations 
using the uniform theory of diffraction (UTD) and high-precision measurements. 

Step 1: Calculate the geometrical parameter ν for each of the three knife-edges (top, left side and 
right side) using any of equations (13) to (16). 

Step 2: Calculate the loss factor j(ν) = 10 J(ν)/20 associated with each edge from equation (17). 

Step 3: Calculate minimum diffraction loss Jmin from: 
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or, alternatively, 

Step 4: Calculate average diffraction loss Jav from: 
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4.3 Single rounded obstacle 

The geometry of a rounded obstacle of radius R is illustrated in Fig. 6c). Note that the distances d1 
and d2, and the height h above the baseline, are all measured to the vertex where the projected rays 
intersect above the obstacle. The diffraction loss for this geometry may be calculated as: 

  dB),()( nmTJA +ν=  (20) 

where: 

a) J(ν) is the Fresnel-Kirchoff loss due to an equivalent knife-edge placed with its peak at the 
vertex point. The dimensionless parameter ν may be evaluated from any of equations (13) 
to (16) inclusive. For example, in practical units equation (13) may be written: 
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 where h and λ are in metres, and d1 and d2 are in kilometres. 

 J(ν) may be obtained from Fig. 7 or from equation (17). Note that for an obstruction to line-
of-sight propagation, ν is positive and equation (17) is valid. 

b) T(m,n) is the additional attenuation due to the curvature of the obstacle: 

  T(m,n)  =  k  mb (22a) 

 where: 

  k  =  8.2  +  12.0 n (22b) 

  b  =  0.73  +  0.27 [1  –  exp (– 1.43 n)] (22c) 
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 and 
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 and R, d1, d2, h and λ are in self-consistent units. 

 T(m,n) can also be derived from Fig. 8. 

Note that as R tends to zero, m, and hence T(m,n), also tend to zero. Thus equation (20) reduces to 
knife-edge diffraction for a cylinder of zero radius. 

It should be noted that the cylinder model is intended for typical terrain obstructions. It is not 
suitable for trans-horizon paths over water, or over very flat terrain, when the method of § 3 should 
be used. 
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4.4 Double isolated edges 

This method consists of applying single knife-edge diffraction theory successively to the two 
obstacles, with the top of the first obstacle acting as a source for diffraction over the second obstacle 
(see Fig. 9). The first diffraction path, defined by the distances a and b and the height ,1h′  gives a 
loss L1 (dB). The second diffraction path, defined by the distances b and c and the height ,2h′  gives 
a loss L2 (dB). L1 and L2 are calculated using formulae of § 4.1. A correction term Lc (dB) must be 
added to take into account the separation b between the edges. Lc may be estimated by the 
following formula: 
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which is valid when each of L1 and L2 exceeds about 15 dB. The total diffraction loss is then given 
by: 

  L  =  L1  +  L2  +  Lc (26) 

The above method is particularly useful when the two edges give similar losses. 
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If one edge is predominant (see Fig. 10), the first diffraction path is defined by the distances a and 
b + c and the height h1. The second diffraction path is defined by the distances b and c and the 
height h'2. The losses corresponding to these two paths are added, without addition of a third term. 
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The same method may be applied to the case of rounded obstacles using § 4.3. 

In cases where the diffracting obstacle may be clearly identified as a flat-roofed building a single 
knife-edge approximation is not sufficient. It is necessary to calculate the phasor sum of two 
components: one undergoing a double knife-edge diffraction and the other subject to an additional 
reflection from the roof surface. It has been shown that, where the reflectivity of the roof surface 
and any difference in height between the roof surface and the side walls are not accurately known, 
then a double knife-edge model produces a good prediction of the diffracted field strength, ignoring 
the reflected component. 

4.5 General method for one or more obstacles 

The following method is recommended for the diffraction loss over irregular terrain which forms 
one or more obstacles to line-of-sight propagation. The calculation takes Earth curvature into 
account via the concept of an effective Earth radius (see Recommendation ITU-R P.452, § 4.3). 
This method is suitable in cases where a single general procedure is required for terrestrial paths 
over land or sea and for both line-of-sight and transhorizon. 

A profile of the radio path should be available consisting of a set of samples of ground height above 
sea level ordered at intervals along the path, the first and last being the heights of the transmitter 
and receiver above sea level, and a corresponding set of horizontal distances from the transmitter. 
Each height and distance pair are referred to as a profile point and given an index, with indices 
incrementing from one end of the path to the other. Although it is not essential to the method, in the 
following description it is assumed that indices increment from the transmitter to the receiver. It is 
preferable but not essential for the profile samples to be equally spaced horizontally. 

The method is based on a procedure which is used from 1 to 3 times depending on the path profile. 
The procedure consists of finding the point within a given section of the profile with the highest 
value of the geometrical parameter ν as described in § 4.1. The section of the profile to be 
considered is defined from point index a to point index b (a < b). If a + 1 = b there is no 
intermediate point and the diffraction loss for the section of the path being considered is zero. 
Otherwise the construction is applied by evaluating νn (a < n < b) and selecting the point with the 
highest value of ν. The value of ν for the n-th profile point is given by: 

  nbanabn dddh λ=ν /2  (27) 

where: 

  h  =  hn  +  [dan dnb / 2 re]  –  [(ha dnb  +  hb dan)  / dab] (27a) 

 ha, hb, hn : vertical heights as shown in Fig. 11 

 dan, dnb, dab : horizontal distances as shown in Fig. 11 

 re : effective Earth radius 

 λ  : wavelength 

and all h, d, re and λ are in self-consistent units. 

The diffraction loss is then given as the knife-edge loss J(ν) according to equation (17) for 
ν > −0.78, and is otherwise zero. 
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Note that equation (27) is derived directly from equation (13). The geometry of equation (27a) is 
illustrated in Fig. 11. The second term in equation (27a) is a good approximation to the additional 
height at point n due to Earth curvature. 
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FIGURE 11
Geometry for a single edge

 

The above procedure is first applied to the entire profile from transmitter to receiver. The point with 
the highest value of ν is termed the principal edge, p, and the corresponding loss is J(νp 

). 

If νp > – 0.78 the procedure is applied twice more: 
– from the transmitter to point p to obtain νt  and hence J(νt 

); 
– from point p to the receiver to obtain νr and hence J(νr 

). 

The excess diffraction loss for the path is then given by: 

 L  =  J(νp )  +  T [ J(νt )  +  J(νr )  +  C ] for νp  >  – 0.78 (28a) 

 L  =  0 for νp  ≤  – 0.78 (28b) 

where: 
 C : empirical correction 

  C  =  10.0  +  0.04D (29) 
 D : total path length (km) 

and 

  T  =  1.0  –  exp [ –J(νp ) / 6.0 ] (30) 

Note that the above procedure, for transhorizon paths, is based on the Deygout method limited to a 
maximum of 3 edges. For line-of-sight paths it differs from the Deygout construction in that two 
secondary edges are still used in cases where the principal edge results in a non-zero diffraction 
loss. 
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Where this method is used to predict diffraction loss for different values of effective Earth radius 
over the same path profile, it is recommended that the principal edge, and if they exist the auxiliary 
edges on either side, are first found for median effective Earth radius. These edges should then be 
used when calculating diffraction losses for other values of effective Earth radius, without repeating 
the procedure for locating these points. This avoids the possibility, which may occur in a few cases, 
of a discontinuity in predicted diffraction loss as a function of effective Earth radius due to different 
edges being selected. 

4.6 Finitely conducting wedge obstacle 

The method described below can be used to predict the diffraction loss due to a finitely conducting 
wedge. Suitable applications are for diffraction around the corner of a building or over the ridge of a 
roof, or where terrain can be characterized by a wedge-shaped hill. The method requires the 
conductivity and relative dielectric constant of the obstructing wedge, and assumes that no 
transmission occurs through the wedge material.  

The method is based on the Uniform Theory of Diffraction (UTD). It takes account of diffraction in 
both the shadow and line-of-sight region, and a method is provided for a smooth transition between 
these regions. 

The geometry of a finitely conducting wedge-shaped obstacle is illustrated in Fig. 12. 
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The UTD formulation for the electric field at the field point, specializing to two dimensions, is 
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where: 

 eUTD : electric field at the field point 

 e0 : relative source amplitude 

 s1 : distance from source point to diffracting edge 

 s2 : distance from diffracting edge to field point 

 k : wave number 2π/λ 

 
⊥
D : diffraction coefficient depending on the polarization (parallel or perpendicular 

to the plane of incidence) of the incident field on the edge 

and s1, s2 and λ are in self-consistent units. 

The diffraction coefficient for a finitely conducting wedge is given as 
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 (32) 

where: 

 Φ1: incidence angle, measured from incidence face (0 face) 

 Φ2: diffraction angle, measured from incidence face (0 face) 

 n : external wedge angle as a multiple of π radians (actual angle = nπ (rad)) 

 j = 1−  

and where F(x) is a Fresnel integral: 
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The integral may be calculated by numerical integration. 

Alternatively a useful approximation is given by: 
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where: 
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and the coefficients a, b, c, d have the values: 
a0 = +1.595769140 b0 = -0.000000033 c0 = +0.000000000 d0 = +0.199471140
a1 = -0.000001702 b1 = +4.255387524 c1 = -0.024933975 d1 = +0.000000023
a2 = -6.808568854 b2 = -0.000092810 c2 = +0.000003936 d2 = -0.009351341
a3 = -0.000576361 b3 = -7.780020400 c3 = +0.005770956 d3 = +0.000023006
a4 = +6.920691902 b4 = -0.009520895 c4 = +0.000689892 d4 = +0.004851466
a5 = -0.016898657 b5 = +5.075161298 c5 = -0.009497136 d5 = +0.001903218
a6 = -3.050485660 b6 = -0.138341947 c6 = +0.011948809 d6 = -0.017122914
a7 = -0.075752419 b7 = -1.363729124 c7 = -0.006748873 d7 = +0.029064067
a8 = +0.850663781 b8 = -0.403349276 c8 = +0.000246420 d8 = -0.027928955
a9 = -0.025639041 b9 = +0.702222016 c9 = +0.002102967 d9 = +0.016497308
a10 = -0.150230960 b10 = -0.216195929 c10 = -0.001217930 d10 = -0.005598515
a11 = +0.034404779 b11 = +0.019547031 c11 = +0.000233939 d11 = +0.000838386
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where: 
  12β Φ±Φ=  (39) 

In equation (38), ±N  are the integers which most nearly satisfy the equation. 
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nRR ,0 are the reflection coefficients for either perpendicular or parallel polarization given by: 
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where: 
 1Φ=Φ  for R0 and )π( 2Φ−=Φ n for Rn 

 fr /1018j 9 σ××−ε=η  
 εr : relative dielectric constant of the wedge material 
 σ : conductivity of the wedge material (S/m) 
 f : frequency (Hz). 
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Note that if necessary the two faces of the wedge may have different electrical properties. 

At shadow and reflection boundaries one of the cotangent functions in equation (32) becomes 
singular. 

However 
⊥

D  remains finite, and can be readily evaluated. The term containing the singular 
cotangent function is given for small ε as: 

 [ ] )4/jexp()4/jexp(2)ε(signπ2))β((
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 (43) 

with ε defined by: 

 +π−β+π=ε nN2  for  12 Φ+Φ=β  (44) 

 −π+β−π=ε nN2  for  12 Φ−Φ=β  (45) 

The resulting diffraction coefficient will be continuous at shadow and reflection boundaries, 
provided that the same reflection coefficient is used when calculating reflected rays. 

The field eLD due to the diffracted ray, plus the line-of-sight ray for π,)( 12 <Φ−Φ  is given by: 
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where: 

 s: straight-line distance between the source and field points. 

Note that at π)( 12 =Φ−Φ the 2nd cotangent term in equation (32) will become singular, and that 
the alternative approximation given by equation (43) must be used. 

The field strength at the field point (dB) relative to the field which would exist at the field point in 
the absence of the wedge-shaped obstruction (i.e., dB relative to free space) is given by setting e0 to 
unity in equation (31) and calculating: 
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where: 

 s: straight-line distance between the source and field points. 

Note that, for n = 2 and zero reflection coefficients, this should give the same results as the knife 
edge diffraction loss curve shown in Fig. 7. 

A MathCAD version of the UTD formulation is available from the Radiocommunication Bureau. 
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