RECOMMENDATION ITU-R S.731-1

Reference earth-station cross-polarized radiation pattern for use in frequency coordination and interference assessment in the frequency range from 2 to about 30 GHz

(1992-2005)

The ITU Radiocommunication Assembly,

considering

a) that, for coordination studies and for the assessment of mutual interference between radiocommunication-satellite systems and between earth stations of such systems and stations of other services sharing the same frequency band, it may be useful to use a cross-polarized radiation pattern for the earth-station antenna;

b) that, for the determination of coordination distance and for the assessment of interference between earth and terrestrial stations, a cross-polarized radiation pattern based on the level exceeded by a small percentage of the side-lobe peaks may be appropriate;

c) that, a reference earth-station co-polarized radiation pattern for use in frequency coordination and interference assessment is contained in Recommendation ITU-R S.465;

d) that some measurements have been made of the cross-polarized off-axis gain performance of earth stations and radiation patterns have been developed which are quantitively similar;

e) that a single cross-polarized off-axis reference pattern can be used which includes those contained in Annex 1;

f) that the use of antennas with the best achievable radiation patterns will lead to the most efficient use of the radio-frequency spectrum and the geostationary-satellite orbit,

recognizing

1 that further measured information on cross-polarization performance is desirable;

2 that the measured off-axis gain performance of earth-station antennas contains the cross-polarization emission from the source antenna;

3 that the cross-polarized radiation patterns are measured in the main beam of the source antenna,

recommends

1 that, in the absence of particular information concerning the cross-polarized radiation pattern of the antenna for the earth station involved, a single reference radiation pattern may be used for:

1.1 frequency coordination studies and interference assessment between earth stations in the fixed-satellite services and stations of other services sharing the same frequency band;

1.2 coordination studies and interference assessment between networks in the fixed-satellite service;

Rec. ITU-R S.731-1

2 that the following cross-polarized radiation pattern may be used on an interim basis for angles between the directions considered and the axis of the main beam, for frequencies in the range 2-30 GHz:

$G_x(\varphi) = 23 - 20 \log \varphi$	dBi	for φ_r	$\leq \phi \leq 7^{\circ}$
$G_x(\varphi) = 20.2 - 16.7 \log \varphi$	dBi	for 7°	$< \phi \le 26.3^{\circ}$
$G_x(\varphi) = 32 - 25 \log \varphi$	dBi	for 26.3°	$< \phi \le 48^{\circ}$
$G_x(\varphi) = -10$	dBi	for 48°	$< \phi \le 180^{\circ}$

 φ_r is equal to 1° or 100 λ/D , whichever is greater;

3 that the following Notes should be regarded as a part of this Recommendation.

NOTE 1 – The reference cross-polarized radiation pattern should be assumed to be rotationally symmetrical.

NOTE 2 – The reference cross-polarized pattern should be used for cases involving opposite polarizations.

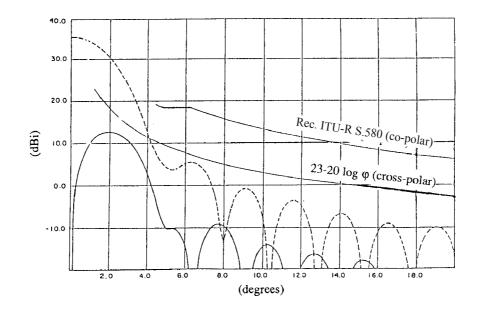
NOTE 3 – Other cross-polarized radiation patterns of earth stations may be used by mutual agreement between the administrations concerned.

NOTE 4 – The reference radiation pattern should be used with caution over the range of angles for which the particular feed system may give rise to relatively high levels of spill-over and for antennas with D/λ less than 50.

NOTE 5 – This cross-polarized radiation pattern complements the co-polarized pattern of Recommendation ITU-R S.465.

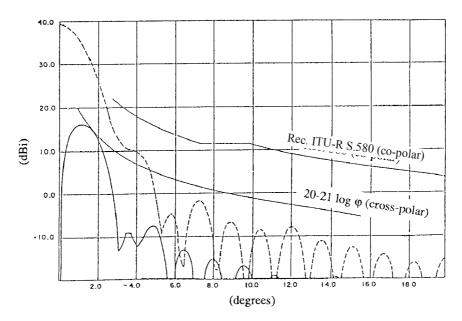
NOTE 6 – Annex 1 contains several cross-polarized off-axis radiation patterns corresponding to the envelopes of the peaks of the measured gain characteristics of various antennas, in support of *recommends* 2.

Annex 1


Modelling of earth-station antenna cross-polar characteristics

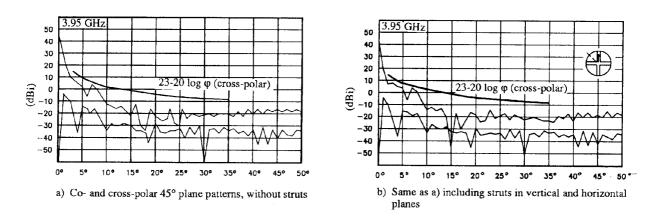
This Annex presents background information used to develop cross-polarized patterns obtained for theoretical and measured patterns. Pattern measurements were obtained for different antenna diameters (1.2 m, 1.8 m, 2.4 m, 3.5 m at 12.625 GHz, and 3.7 m at 10.7 GHz). For each antenna diameter, the relative measured and envelope patterns are described. Equations are then derived which describe the relative cross-polarized envelopes for antennas with $D/\lambda \ge 100$ and $D/\lambda < 100$. A single function is developed which can be used to describe the off-axis cross-polarized pattern for all antennas.

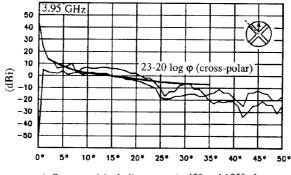
Calculated co-polarized and cross-polarized patterns for single offset feed antennas are shown in Figs. 1 and 2 along with the respective envelope functions. The effects of feed supports for axisymmetric arrangements are shown in Fig. 3.



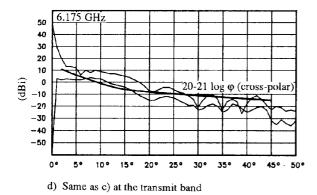
1.8 m single offset antenna co- and cross-polar pattern calculated at 3.95 GHz – azimuth plane

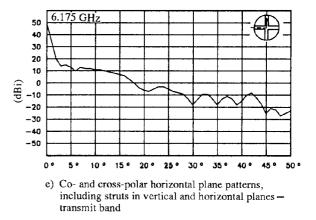
1.8 m single offset antenna co- and cross-polar pattern calculated at 6.175 GHz – azimuth plane




0731-0102

Rec. ITU-R S.731-1


FIGURE 3


Theoretical analysis of strut effects on a 6 m double reflector axisymmetric linearly polarized antenna, at 3.95 GHz (a)-c)) and 6.175 GHz (d)-e))

In order to estimate the worst-case polarization discrimination (factor of polarization isolation), the relative co-polarized $G_{//}(\varphi)$ and cross-polarized $G_{+}(\varphi)$ envelopes have been obtained.

The relative co-polarized envelope used in this Annex is assumed as follows: a)

For systems with $D/\lambda \le 100$:			
$G//(\varphi) = 52 - 10 \log(D/\lambda) - 25 \log \varphi - G_0$	dBi	for $(100 \lambda/D)$	$^{\circ} \leq \phi \leq 48^{\circ}$
$= 10 - 10 \log(D/\lambda) - G_0$	dBi	for 48°	$< \phi \le 180^{\circ}$
For systems with $D/\lambda > 100$:			
$G//(\varphi) = 32 - 25 \log \varphi - G_0$	dBi	for 1°	$\leq \phi \leq 48^{\circ}$
$= 10 - G_0$	dBi	for 48°	$< \phi \le 180^{\circ}$

The cross-polarization level is such that $G_{+}(\varphi) = G_{//}(\varphi_1)$ (with $\varphi_1' = 2.2 \varphi_1$ for small b) antennas, and $\phi'_1 = 1.8 \phi_1$ for large antennas) for $0^\circ < \phi < \phi_1$.

Finally, the relative cross-polarized envelopes could have the following envelopes:

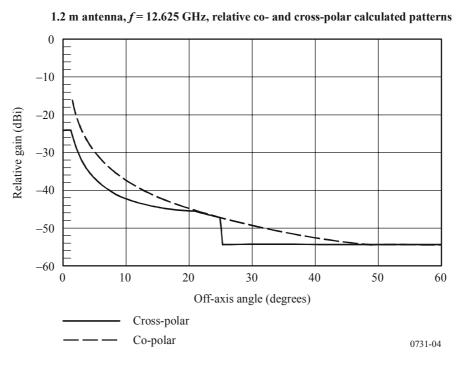
1 Small antennas ($D < 100\lambda$)

 G_0 = maximum co-polarized gain of antenna (dBi) $G(\phi) = 52 - 10 \log(D/\lambda) - 25 \log \phi - G_0$ (dBi) $\varphi_1 = 100 \lambda/D$ (degrees) $\varphi'_1 = 2.2 \varphi_1$ (degrees) $\phi_2 = 25.1^{\circ}$ $\varphi_{ISO} = 10^{\frac{52 - 10 \log(D/\lambda)}{25}}$ (degrees) for $0 < \phi \leq \phi_1$:

> $G_{\perp}(\varphi) = G(\varphi'_1)$ (1)

for $\phi_1 < \phi \leq \phi_2$:

$$G_{+}(\varphi) = G(\varphi) - \left(G(\varphi_{1}) - G(\varphi_{1}')\right) \frac{\varphi_{ISO} - \varphi}{\varphi_{ISO} - \varphi_{1}}$$
(2)


for $\phi > \phi_{ISO}$:

$$G_{+}(\varphi) = 52 - 10 \log(D/\lambda) - 25 \log \varphi - G_{0}$$
(3)

for $\phi_2 < \phi \le 180^{\circ}$:

$$G_{+}(\varphi) = 10 - 10 \log(D/\lambda) - G_{0}$$
(4)

The patterns shown in Figs. 4 and 6 are calculated for stations with antenna diameters of 1.2 m and 1.8 m operating at a centre frequency of 12.625 GHz. The patterns measured for these types of antennas are shown in Figs. 5, 7 and 8. In each case one example of the measured co- and crosspolarized pattern is given, but the envelopes shown are averages from measurements on several antennas of the same type.

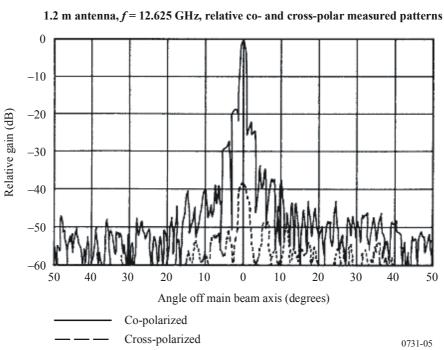


FIGURE 5

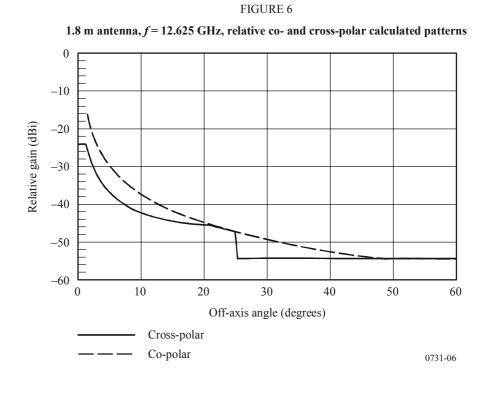
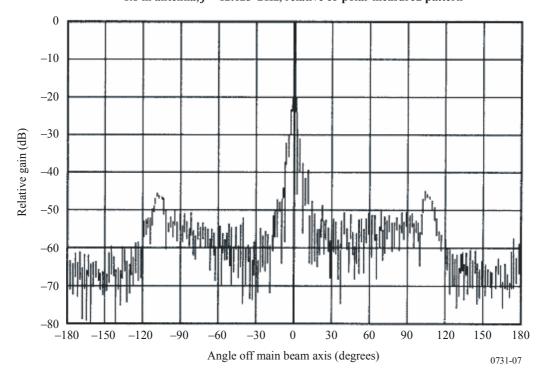
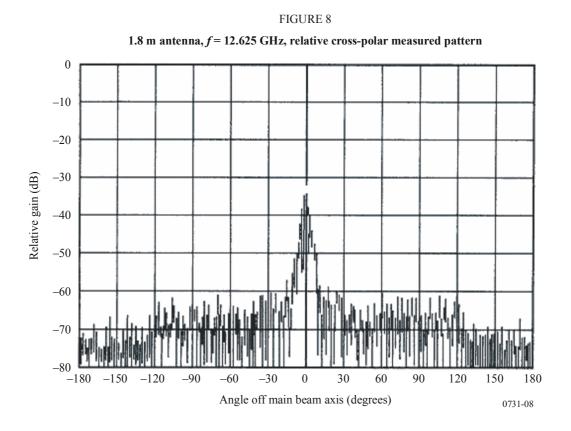




FIGURE 7 **1.8 m antenna**, *f* = **12.625 GHz**, relative co-polar measured pattern

2 Large antennas ($D \ge 100\lambda$)

 G_0 = maximum co-polarized gain of antenna (dBi)

$$G(\phi) = 29 - 25 \log \phi - G_0 \text{ (dBi)}$$

$$\phi_1 = 1^{\circ}$$

$$\phi'_1 = 1.8 \phi_1 \text{ (degrees)}$$

$$\phi_2 = 20^{\circ}$$

$$\phi_3 = 33.1^{\circ}$$

$$\phi_{ISO} = 10^{\frac{29}{25}} \approx 14.45^{\circ}$$

for $0 < \phi \le \phi_1$:

$$G_{+}(\varphi) = G(\varphi'_{1}) \tag{5}$$

for $\phi_1 < \phi \le \phi_2$:

$$G_{+}(\varphi) = G(\varphi) - \left(G(\varphi_{1}) - G(\varphi_{1}')\right) \frac{\varphi_{ISO} - \varphi}{\varphi_{ISO} - \varphi_{1}}$$
(6)

for $\phi_2 < \phi \le \phi_3$:

$$G_{+}(\varphi) = 32 - 25 \log \varphi - G_{0} \tag{7}$$

for $\phi_3 < \phi \le 180^{\circ}$:

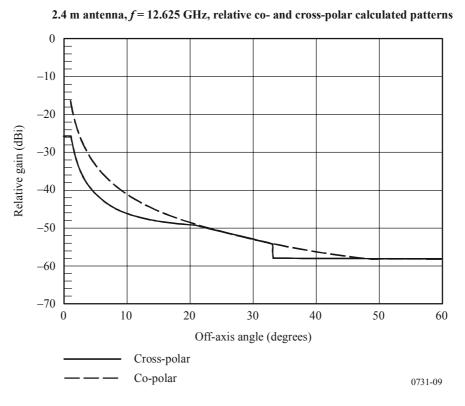
$$G_{+}(\phi) = -10 - G_{0} \tag{8}$$

The patterns shown in the Figures below are calculated for stations with the following antenna diameters and frequencies: 2.4 m and 3.5 m at 12.625 GHz, and 3.7 m at 10.7 GHz. The patterns measured for these types of antennas are shown in Figs. 10, 11, 13, 14, 16 and 17. In each case, one example of the co- and cross-polarized measurements is shown, but the envelopes given were derived from the average of several antennas of the same type.

The functions given above for $D < 100\lambda$ and $D \ge 100\lambda$ can be expressed in terms of absolute gain. The functions given for $D < 100\lambda$ can be normalized to a $(32 - 25 \log \varphi)$ co-polar function by letting $(52 - 10 \log \varphi)$ equal 32. Evaluation of these functions as absolute gain for various values of D/λ is as follows:

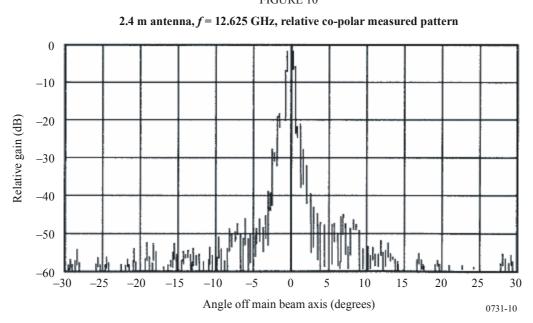
$G_x(\varphi) = 22.70 + 0.29 \varphi - 25 \log \varphi$	dBi	for $D/\lambda = 25$	(9)
$= 22.69 + 0.37 \phi - 25 \log \phi$	dBi	for $D/\lambda = 50$	(10)
$= 22.87 + 0.42 \phi - 25 \log \phi$	dBi	for $D/\lambda = 75$	(11)
$= 22.15 + 0.47 \phi - 25 \log \phi$	dBi	for $D/\lambda = 100$	(12)

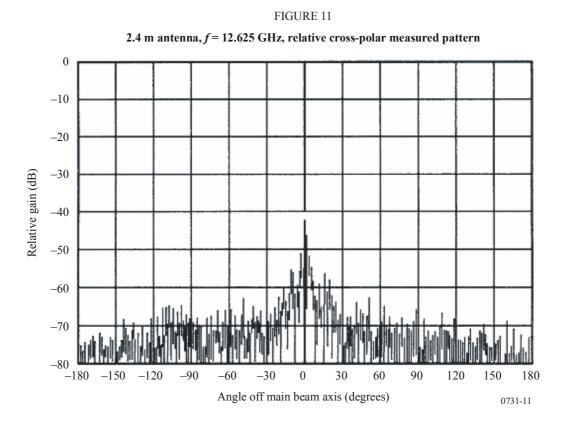
The angles at which these gain functions are equal to a co-polar envelope gain of $(32 - 25 \log \varphi)$ are 31.7° , 25.2° , 21.4° and 20.8° respectively. Additional functions which have been developed are:

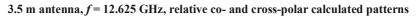

$G_x(\varphi) = 20 - 21 \log \varphi$	dBi	(13	3)
$G_x(\varphi) = 23.6 - 20 \log \varphi$	dBi	(14	1)
$G_x(\varphi) = 22 - 25 \log \varphi$	dBi	(15	5)

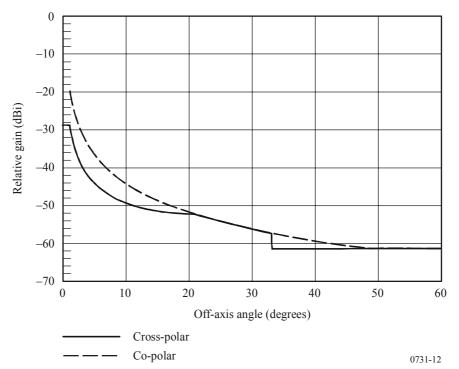
Equation (15) is based on a requirement that the cross-polar gain be 10 dB less than the co-polar gain out to 7° .

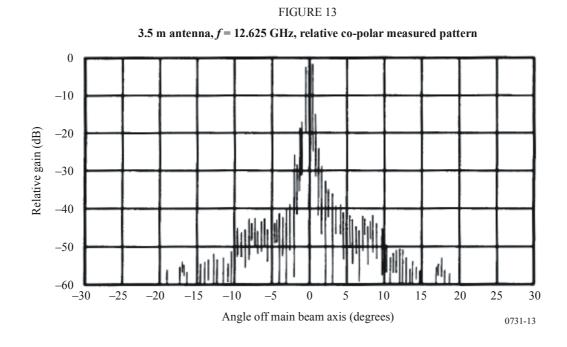
These functions are plotted in Fig. 18. From this Figure, a single function which adequately covers all the above functions is:


$G_{\lambda}(\varphi) = 23 - 20 \log \varphi$	dBi	for φ_r	$\leq \phi \leq 7^{\circ}$
$= 20.2 - 16.7 \log \varphi$	dBi	for 7°	$< \phi \le 26.3^{\circ}$
$= 32 - 25 \log \varphi$	dBi	for 26.3°	$^{\circ} < \phi \le 48^{\circ}$
= -10	dBi	for 48°	$< \phi \le 180^{\circ}$


 φ_r is equal to 1° or 100 λ/D , whichever is greater.







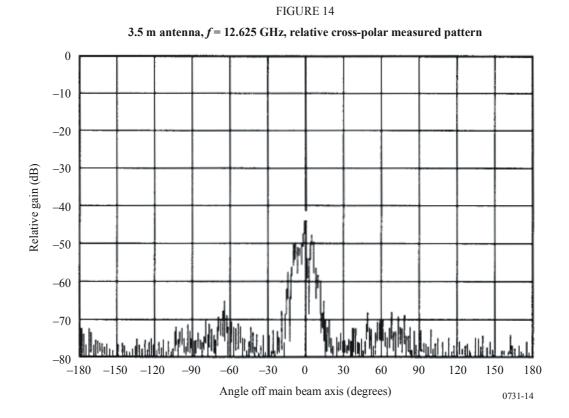
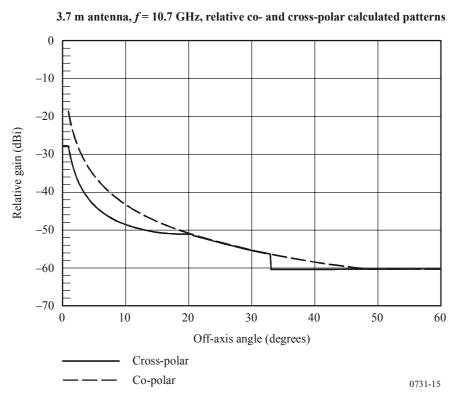
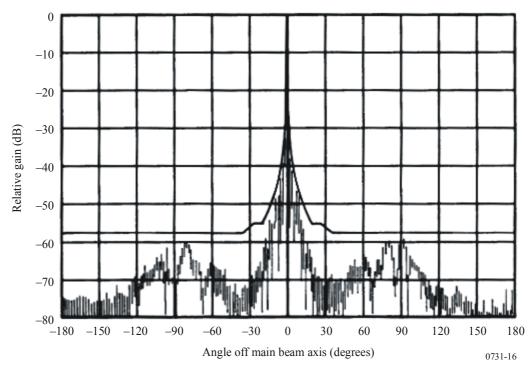


FIGURE 12




12

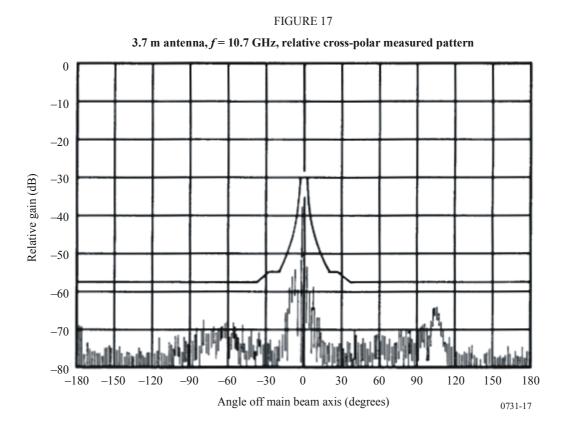
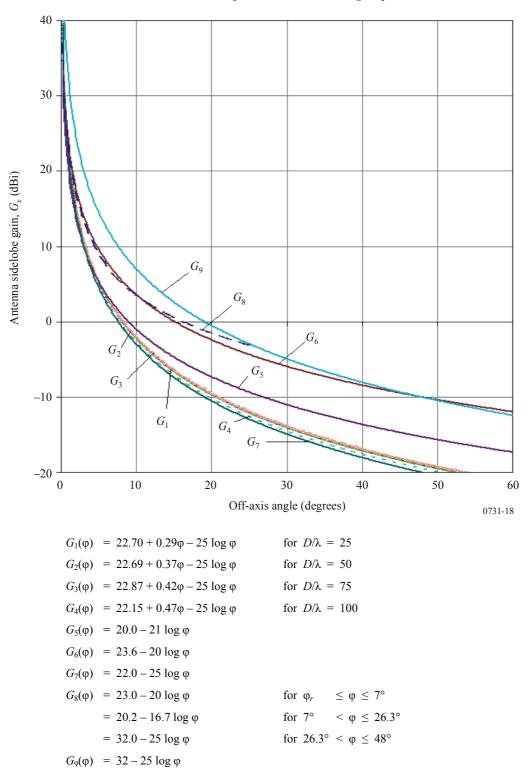


FIGURE 16


3.7 m antenna, f = 10.7 GHz, relative co-polar measured pattern

Absolute cross-polar side-lobe antenna gain pattern

