RECOMMENDATION ITU-R S.1844

Cross-polarization reference gain pattern for linearly polarized very small aperture terminals (VSAT) for frequencies in the range 2 to 31 GHz

(2009)

Scope

This Recommendation provides a cross-polarization reference gain pattern that, in the absence of particular information concerning the cross-polarization radiation pattern of a linearly polarized very small aperture terminal (VSAT) earth station antenna, should be used as a reference for interference calculations involving VSAT earth stations in the fixed-satellite service and stations of other services sharing the same frequency band, as well as coordination studies and interference assessment between systems in the fixed-satellite service.

The ITU Radiocommunication Assembly,

considering

- a) that, for studies of mutual interference between radiocommunication-satellite systems and between earth stations of such systems and stations of other services sharing the same frequency band, it may be necessary to use a single cross-polarization radiation pattern for the very small aperture terminal (VSAT) earth station antenna;
- b) that, for coordination studies and for the assessment of interference between VSAT earth stations and space stations, a cross-polarization radiation pattern for the angular region near the main beam based on the envelope of the peak power of the side lobes in this region may be appropriate;
- c) that the use of antennas with the best achievable cross-polarization radiation patterns will lead to the most efficient use of the radio-frequency spectrum and the geostationary-satellite orbit,

noting

a) that increased utilization of the orbital arc has resulted in the widespread use of very small aperture antennas,

recommends

that, in the absence of particular information concerning the radiation pattern of the linearly polarized very small aperture terminal antenna for the earth station involved, a single reference radiation pattern should be used for coordination and interference studies involving linearly polarized VSAT earth stations in the fixed-satellite service and stations of other services sharing the same frequency band;

that the following cross-polarization reference gain pattern should be used for linearly polarized VSAT antennas with a diameter-to-wavelength (D/λ) less than 100, for different angles between the directions considered and the axis of the main beam (boresight direction), for frequencies in the range 2 to 31 GHz:

$$G_{x}(\varphi) = G_{max} - 25$$
 dBi for $0^{\circ} \le \varphi \le \varphi_{0.3}$
 $G_{x}(\varphi) = G_{max} - 20$ dBi for $\varphi_{0.3} < \varphi \le \varphi_{20}$
 $G_{x}(\varphi) = G_{max} - 0.0025 \left\{ \left(\frac{D}{\lambda} \right) \varphi \right\}^{2}$ dBi for $\varphi_{20} < \varphi < \varphi_{SXP}$
 $G_{x}(\varphi) = 23 - 20 \log \varphi$ dBi for $\varphi_{SXP} \le \varphi \le 7^{\circ}$
 $G_{x}(\varphi) = 20.2 - 16.7 \log \varphi$ dBi for $7^{\circ} < \varphi \le 26.3^{\circ}$
 $G_{x}(\varphi) = 32 - 25 \log \varphi$ dBi for $26.3^{\circ} < \varphi \le 48^{\circ}$
 $G_{x}(\varphi) = -10$ dBi for $48^{\circ} < \varphi \le 180^{\circ}$

where:

 G_{max} : antenna maximum gain (in the boresight direction) = $10 \log \left\{ \eta \pi^2 \left(\frac{D}{\lambda} \right)^2 \right\}$

D: antenna diameter (m)

 λ : wavelength (m)

η: efficiency as a fraction

 $\varphi_{0.3}$: angular limit of the -0.3 dB co-polar beamwidth = 10.95 λ/D

 φ_{20} : angular limit of the -20 dB co-polar beamwidth = 89.44 λ/D

 φ_{SXP} : angle of intersection between:

F1(
$$\varphi$$
) = G_{max} - 0.0025 $\left\{ \left(\frac{D}{\lambda} \right) \varphi \right\}^2$ and F2(φ) = 23 - 20 log φ

and can be approximated by the following expression:

$$\varphi_{SXP} = 101 \left(\frac{D}{\lambda}\right)^{-0.99}$$