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RECOMMENDATION  ITU-R  P.684-1 

PREDICTION  OF  FIELD  STRENGTH  AT  FREQUENCIES  BELOW  ABOUT  500  kHz 

(Question ITU-R 215/3) 

(1990-1994) 
Rec. ITU-R P.684-1 

The ITU Radiocommunication Assembly, 

considering 

a) that there is a need to give guidance to engineers for the planning of radio services in the frequency band below 
about 500 kHz; 

b) that the following methods have been developed: 

– a wave-hop treatment for frequencies above about 60 kHz, based on a statistical analysis of field strength 
measurements in the band 16 kHz to about 1 000 kHz; 

– a waveguide mode method for frequencies below about 60 kHz, based on a theoretical model of the Earth and the 
ionosphere, employing ionospheric model parameters determined from propagation data; 

– methods for the frequency band 150-1 605 kHz, described in Recommendation ITU-R P.435, 

recommends 

that the following methods be used, except for the broadcasting service, taking particular note of the cautions on 
accuracy in their application to certain regions as discussed in Annex 2. 

1 Introduction 

Two methods are available for theoretically calculating the field strength of VLF and LF and MF signals. 

1.1 The “wave-hop” method is that in which electromagnetic energy paths between a given transmitter and 
receiver are represented geometrically as is done in the case of HF. 

This method should be used at LF and, for distances less than 1 000 km, at VLF. The method treats radio transmission as 
taking place along certain paths defined by one or more ionospheric reflections, depending on whether the propagation in 
question involves one or more “hops”, as well as a ground wave. The total field is then the vectorial resultant of the fields 
due to each path. In view of the long wavelengths concerned, the diffraction of the waves by the Earth’s surface must be 
taken into account, which is not the case for HF. The wave-hop method may be justified by the fact that, with oblique 
incidence, the dimensions of the section of altitude in which propagation takes place are equal to or greater than several 
wavelengths. 

With this method it is necessary to know the values of the reflection coefficients of the incident wave on the ionosphere. 
These vary greatly with frequency, length and geographic and geomagnetic coordinates of transmission path, time of 
day, season, and epoch of the solar cycle. It is also necessary to know the electrical characteristics (conductivity and 
permittivity) of the ground at the transmitting and receiving sites, since the finite conductivity of the Earth affects the 
vertical radiation patterns of the terminal antennas. 

1.2 The “waveguide mode” method should be used at VLF for distances greater than 1 000 km. In this method, the 
propagation is analysed as the sum of the waves corresponding to each of the different types of propagation in the 
Earth-ionosphere waveguide, analogous to a mode as defined for waveguides in the microwave region. The selection of 
the method to be used for field calculation depends on practical consideration of numerical calculations. 
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1.3 In the case of VLF at distances of less than 1 000 km, for LF in general and at MF, the series of modes are 
slightly convergent and the calculations then require adding together vectorially a large number of components. The 
wave-hop theory, on the other hand, requires only a limited number of paths, including the ground wave, and it is 
particularly convenient for the long-distance propagation of LF and MF, taking account, if possible, the diffraction. 

For VLF at distances of more than 1 000 km, the wave-hop theory requires the vectorial addition of the field due to a 
large number of paths whereas, since the series of modes converge rapidly, sufficient accuracy can be obtained by adding 
together only a small number of modes. The mode theory, therefore, is better suited to this type of propagation. 
Propagation at ELF also may be described in terms of a single waveguide mode. 

2 “Wave-hop” propagation theory 

2.1 General description 

According to this theory, the sky-wave field (strength and phase) at a point is treated as the resultant of the fields created 
by different waves propagated directly from the transmitter in one or more hops. The total field at this point is then the 
resultant of the field due to the wave diffracted by the ground and of the field due to the sky wave. 

The sky-wave field is calculated by applying the theory of rays in the regions where the methods of geometric optics are 
applicable and by integrating the effects of diffraction or by applying the full wave theory in regions where optics are no 
longer valid. 

The geometry of a path comprising a single hop is shown in Fig. 1. 
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FIGURE  1
Ray path geometry for the wave-hop radio propagation theory (first hop sky wave)
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The surface of the Earth is defined by r = a and a smooth reflecting ionospheric layer located at r = a + h. It is convenient 
to distinguish three cases. In the first, the receiving antenna located at R< is illuminated by the once-reflected sky wave 
from the transmitting antenna located at T< where ig is less than π/2. In the second, the two antennas at Tc and Rc are 
located at the critical points where ig = π/2. In the third case the antennas are located at T> and R> beyond the critical 
points such that the first sky-wave hop propagates into the diffraction or shadow zone. 
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2.2 Calculating the ray-path field strength 

The vertical component of electric field radiated from a short electric dipole may be written as: 

  Eu  ~ –  300  pt                mV/m  at  1  km (1) 

where pt is radiated power (kW). 

The field strength of the downcoming sky wave, before reflection at the ground in the vicinity of the receiving antenna, is 
given by: 

  Et  =  Eu
L

  cos ψ  ||R||  D Ft                mV/m (2) 

where: 

L : sky-wave path length (km) 

||R|| : the ionospheric reflection coefficient which gives the ratio of the electric field components parallel to the 
plane of incidence 

D : ionospheric focusing factor 

Ft : transmitting antenna factor 

ψ : the angle of departure and arrival of the sky wave at the ground, relative to the horizontal. 

If reception is by a small in-plane loop antenna located on the surface of the Earth, the effective field strength of the sky 
wave is: 

  Es  =  2 Eu
L

  cos ψ  ||R||  D Ft Fr                mV/m (3) 

For reception by a short vertical antenna equation (3) becomes: 

  Es  =  2 Eu
L

  (cos ψ)2  ||R||  D Ft Fr                mV/m (4) 

where Fr is the appropriate receiving antenna factor. 

For propagation over great distances, the wave-hop method can be extended to include sky waves reflected more than 
once from the ionosphere. For example for a two-hop sky wave, the field strength received by a receiving loop antenna 
can be represented simply as: 

  Es  =  2  Eu
L

  cos ψ  ||R1||  ||R2||   D2 DG  ||Rg||  Ft Fr                mV/m (5) 

where: 

 DG  : divergence factor caused by the spherical Earth, approximately equal to D−1 

 ||Rg|| : effective reflection coefficient of the finitely conducting Earth 

 L  : total propagation path of the two-hop ray-path 

 ||R1|| and ||R2|| : ionospheric reflection coefficients for the first and second reflection. 

In general, the ionospheric reflection coefficients will not be equal, because the polarizations of the incident waves are 
not the same. However, in the simple method for calculating field strengths given here, for propagation at very oblique 
angles of incidence, ||R1|| = ||R2|| as a first order approximation. 
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2.2.1 Angles of elevation and ionospheric incidence 

The ray path geometry for determining the angles of departure and arrival of the sky wave at the ground (ψ) and 
ionospheric angles of incidence (i) is shown on Figs. 2 and 3. These angles are given in Fig. 2 for an effective reflection 
height of 70 km which corresponds to typical daytime conditions and in Fig. 3 for an effective reflection of 90 km which 
corresponds to typical night-time conditions. The effects of atmospheric refraction on the departure and arrival angles are 
included and shown by the dashed curve although they are probably not valid for frequencies below about 50 kHz. 
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FIGURE  2
Departure and arrival angles (ψψψψ ) and ionospheric angles of incidence (i)

for typical daytime conditions (h = 70 km). The dashed curve includes
the effects of atmospheric refraction
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FIGURE  3
Departure and arrival angles (ψψψψ) and ionospheric angles of incidence (i)
for typical night-time conditions (h = 90 km). The dashed curve includes

the effects of atmospheric refraction
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2.2.2 Path length and differential time delay 

To calculate L the sky-wave path length and estimates of the diurnal phase changes, Fig. 4 is used. This shows the 
differential time delay between the surface wave and the one, two or three hop sky wave for ionospheric reflection 
heights of 70 and 90 km, corresponding to daytime and night-time conditions. A propagation velocity of 3 × 105  km/s is 
assumed. 
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2.2.3 Focusing factor 

The ionospheric focusing factor, D, for a spherical Earth and ionosphere is shown in Fig. 5 for daytime conditions and in 
Fig. 6 for night-time conditions. 

2.2.4 Antenna factors 

The antenna factors, Ft and Fr, which account for the effect of the finitely conducting curved Earth on the vertical 
radiation pattern of the transmitting and receiving antennas are shown in Figs. 7 to 9. Factors are calculated for land, sea 
and ice conditions which are defined by their electrical characteristics (conductivity and permittivity), as shown in 
Table 1. 
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FIGURE  6
Ionospheric focusing factor – night-time
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FIGURE  8
Antenna factor – Land
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Antenna factor – Ice at –4° C
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TABLE  1 

 

 

The curves were calculated assuming an effective Earth’s radius, 8 480 km, which is 4/3 of its actual value to take 
account of atmospheric refraction effects. The factors F are the ratio of the actual field strength to the field strength that 
would have been measured if the Earth were perfectly conducting. Negative values of ψ refer to propagation beyond the 
geometric optical limiting range for a one hop sky wave (see Figs. 1 to 3). 

2.2.5 Ionospheric reflection coefficients ||R|| 

Values of the ionospheric reflection coefficient ||R|| are shown in Fig. 10 for solar cycle minimum. To take account of 
frequency and distance changes, the values of ||R|| are given as a function of ƒ cos i, where ƒ is the transmitted frequency 
and i is the ionospheric angle of incidence. Curves are shown for night during all seasons, and for day conditions during 
winter and summer. Measured values at vertical and oblique incidence are indicated based upon the results given in 
numerous reports. 

In all cases the ionospheric reflection coefficient data given in the various references mentioned have been modified, if 
necessary, to account for ionospheric focusing, antenna factors, etc., so that the results of the measurements are 
consistent with the analysis technique given here. 

The concept of an effective frequency ƒ cos i for which reflection coefficients are constant cannot, however, always be 
relied on. The curves in Fig. 10 are derived from data obtained at steep incidence (d < 200 km) and at more oblique 
incidence (d > 500 km) and the ƒ cos i concept is likely to be approximately correct for such distances. At intermediate 
distances, however, the concept of an equivalent frequency is likely to lead to substantial errors in reflection coefficient, 
because in such circumstances the reflection coefficient and polarization of the wave change rapidly with distance. 

While many data have been incorporated into the curves in Fig. 10, which show that the ionospheric reflection 
coefficient varies with time of day (midnight and noon) and season, much more work is needed to establish clearly how 
it varies over the epoch of the solar cycle. There is clearly a solar cycle variation (see Fig. 11) in that reflection 
coefficients are larger in sunspot maximum years at the very low frequencies, whereas at medium frequencies they are 
smaller. The physical interpretation of this fact is as follows. During sunspot maximum years, the base of the ionosphere 
is lower and the electron density gradient is steeper than during sunspot minimum years. Thus, VLF waves which are 
reflected from this lower layer are more strongly reflected in sunspot maximum years, whereas MF waves, that are 
reflected above this lower layer, are more strongly absorbed. Clearly, the transition between greater and smaller 
reflection coefficients would be expected to be a function of frequency, time of day, season and epoch of the solar cycle; 
and a discontinuity in the reflection coefficient-frequency curve, at some particular frequency and time might be 
expected. A sharp change in the values for effective frequencies of 35 to 45 kHz is apparent in the data for sunspot 
maximum years in summer, but this is not revealed in the presentation of the data here. 

It should be noted that the frequency range of the MF broadcast band for oblique propagation lies in the range of 
effective frequencies where the solar cycle change in ionospheric reflectivity is opposite. That is, 1 600 kHz propagated 
over a path of 1 500 km corresponds to a ƒ cos i  of 278 kHz; whereas at 500 kHz the effective frequency is 86 kHz. An 
example of a calculation by the ray-path method is given in Annex 1. 

 Conductivity, σ 
(S/m) 

Permittivity, ε 

Sea water  5  80 ε0 
Land  2 × 10−3  15 ε0 
Polar ice  2.5 × 10−5  3 ε0 

ε0:  permittivity of free space.
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3 Calculating field strength by waveguide modes: full wave solution 

In the propagation of ELF, VLF and LF terrestrial radio waves to great distances, the waves are confined within the 
space between the Earth and the ionosphere. This space acts as a waveguide and the “waveguide concept” is applicable 
for characterizing the propagated fields as a function of distance. 

The waveguide mode method obtains the full wave solution for a waveguide that has the following characteristics: 

– arbitrary electron and ion density distributions and collision frequency (with height), and 

– a lower boundary which is a smooth homogeneous Earth characterized by an adjustable surface conductivity and 
dielectric constant. This method also allows for earth curvature, ionospheric inhomogeneity, and anisotropy 
(resulting from the Earth’s magnetic field). 



 Rec. ITU-R P.684-1 13 

 

2 5 2 5
10 210 310

12

10

8

6

4

2

0

– 2

– 4

– 6

– 8

– 10

– 12

D11

FIGURE  11
Change in reflection coefficient (dB) from sunspot minimum
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The energy within the waveguide is considered to be partitioned among a series of modes. Each mode represents a 
resonant condition, i.e., for a discrete set of angles of incidence of the waves on the ionosphere, resonance occurs and 
energy will propagate away from the source. The complex angles (θ) for which this occurs are called the eigenangles (or 
“modes”). They may be obtained using the “full-wave” procedures described in § 3.1 and 3.2 by solving the 
determinantal equation (i.e. the modal equation): 

  F (θ)  =  �
�

�
� Rd (θ)  R–d (θ)  –  1   =  0 (6) 

where: 

  Rd (θ)  =  
�
�
�

�
�
�||R|| d (θ) ⊥ R|| d  (θ)

||R⊥  d (θ) ⊥ R⊥  d (θ)
 (7) 

is the complex ionospheric reflection coefficient matrix looking up into the ionosphere from height “d ” and: 

  R–d (θ)  =  
�
�
�
�

�
�
�
�

||R
–

|| d (θ) 0

0  ⊥ R– ⊥ d (θ)
 (8) 

is the complex reflection matrix looking down from height “d ” towards the ground. 
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The notation || for the R’s and R–’s denotes vertical polarization while the notation ⊥ , denotes horizontal polarization. The 
first subscript on the R’s refers to the polarization of the incident wave while the second applies to the polarization of the 
reflected wave. 

The individual terms of equations (7) and (8) are: 

||R|| : ratio of the reflected field in the plane of incidence to the incident field in the same plane 

⊥ R⊥  : ratio of the reflected field perpendicular to the plane of incidence to the incident field perpendicular to the 
plane of incidence 

||R⊥ : ratio of the reflected field perpendicular to the plane of incidence to the incident field in the plane of 
incidence 

⊥ R|| : ratio of the reflected field in the plane of incidence to the incident field perpendicular to the plane of 
incidence 

The ionospheric reflection matrix, Rd (equation (7)) at height, d, is obtained by numerical integration of differential 
equations given by Budden (“The waveguide theory of wave propagation”, Logos Press, London, 1961). The differential 
equations are integrated by a Runge-Kutta technique, starting at some height above which negligible reflection is 
assumed to take place. The initial condition for the integration, i.e. the starting value of R, is taken as the value of R for a 
sharply-bounded ionosphere at the top of the given electron density and collision frequency profiles. The term Rd is 
calculated in terms of solutions to Stokes equation and their derivatives. 

The modal equation, equation (6), is solved for as many modes (eigenangles, θn) as desired. From the set of θ’s so 
obtained the propagation parameters: attenuation rate, phase velocity and the magnitude and phase of the excitation 
factor, can be computed. These parameters are then used in a modal summation to compute the total field, amplitude and 
phase, at some distant point. 

In many instances, the Earth-ionosphere waveguide can be considered to have constant propagation properties along the 
transmission path. The mode sum calculations made for these cases are referred to as horizontally homogeneous. 
However, for propagation to great distances it is unrealistic to assume the waveguide parameters will remain constant 
along the whole length of the path. For example, the direction and strength of the Earth’s magnetic field will vary and 
discontinuities can occur in the lower wall of the waveguide due to the presence of ground conductivity changes 
associated with various land-sea boundaries and the polar ice caps. The ionospheric conductivity also varies according to 
the time of day, season and the presence of the sunrise or sunset line along the propagation path. 

These types of discontinuities are those which cause discrete changes in the waveguide. In these cases mode conversion 
effects at the discontinuity must be taken into consideration. Mode conversion implies that a single mode propagating in 
one region of the waveguide will produce two or more modes in the other section of the guide which then propagate to 
the receiver. 

3.1 The ionospheric reflection matrix R(θθθθ) 

A crucial step in the determination of the mode constants discussed in the previous section is the evaluation of the 
reflection matrix R for a vertically inhomogeneous anisotropic ionosphere. This is achieved by a numerical integration of 
differential equations given by Budden. 

The coordinate system chosen is such that the direction of z is taken as positive into the ionosphere. Positive x is the 
direction of the propagation and y is normal to the plane of propagation. 

The geometry is shown in Fig. 12 where a plane wave is shown incident upon the ionosphere from below with wave 
vector K

→
 in the x-z plane (plane of incidence) at an angle of incidence θ1 to the vertical (z-axis). Other variables 

identified in the figure are Ω, the angle of the geomagnetic field measured from the vertical (90° < Ω ≤ 180° for the 
Northern Hemisphere), and ψ, the azimuth of propagation (East of magnetic North). The vector B

→
 is the Earth’s 

magnetic flux density. 

The differential equations are integrated by a Runge-Kutta technique starting at some height above which negligible 
reflection is assumed to take place. The starting value of R is the value of R for a sharply bounded homogeneous 
ionosphere characterized by parameters at the top of the given electron, ion and collision frequency profiles. Error 
control in the Runge-Kutta integration is by means of comparison for each step of the increments in the elements of 
R computed with a fourth-order Runge-Kutta method and those computed with a second-order integration step. The 
integration is carried out from some starting height down to the height d, where d is identified in equation (6). 
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It is necessary only that d be chosen sufficiently low in the ionosphere that ionospheric effects are small relative to Earth-
curvature effects. Below level d the only effect is that of Earth curvature which is included by introducing a modified 
permittivity which varies linearly in height. 
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3.2 The ground reflection matrix, R–d (θθθθ) 

The ground reflection coefficient matrix R–d, as given in equation (8), is determined in terms of independent solutions, h1 
and h2 to Stokes’ equation 

  0
d

2,12
2,1

2
=+ zh

z

hd
 (9) 

where the functions h1 and h2 are modified Hankel functions of order 1/3 (which are linearly related to Airy functions). 

3.3 The mode finding method (“MODESRCH”) 

Waveguide theory treats the field as being composed of one or more discrete families (modes) of plane waves confined 
to the Earth-ionosphere waveguide. The principal objective is to find solutions to equation (6) for the eigenangles θn. To 
achieve this a method known as “MODESRCH” is employed. 

The “MODESRCH” method, developed primarily for VLF and lower LF (10 kHz to about 60 kHz) propagation in the 
Earth-ionosphere waveguide finds all modes in any physically important rectangular region of the complex 
eigenangle (θn) space. The method also finds the single mode needed for ELF propagation. The procedure is based on 
complex variable theory. The modal equation, equation (6), is solved for all the important eigenangles, θn, for the given 
set of Earth-ionosphere parameters and propagation frequency. The search for the eigenangles is based on the fact that 
the lines of constant phase for any complex function, F(θ), may be discontinuous only at points where F(θ) = 0 or 
F(θ) → ∞. To simplify the problem of finding the θn values, the function F(θ) is modified so that it contains no poles and 
only F(θ) = 0 is considered. A solution of F(θ) = 0 is denoted by θ0, i.e. θ0 is a zero of F(θ) = 0. 
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Let: 

  F (θ)  =  FR (θr θi)  +  j FI (θr θi)  =  Re (F )  +  j Im (F ) (10) 

where: 

  θ  =  θr  +  j θi (11) 

Also: 

  F (θ)  =  �
�

�
� (FR (θr θi)2  +  FI (θr θi))2

 
½

  e jθ (12) 

where: 

  ϕ  =  tan–1  
�
�
�

�
�
�FI (θr θi)

FR (θr θi)
 (13) 

and: 

 FR (θ) : real part of the complex function  F(θ) 

 FI (θ) : imaginary part of the complex function F(θ) 

 θr :  real part of the complex angle θ 

 θi :  imaginary part of the complex angle θ. 

From equation (14) if: 

     ϕ = 0° (or 180°), this implies that 

     FI (θr θi) = 0 

Also if: 

     ϕ = 90° (or 270°), this implies that 

     FR (θr θi) = 0 

This leads to the phase diagram of Fig. 13. A set of lines of constant phase referred to as phase contours ranging from 0 
to 2π radians emanates radially (solid lines) from a simple zero. The dashed lines depict possible phase contour 
behaviour, in the region beyond the neighbourhood of θ0, in order to emphasize that in this region the phase contours are 
generally not radial. In view of the phase behaviour near a zero of F(θ) it is conceptually useful to define a zero of F(θ) 
as a set of phase contours. 

Some fundamentals of the procedure to find zeros of the function, F(θ), are illustrated in Fig. 14. A search rectangle is 
placed about some region of the complex plane. The search rectangle is divided into a grid of mesh squares whose 
corners will be called mesh points. The mesh square size is optional and is usually selected according to the expected 
zero spacing. If F(θ) has no poles, this implies that the line of any particular constant phase value ϕ = ϕc, radiating from 
a zero of F(θ), must cross a closed contour containing that zero at least once. Furthermore, no other zero of F(θ) may be 
on this phase line. Also, the lines of constant phase around F(θ) = 0 progress only in an anti-clockwise direction. A line 
of constant phase (e.g. ϕ = ϕc) which crosses the contour may be followed inward until it leads to a zero of F(θ) or until 
the line again reaches the contour. Beginning at the upper left corner of the search rectangle, a boundary search for 0° 
and 180° phase contours is conducted in a counterclockwise direction. Any phase contour would do; however, the 0° and 
180° phase contours are selected because mathematically they are easily located, occurring when Im (F) = 0. The search 
is conducted by evaluating F(θ) at the mesh points along the search rectangle boundary. When Im (F) changes sign, it 
indicates that a 0° or 180° phase contour has just been passed (points A, D, and G). Once either of these phase contours 
is located, the boundary search is temporarily halted while the 0° or 180° phase contour is traced into the interior of the 
search rectangle by inspection of Im F(θ) at the corners of the mesh squares (counterclockwise inspection beginning at 
the top left corner of each mesh square). The phase contour is followed either until a zero of F(θ) is discovered (points B 
and E) or until the search rectangle boundary is encountered (as would be the case for the phase contour between G 
and H), one of which will always occur provided no poles exist in the interior of the search rectangle.  
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When a zero is located its location is saved. Then the phase contour is traced out the opposite side of the zero, having 
undergone a 180° phase change (see Fig. 13), until the search rectangle boundary is again encountered (points C and F). 
When the phase contour exists the search boundary, such as at points C, F, or H, the mesh square which contains this 
occurrence is flagged so as to avoid following the particular phase contour again at a later time during the boundary 
search. Also at such a point (point C, F, or H) the phase contour trace is stopped and the boundary search is resumed at 
the point where the last 0° or 180° phase line was encountered (e.g. points A, D, or G). Once the entire search rectangle 
boundary has been inspected, all the zeros of the function F(θ) located within the search rectangle will have been found. 
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The location of a zero is evident by the intersection of phase contours (see Fig. 13). Therefore, the intersection of the 0° 
or 180° phase contour with any other phase contour locates a zero of F(θ). The other phase contour chosen for this 
purpose is the 90° or 270° phase contour, again chosen for simplicity, as these contours are easily recognized, occurring 
when Re (F) = 0. While a 0° or 180° phase contour is being traced Re (F) is also examined at the corners of each mesh 
square to locate a Re (F) sign change which indicates that a 90° or 270° phase contour has entered the mesh square. Such 
an occurrence indicates that a zero is probably within that mesh square or perhaps within an adjacent mesh square. Once 
a mesh square is known to contain a zero, a more precise location of the zero is obtained by an interpolation scheme 
which employs both the magnitude and phase of the function F(θ). Following this a Newton-Raphson iteration pinpoints 
the location of the zero. 

The Newton-Raphson procedure is to use each of the eigenangle solutions, θn, as obtained from the “MODESRCH” grid 
as a starting solution θ0 to equation (6) where F(θ) = 0. The function is then re-evaluated for θ0 + δ θ and the correction 
to θ0 found from the equation: 

  ∆θ  =  F (θ0)  δ θ
F (θ0  +  δ θ)  –  F (θ0)

 (14) 

The correction determined by equation (14) is then evaluated and the process repeated until the quantities |∆θr| and |∆θi| 
are reduced to within a pre-assigned tolerance. The subscripts r and i denote the real and imaginary parts, respectively. 
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4 Calculation of field strength 

4.1 Required parameters 

With the eigenangles, θn, known, the following quantities of physical interest are readily calculated. 

  Phase velocity at the ground:    V  =  c
K  (sin θn)r

 (15) 

Attenuation constant at the ground (dB/Mm):    Γ  =  – 8.6859 k K  (sin θn)i (16) 

where: 

Vacuum speed of light:    c = 2.997928 × 105 km/s 

  K  =  
�
	



�
�
1  +  α  h

2
 (17) 

  α  =  2 / a  =  3.14  ×  10 
– 4/km (18) 
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Using the geometry of Fig. 12 the direction of stratification is the z direction and direction of propagation is in the x-z 
plane. The direction of z is taken as positive into the ionosphere. Positive x is the direction of propagation and y is 
normal to the plane of propagation. Thus, the fields exhibit no y dependence and a dependence on x of the form exp (−ik 
sin θx) where k is the magnitude of the free-space propagation vector and ϕ is the angle between the direction of the 
propagation vector and the z direction at a point in the stratified medium where the modified index of refraction is unity. 
All field quantities are assumed to have an exp (iωt) dependence where ω is the angular frequency. 

The modal excitation factor and the modal height gain functions are two parameters needed in computing electric field 
strengths. The excitation factor formulae are summarized in Table 2. The column headings only apply to excitation of the 
electric field components Ez, Ey and Ex and the row headings apply to excitation by a vertical dipole (λV), horizontal 
dipole end on (λE) and a horizontal dipole broadside (λB). 

TABLE  2 
Excitation factors 

 

 

 

R and R– represent, respectively, elements of the reflection matrix looking into the ionosphere and towards the ground 
from the same level d within the guide. B1 and B2 are given by 

  B1  =  S5/2

α F
α θ 

θ  –  θn

          B2  =  – B1
S

 (19) 

where S is the sine of the eigenangle and the denominator is the derivative of the modal equation at the eigenangle, ϕn. 

The excitation factors must be supplemented with definitions of the height gains. 

The field strength calculations can be made for electric dipole exciters of arbitrary orientation located at any height 
within the guide. Thus, air-to-air, ground-to-air or air-to-ground VLF/LF propagation problems involving a horizontally 
inhomogeneous waveguide channel may be treated. Figure 15 shows the dipole orientation relative to the propagation 
geometry in which the z axis is always normal to the curved Earth surface. The angles γ and ϕ measure the orientation of 
the transmitter relative to the x, y, z coordinate system. 

From Fig. 15, γ = 0° represents the excitation from a vertical dipole while γ = 90° gives the excitation from a horizontal 
dipole. Also ϕ is the angle between the direction of the horizontal dipole and the direction of propagation. Explicitly, 
ϕ = 0 represents end fire and ϕ = 90° represents broadside launching. 
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4.2 WKB and horizontally homogeneous mode sums 

In addition to the vertical inhomogeneity of the ionosphere the guide may exhibit horizontal inhomogeneity. In 
particular, variability in propagation constants along the great circle path of propagation can result from either horizontal 
variability of the ionosphere, from variability of the ground conductivity and/or permittivity, as well as from variations in 
the geomagnetic field strength or orientation. In instances for which the Earth ionosphere waveguide cannot be 
considered as horizontally homogeneous along the propagation path, a WKB form of the mode sum is used. This model 
is accurate when changes in the modal parameters are sufficiently gradual along the path. 

In terms of the excitation factors and height gains, the WKB mode sum equations may be written as a function of 
propagation distance. 

If the propagation path may be considered as horizontally homogeneous along its entire length, the equation becomes 
much simpler: 
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and may be used to compute the fields for multimode propagation at VLF and LF. These equations may also be used for 
ELF. However, because of the small attenuation rates which prevail in the lower ELF band, significant interference 
between the long and short path signals can occur. 

4.3 Mode sums using mode conversion 

For those propagation conditions where the properties of the Earth-ionosphere waveguide can not be considered as 
slowly varying, mode conversion techniques must be utilized. Examples, where mode conversion procedures are 
required for calculating field strengths, are for transmissions across the daytime-night-time terminator region or when the 
propagation path consists of large changes in ground conductivity, such as the transition from land to sea. The mode 
conversion model allows for an arbitrary number and order of modes on each side of the waveguide discontinuity. This 
model also allows for the calculation of the horizontal, as well as the vertical, component of the electric field at an 
arbitrary height in the waveguide. 
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A mode conversion program (see references given in AGARDograph No. 326, ed. J. H. Richter, p. 40-62, 1990) is based 
on the slab model shown in Fig. 16. Invariance in the y direction is assumed and reflection from the horizontal 
inhomogeneity is neglected. Subject to these assumptions and to the assumption of a unit amplitude wave in mode k 
incident in the transmitter region (slab NTR) the generalized mode conversion coefficient ak

p for the pth slab associated 
with conversion from the kth to the jth mode expressed in terms of the coefficients for the previous (p + 1)th slab may be 
written in the form: 
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where: 

 i  = (−1)½ 

 k : free-space wave number 

 Sj : sine of the jth eigenangle for the pth slab 

 j : total number of modes assumed to be important in the total field determinations. 

Critical for the solution of the system of equations (21) is the evaluation of the integral: 

  zGA p
k

mt
j

pm
jk �

∞

∞−

⋅= d,I  (22) 

where the t denotes the adjoint factor and Gp a four-element column matrix of height gains for the y and z components of 
the electric and magnetic field strength of the kth mode in the pth slab. 

The term m
jA  is a four-element column matrix of height gains for an appropriate adjoint waveguide. 
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Again, as in the case of the WKB mode sum procedure, the field-strength calculations can be made for electric dipole 
exciters of arbitrary orientation located at any height within the guide. Thus, air-to-air, ground-to-air or air-to-ground 
VLF/LF propagation problems in a horizontally inhomogeneous waveguide channel may be treated. 

Two distinct options are available with the mode conversion procedure. One is for field calculations (amplitude and 
phase) as a function of range for a fixed location of the horizontal inhomogeneity. The second allows for field 
calculations at a distinct receiving point along a great circle path as a function of position of the horizontal 
inhomogeneity (this option is useful only if the ground conductivity and the geomagnetic parameters are invariant over 
the path). Amplitude is expressed in dB above a microvolt per metre for a one kilowatt radiator and phase in degrees 
relative to free space. 

4.4 Ionospheric parameters 

The required ionospheric parameters needed to compute ELF/VLF/LF field strength values are the following profiles, 
which are functions of ionospheric height, Z. These are electron density profile, positive and negative ion density 
profiles, electron-neutral particle collision frequency profile and positive and negative ion-neutral particle collision 
frequency profiles. 

A convenient parameter based on the above profiles is the ionospheric conductivity ωr, which is a function of height, Z. 
This parameter is given by: 

  ωr (Z )  =  
ω2

p (Z )

ν (Z )
  =  

q2

ε0
  
�
�
�

�
�
�Ne (Z )

me νe (Z )
  +  

N+ (Z )
m+ ν+ (Z )

  +  
N– (Z )

m– ν– (Z )
 (23) 

where: 

 ωp (Z ) : plasma frequency 

 q :  electron charge 

 ε0 :  permittivity of free space 

 ve :  electron-neutral particle collision frequency (s−1) 

 v+ :  positive ion-neutral particle collision frequency (s−1) 

 v− :  negative ion-neutral particle collision frequency (s−1) 

 Ne :  electron density (cm−3) 

 N+ :  positive ion density (cm−3) 

 N− :  negative ion density (cm−3) 

 me :  mass of the electron 

 m+ :  mass of the positive ions 

 m− :  mass of the negative ions. 

For most cases of propagation at VLF or LF, only the electron density profile and electron-neutral particle collision 
frequency profile need to be considered. In this instance, the conductivity parameter ωr(Z ) may be considered of 
exponential form: 

  ωr (Z )  =  ω0  exp [β  (Z  –  H′)] (24) 

where: 

 β : gradient parameter in inverse height units, and 

 H′  : reference height. 
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The ionospheric parameters needed as inputs to the multimode computer programs, then, are the electron density profile 
and the effective electron-neutral particle collision frequency profile. These terms may be assigned exponential 
relationships with height and are identified by the terms β (km−1) and H′ (km). 

The value of the electron density N (Z ), (el/cm3) is calculated as a function of height Z (km) by the equation: 

 37 el/cm)()15.0(exp)15.0(exp1043.1)(
�
�
�

�
�
� ′−−β

�
�
�

�
�
� ′−××= HZHZN  (25) 

The collision frequency profile for the computations is: 

  ν (Z )  =  ν0  exp (– α Z ) (26) 

where: 

 Z : height (km) 

 v0 : 1.82 × 1011 collisions/s 

 α : 0.15 km−1. 

This combination of electron density and collision frequency gives an ionospheric conductivity profile given by: 

  ωr (Z )  =  2.5  ×  105  exp [β  (Z  –  H′)] (27) 

The usefulness of this simple ionospheric model is a result of its ease of application and its success in modelling 
experimentally measured data. The determination of the values of the β and H′ parameters is achieved by comparing 
measured data with theoretical calculations, adjusting the parameters in the latter until acceptable agreement is obtained. 
The most straightforward method of comparison is obtained when the measured data are collected at a large number of 
points along a great circle propagation path which includes the transmitter. The easiest way to collect such data is aboard 
an aircraft. 

In general, the ionospheric models determined from the above procedure must be considered to represent an averaged 
ionosphere since the modelling assumes that the ionosphere was static during any aircraft flight period. The data fitting 
procedure attempts to find a calculated pattern of amplitude as a function of distance which agrees with the large scale 
pattern of the measured data. Thus, many small amplitude variations are averaged. It is possible that profiles of more 
complex forms than the exponential could be found to produce a better fit to measured data in some instances, but since 
the propagation paths considered are quite long, any profile determined to produce a best fit to the data is really an 
average profile for the total path. 

Analysis of the available measured data suggests the following parameters for VLF/LF predictions. For daytime use 
β = 0.3 and H′ = 74, for all latitudes, and all seasons. The night-time ionosphere is more complicated in that β varies 
linearly with frequency from 0.3 at 10 kHz to 0.8 at 60 kHz. The low- and mid-geomagnetic latitude night-time 
ionosphere is characterized by an H′ of 87, while the polar ionosphere has an H′ of 80 km. Values of these transmission 
parameters at 30 kHz are found in Table 3. This table illustrates the transitions as they would be defined along a 
hypothetical path which traverses the pole from day to night. 

The characteristic relationship, as a function for some exponential profiles is illustrated in Fig. 17 for daytime conditions 
and in Fig. 18 for night-time conditions. 

For propagation at ELF, suggested electron and ion density profiles are shown in Fig. 19. 

Tables of suggested electron and ion collision profiles for ELF are given in Tables 4 and 5. 
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TABLE  3 

Ionospheric profile transition parameters at 30 kHz 
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Solar zenith 
angle, χ 

β H′ 
(km) 

Magnetic dip 
angle, D 

 χ < 90.0  0.3 74.0  D < 70 

 90.0 < χ < 91.8  0.33 76.2  70 < D < 72 

 91.8 < χ < 93.6  0.37 78.3  72 < D < 74 

 93.6 < χ < 95.4  0.40 80.5  74 < D < 90 (Pole) 

 95.4 < χ < 97.2  0.43 82.7  72 < D < 74 

 97.2 < χ < 99.0  0.47 84.4  70 < D < 72 

 99.0 < χ < (night)  0.50 87.0  D < 70 
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TABLE  4 

Daytime ionospheric electron and ion collision frequency in seconds−−−−1 
versus height 

 

 

 

TABLE  5 

Night ionospheric electrons and ion collision frequency in seconds−−−−1 
versus height 

 

 

 

Height 
(km) Electrons Positive ions Negative ions 

 260  6.6 × 102  1.02  1.02 

 230  5.3 × 102  2.00  2.00 

 210  4.8 × 102  3.10  3.10 

 200  5.0 × 102  4.00  4.00 

 180  6.0 × 102  1.30 × 101  1.30 × 101 

 170  8.0 × 102  2.40 × 101  2.40 × 101 

 150  1.6 × 103  9.00 × 101  9.00 × 101 

 120  1.0 × 104  6.00 × 102  6.00 × 102 

 100  3.9 × 104  1.60 × 104  1.60 × 104 

 0  4.3 × 1011  2.14 × 1010  2.14 × 1010 

Height 
(km) Electrons Positive ions Negative ions 

 250  1.05 × 102  4.50 × 101  4.50 × 101 

 225  3.50 × 101  9.00 × 101  9.00 × 101 

 220  3.00 × 101  1.00  1.00 

 210  3.30 × 101  1.30  1.30 

 200  4.50 × 101  2.00  2.00 

 150  1.60 × 103  4.50 × 101  4.50 × 101 

 120  1.00 × 104  3.00 × 102  3.00 × 102 

 100  3.90 × 104  8.00 × 103  8.00 × 103 

 0  4.30 × 1011  1.07 × 1010  1.07 × 1010 
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4.5 Geomagnetic and geophysical parameters 

Other parameters needed for the calculation of ELF/VLF/LF signal levels are those which describe the orientation and 
strength of the Earth’s magnetic field along the propagation path, as well as those parameters which give the value of the 
Earth’s complex dielectric constant as a function of propagation frequency. 

The parameters which describe the Earth’s magnetic field are the magnitude of the geomagnetic field, the magnetic 
azimuth (in degrees east of north) of the propagation direction, and the dip angle measured from the horizontal (co-dip) 
of the magnetic field vector. These parameters change along the propagation path and these changes are incorporated in 
the WKB or mode conversion formulations. 

The complex relative permittivity of the Earth, Ng, is given by: 

  Ng  =  ε / ε0  –  i σ
ω ε0

 (28) 

where: 

 σ : ground conductivity 

 ε / ε0 : relative ground permittivity 

 ε0 : permittivity of free space 

 ω : angular propagation frequency. 

Table 1 gives recommended values for these parameters. 

5 Discussion 

The wave-hop and waveguide mode methods described in detail in this Recommendation should be used, until better 
methods are available, to predict field strengths for the bands from ELF to MF. While the waveguide mode propagation 
program described in detail in this Recommendation can be used to predict field strength at ELF (50 Hz to 3 000 Hz), 
simpler methods have been developed for the low frequency part of this band. 

A brief discussion of the accuracy of the methods is given in Annex 2. Some interesting results using the waveguide 
mode propagation prediction program are given in Annex 3, to illustrate the usefulness of this program. 
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ANNEX  1 

Example of a complete calculation of field in amplitude 
and phase using the wave-hop method of § 2 

It is required to calculate the summer daytime expected field during solar cycle minimum under the following conditions 
using short vertical dipole transmitting and receiving antennas: 

Length of path  d = 1 911 km 

Frequency  ƒ = 80 kHz 

Transmitting location on land 
�
�
� σ = 2 × 10−3  S/m

ε = 15ε0
 

Receiving location on sea water 
�
�
� σ = 5  S/m

ε = 80ε0
 

Radiated power pt = 0.4 kW 

 

 The successive stages of the calculation are as follows: 

Stage Parameters Figures Terms calculated Values 

 01 pt = 0.4 kW  Eu = 300 0.4 = 190 mV/m 

 02 d = 1 911 km  2 ψ 
i 

≈ −0.36° 
= 81° 

 03 ψ = −0.36°  8 Ft = 0.36 

 04 ψ = −0.36°  7 Fr = 0.67 

 05 d = 1 911 km 
c = 3 × 105 km/s 

 4 L – d 
L = 1 911 + (46 × 10−6 × 3 × 105) 

= 46 µs 
= 1 925 km 

 06 d = 1 911 km  5 D = 2.16 

 07 ƒ = 80 kHz 
i  = 81° 

 ƒ cos i = 80 cos 81° = 12.5 kHz 

 08 ƒ cos i = 12.5 kHz solar cycle 
minimum day (summer) 

 10 ||R|| = 0.11 

 09   Es = 11.4 × 10−3 mV/m 

 10 h = 70 km (day) 
h = 90 km (night) 
d = 1 911 km (1 hop) 

 4 differential time delay = 67 – 47 
= 20 µs 
= 1.6 cycle 
   (i.e. 576°) 
   at 80 kHz 
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ANNEX  2 

Accuracy of the methods 

The wave-hop method still needs to be verified on a worldwide basis, since this method has largely been based on 
observations at middle latitudes in ITU Regions 1 and 2. The method has however been found to predict median field 
strengths with good accuracy in high latitudes in Region 2. The wave-hop method can be used for LF for frequencies 
above about 60 kHz and MF. The results of the method are in good agreement with those in Recommenda-
tion ITU-R P.435 in the overlapping frequency band. 

When using this method account needs to be taken of ground-wave propagation (Recommendation ITU-R P.368), and 
due allowance taken of the vertical plane antenna factor, using information given in this Recommendation and in 
Report ITU-R P.575. 

The waveguide mode method can be used to predict field strengths up to about 60 kHz, using the value 0.3/74 for the 
ionospheric parameters β/H′ for day-time paths, until additional results taking into account the variation with season, 
solar activity and frequency can be obtained. A more detailed model for night-time, which is a function of frequency and 
latitude, is given in this Recommendation. 

Since the lower boundary of the waveguide is the Earth, a conductivity map of the world (e.g. Recommen-
dation ITU-R P.832) needs to be a part of a program developed for worldwide application. The ground conductivity map 
currently used for the long-wave waveguide prediction program currently in use in the United States of America and 
Canada is largely based on geological features. 

Alternative methods to calculate night-time field strengths at LF, and above to 1 705 kHz, are given in Report 
ITU-R P.575. An intercomparison of results obtained by the method proposed in this Recommendation (the wave-hop 
method) should be made. Certainly field strengths predicted by the alternative methods should be consistent for 
frequencies and distances which are the same. 

A comparison of ex-CCIR methods for predicting MF field strength for a number of long paths in Europe has shown that 
the measured values of field strength agree quite well with the calculated values using the wave-hop method as described 
in this Recommendation for daytime in winter, but are 8-10 dB greater than those for daytime in summer or for night-
time. Recommendation ITU-R P.435 (night-time only) gives the same difference. 

The wave-hop method can be used to predict MF field strengths and LF field strengths down to a frequency of about 
60 kHz. The waveguide mode method can be used to predict VLF and LF field strengths, up to a frequency of about 
60 kHz. Daytime field strength predicted by the two methods for a frequency of 60 kHz are shown in Fig. 20 
(unfortunately for this comparison there are no measured data to compare). The continuous lines labelled summer and 
winter are calculated by the waveguide mode prediction program (using parameters for β/H′ given in 
Report ITU-R P.895). The open and closed circles are respectively the summer and winter field strengths calculated by 
the wave-hop method. No attempt is made to smooth the data in the over-lap distance range where the one-hop sky wave 
is cut off and the two-hop sky-wave dominates. The ground-wave is shown separately. 

The waveguide mode method calculates the total field, ground and sky-wave. The wave-hop method estimates the 
amplitude of the sky-wave alone. Therefore for comparison, the ground-wave field strength must be included in the 
wave-hop method. The waveguide mode method was used to predict field strength versus distance for a real path from a 
hypothetical transmitter at Vancouver, for a West-to-East path across Canada and the United States of America. The 
ground conductivity is variable along this path. The wave-hop method assumed average ground, conductivity 3 mS/m 
along the path. 

The difference between summer and winter daytime field strengths according to the wave-hop method decreases with 
decrease in effective frequency (f cos i). The waveguide mode propagation prediction program used for this 
intercomparison predicted the opposite seasonal variation. The program used parameters (β/H′) given in Report 
ITU-R P.895. Hence the caution noted above. The seasonal variation cannot be predicted and 0.3/74 for the 
parameters β/H′ is recommended for all seasons. 
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ANNEX  3 

Some example calculations using the waveguide mode method 

This Annex includes some calculations to illustrate that the waveguide propagation program (see § 4.3) predicts field 
strengths that are in accord with expectation concerning path features (ground conductivity) and path orientation with 
respect to the magnetic field. 

A Northern Hemisphere coverage pattern for a hypothetical VLF transmitter in central Canada is shown in Fig. 21. The 
calculations (field strength dB(µV/m)) are for 1 kW radiated power at a frequency of 24 kHz. Notice that in general the 
features agree with expectation. Propagation from East-to-West is better than from West-to-East; and notice the 
interesting anomaly in the field strength contours which result from the very low conductivity of Greenland. Notice the 
increased field strengths due to the good ground conductivity of the sea water in the Hudson Bay, compared with the 
surrounding poor conductivity of Arctic terrain. 

 

D21-sc

FIGURE  21
Field strenght contours (dB(uVm)) for 1 kW radiated power,

for a hypothetical transmitter located in central Canada.
Frequency 24 kHz, for a summer day

 

FIGURE 21/PI.684-1...[D21] 
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Another example follows to show that the ground conductivity along the whole of the propagation path is important. For 
the wave-hop method only the ground in the vicinity of the transmitting and receiving antennas is important. In Figs. 23 
and 24 we show a detailed field strength vs. distance prediction for three frequencies, 15, 25 and 35 kHz for a 
hypothetical path from Halifax across the poor conductivity land of the Laurentian Shield and over the Ungava Peninsula 
(the path is marked in Fig. 22). The poor ground conductivity for this path, across the Laurentian Shield in Canada, 
affects the frequencies differently. A transmit frequency of 25 kHz is the best frequency for daytime propagation for this 
path (Fig. 23). The frequency differences are less marked at night (see Fig. 24). 

Clearly the details given in these figures could not be anticipated without the availability of a propagation prediction 
program. 

 

FIGURE 22
VLF ground conductivity map for Canada and the Arctic (mS/m)
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FIGURE 22/PI.684-1...[D22] 
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FIGURE  23
Field strength vs distance at a bearing of 340° N for 1 kW radiated power from a hypothetical transmitter

located at Halifax, for 3 frequencies, for a summer day. The transmission path is drawn on Fig. 22
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FIGURE  24
Field strength vs distance at a bearing of 340° N for 1 kW radiated power from a hypothetical transmitter

located at Halifax, for 3 frequencies, for a summer night. The transmission path is drawn on Fig. 22

 
FIGURE 24/PI.684-1...[D24] = 12 CM 

 


	RECOMMENDATION ITU-R P.684-1 - PREDICTION OF FIELD STRENGTH AT FREQUENCIES BELOW ABOUT 500 kHz
	1 Introduction
	2 "Wave-hop" propagation theory
	2.1 General description
	2.2 Calculating the ray-path field strength

	3 Calculating field strength by waveguide modes: full wave solution
	3.1 The ionospheric reflection matrix R(?)
	3.2 The ground reflection matrix, d (?)
	3.3 The mode finding method ("MODESRCH")

	4 Calculation of field strength
	4.1 Required parameters
	4.2 WKB and horizontally homogeneous mode sums
	4.3 Mode sums using mode conversion
	4.4 Ionospheric parameters
	4.5 Geomagnetic and geophysical parameters

	5 Discussion
	ANNEX 1 - Example of a complete calculation of field in amplitude and phase using the wave-hop method of § 2
	ANNEX 2 - Accuracy of the methods
	ANNEX 3 - Some example calculations using the waveguide mode method

