International Telecommunication Union

Recommendation ITU-R SM.1753-2 (09/2012)

Methods for measurements of radio noise

SM Series Spectrum management

International Telecommunication

Foreword

The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted.

The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups.

Policy on Intellectual Property Right (IPR)

ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found.

	Series of ITU-R Recommendations			
	(Also available online at <u>http://www.itu.int/publ/R-REC/en</u>)			
Series	Title			
BO	Satellite delivery			
BR	Recording for production, archival and play-out; film for television			
BS	Broadcasting service (sound)			
ВТ	Broadcasting service (television)			
F	Fixed service			
Μ	Mobile, radiodetermination, amateur and related satellite services			
Р	Radiowave propagation			
RA	Radio astronomy			
RS	Remote sensing systems			
S	Fixed-satellite service			
SA	Space applications and meteorology			
SF	Frequency sharing and coordination between fixed-satellite and fixed service systems			
SM	Spectrum management			
SNG	Satellite news gathering			
TF	Time signals and frequency standards emissions			
V	Vocabulary and related subjects			

Note: This ITU-R Recommendation was approved in English under the procedure detailed in Resolution ITU-R 1.

Electronic Publication Geneva, 2013

© ITU 2013

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without written permission of ITU.

RECOMMENDATION ITU-R SM.1753-2*

Methods for measurements of radio noise

(2006-2010-2012)

Scope

For radio noise measurements there is a need to have a uniform, frequency-independent method to produce comparable, accurate and reproducible results between different measurement systems. This Recommendation provides a set of processes or steps that need to be integrated in a measurement procedure resulting in these comparable results.

Keywords

Radio noise, harmonize, measurement method, reproducible results

The ITU Radiocommunication Assembly,

considering

a) that, due to the introduction of many types of electrical and electronic equipment (producing radio noise) and radiocommunication networks (e.g. ultra-wide band (UWB), power line telecommunication (PLT) and computers), the radio noise levels stated in Recommendation ITU-R P.372 might increase;

b) that, for efficient spectrum management, administrations need to know the exact noise levels;

c) that there is a need to harmonize the measurement methods for noise measurements to achieve reproducible results that can be mutually compared;

d) that, for noise measurements, certain minimum equipment specifications are required,

recommends

1 that measurements of radio noise should be carried out as described in Annex 1.

^{*} Radiocommunication Study Group 1 made editorial amendments to this Recommendation in the years 2019 and 2023 in accordance with Resolution ITU-R 1.

Annex 1

Methods for measuring radio noise

TABLE OF CONTENTS

Anne	ex 1 – N	Methods for measuring radio noise	2
1	Introduction		
2	Sources of radio noise		
3	Comp	onents of radio noise	4
4	Key pa	arameters	5
5	Measu	arement principles	5
6	Measu	arement type	5
7	Equip	ment specifications	6
	7.1	Receiver and preamplifier	6
	7.2	Antennas	8
8	Uncer	tainty analysis	9
9	Measu	urement process	9
	9.1	Selecting measurement locations	9
	9.2	Frequency selection	10
	9.3	Analyser/receiver settings	11
	9.4	Measuring period	13
	9.5	Separation of man-made and atmospheric noise (measurement Type C only)	13
	9.6	Data collection and post processing	14
10	Data p	processing	14
	10.1	Overview	14
	10.2	Correction for equipment noise	15
	10.3	Determination of the WGN level using the "20% method" (r.m.sWGN measurement only)	16
	10.4	Validation of the 20% cut-off value (r.m.s. WGN measurements only)	16
	10.5	Separation of man-made noise from wanted emissions (measurement Types B and C)	16
	10.6	Plotting of the APD (raw data sampling only)	17
	10.7	Calculation of <i>F</i> _a	18

	10.8	Separation of IN samples from WGN (measurement Types B and C only)	20
	10.9	Combining impulse trains to bursts (measurement Types B and C only)	21
	10.10	Separation of MMN pulses from atmospheric noise (measurement Type C only)	24
	10.11	Calculation of pulse parameter distribution (measurement Types B and C only)	24
11	Result	presentation	27
	11.1	WGN measurements	27
	11.2	IN measurements	29
12	Limita	tions	30

1 Introduction

This Annex describes methods for measuring and evaluating radio noise in practical radio applications.

2 Sources of radio noise

- Radiation from lightning discharges (atmospheric noise due to lightning);
- Aggregated unintended radiation from electrical machinery, electrical and electronic equipment, power transmission lines, or from internal combustion engine ignition (man-made noise);
- Emissions from atmospheric gases and hydrometeors;
- The ground or other obstructions within the antenna beam;
- Radiation from cosmic radio sources.

While noise due to natural causes is unlikely to change significantly over long periods of time, manmade noise (MMN) is often dominant in some parts of the radio spectrum and the intensity may change with increasing density of use of electrical and electronic devices, with the introduction of new types of device, and with changes in measures intended to improve electromagnetic compatibility. Thus man-made noise is the type that is mainly of interest when performing radio noise measurements.

TABLE 1

Relevant radio noise sources per frequency range

Noise source	Frequency range
Atmospheric noise due to lightning	9 kHz to 30 MHz
Cosmic noise	4 MHz to 100 MHz
Man-made noise	9 kHz to 1 GHz
Emissions from atmospheric gases, etc.	Above 10 GHz

3 Components of radio noise

Using the definition given in Recommendation ITU-R P.372, radio noise is the aggregate of emissions from multiple sources that do not originate from radiocommunication transmitters. If at a given measurement location there is no dominance of single noise sources, the characteristic of the radio noise often has a normal amplitude distribution and can be regarded as white Gaussian noise.

However, with the high density of noise emitting devices especially found in cities and residential areas, it is virtually impossible to find a location that is not at least temporarily dominated by noise or emissions from a single source. These sources often emit impulses or single carriers. Since radiocommunication equipment has to operate in such an environment, it may be unrealistic to exclude these components from radio noise measurements.

TABLE 2

Noise component **Properties** Sources (examples) White Gaussian noise⁽¹⁾ (WGN) Uncorrelated electromagnetic Computers, power line vectors communication networks, wired computer networks, cosmic noise Bandwidth equal to or greater than receiver bandwidth Spectral power level increases linear with bandwidth Impulsive noise (IN) Correlated electromagnetic Ignition sparks, lightning, gas vectors lamp starters, computers, ultra wideband devices Bandwidth greater than receiver bandwidth Spectral power level rises with square of bandwidth Single carrier noise (SCN) One or more distinct spectral Wired computer networks, lines computers, switched mode power supplies Bandwidth smaller than receiver bandwidth Spectral power level independent of bandwidth

Components of radio noise

⁽¹⁾ In the context of this Annex to Recommendation ITU-R SM.1753, WGN is considered to represent a continuous noise signal which exhibits a nearly flat power spectral density in the frequency ranges around the measurement bandwidth.

While the WGN component is sufficiently characterized by the r.m.s. value, this is much more difficult for the IN. Modern digital communication services almost always apply error correction, making it more immune especially against impulsive noise. However, when certain pulse lengths and repetition ratios are reached, IN can significantly interfere with the operation of such a service.

It is therefore desirable to measure radio noise in a way that gives not only the level of IN but also certain information about the statistical distribution of pulse parameters.

Single carrier noise (SCN) is only detected as such when it comes from a single source near the measurement location. Multiple sources emitting single carriers quickly add up to a noise-like spectrum as their numbers increase. Recommendation ITU-R P.372 defines radio noise as the aggregated unintended radiation from various sources and specifically excludes emissions from single, identifiable sources. It is therefore necessary to select measurement locations and/or

frequencies that are not dominated by emissions from these single sources which makes further consideration of SCN unnecessary in the context of MMN measurements.

4 Key parameters

The measurement procedures described here will deliver results for the following parameters of radio noise:

WGN:

- r.m.s. level, presented as a single value or hourly medians over the day.

IN:

- Peak level, presented as a distribution;
- Impulse/burst lengths, presented as a distribution;
- Impulse/burst period, presented as a distribution.

5 Measurement principles

The White Gaussian noise component (WGN) can be measured using an r.m.s. detector. This measurement method is herein referred to as the "r.m.s.-method". Using the 20% reduction described in § 10.3, it is possible to obtain the r.m.s. noise value directly from a frequency scan, even if some of the frequencies are occupied with wanted signals.

IN, however, can only be measured by fast sampling of the momentary RF amplitude values. These values are stored for off-line evaluation to obtain the impulse parameters. The measurement is preferably done on a single frequency that is free of wanted signals and continuous carriers. The maximum time between two consecutive samples is:

$$Ts \le \frac{1}{2*RBW} \tag{1}$$

where:

Ts: time between two consecutive samples

RBW: filter bandwidth used for measurement.

This measurement method is herein referred to as the "raw data sampling method".

6 Measurement type

Determining the true MMN level and characteristics including IN for all frequency ranges can be a very time consuming complex measurement task. However, when only the WGN component is of interest, or only certain frequency ranges have to be investigated, the measurements can be simplified significantly without losing important information or reducing accuracy. For this reason, the following three different methodologies are recommended when performing radio noise measurements:

Type A: WGN only. This Type delivers only WGN levels, disregarding IN. It only requires measurements of the remaining r.m.s. level on a "free" frequency. Both r.m.s. and raw data sampling methods can be applied. Evaluation of data is relatively simple.

Type B: WGN and IN. This Type delivers WGN levels and characteristics of the important IN parameters of radio noise. It requires fast data sampling (raw data sampling method). Data

evaluation is more complex and requires extensive post-processing, most of which can only be performed by computers.

Type C: WGN, IN and separation of MMN. In addition to WGN level and IN characteristics, this Type separates MMN, IN from atmospheric noise to a large extent which may be important in the HF frequency range. The measurement process is equal to measurement Type B, but it has to be performed at two different locations and the equipment of both locations has to be time synchronized.

The selection of the adequate measurement Type depends on the requirements, environmental category and frequency range. If measurement results should be for general use, the recommended Type is underlined in Table 3.

TABLE 3

Recommended measurement types

Frequency range	Outdoor measurements	Indoor measurements
9 kHz – 300 kHz (LF)	A, <u>B</u>	A, <u>B</u>
300 kHz – 3 MHz (MF)	A, B, <u>C</u>	A, <u>B</u>
3 MHz – 30 MHz (HF)	A, B, <u>C</u>	A, <u>B</u>
30 MHz – 300 MHz (VHF)	A, <u>B</u>	A, <u>B</u>
300 MHz – 3 GHz (UHF)	A, <u>B</u>	A, <u>B</u>
> 3 GHz (SHF)	A	<u>A</u>

7 Equipment specifications

7.1 Receiver and preamplifier

The measurement receiver should be a standard transportable measurement receiver or spectrum analyser and any additional pre-amplification such as LNA must exhibit a low equipment noise figure together with high gain stability which is essential for the performance of noise measurements.

To guarantee an acceptable measurement accuracy it is required to keep the measured noise at least 10 dB above the equipment noise floor if an r.m.s. detector is used. An external low noise amplifier (LNA) can assist in this goal. It is essential for frequencies > 20 MHz.

Care should be taken to use a measurement receiver with a built-in correction for the error that is imposed on the result when measuring at low S/N ratios. If this noise correction is switchable, it can be turned on. However, in this case no additional correction as described in § 10.2 is applicable.

The requirements for the measurement system are given in Table 4 which does not describe a new set of measurement receivers or LNA specifications but only points out the additional or specific requirements necessary for a receiver and LNA used for noise measurements. Also the frequency band designations are based on the practical implementation of a noise measurement system and do not point to a specific receiving system.

TABLE 4

Noise measurement system (receiver/LNA) requirements

Function	Frequency range		
Frequency range	9 kHz – 30 MHz 30-500 MHz 0.5-3 GHz		0.5-3 GHz
Input (antenna input) VSWR	50 Ω , nominal < 1.5		
3rd order intercept	\geq 20 dBm (> 3 MHz)	$\geq 10 \text{ dBm}$	$\geq 0 \text{ dBm}$
2nd order intercept	\geq 60 dBm (> 3 MHz)	$\geq 50 \text{ dBm}$	\geq 40 dBm
Preselection	Set of sub-octave band filters or tracking filter	Tracking or fixed filter Low pass/high pass filter	
Total noise figure	\leq 15 dB (> 2 MHz)	$\leq 2 \ dB^{(1)} (> 20 \ MHz)$	$\leq 2 dB^{(1)}$

TABLE 4 (end)

Function	Frequency range			
IF rejection	> 80 dB	> 90 dB	> 100 dB	
Image rejection	> 80 dB	> 90 dB	> 100 dB	
LNA gain	\leq 18 dB	\leq 25 dB	\leq 25 dB	
LNA gain stability	$\leq 0.7 \text{ dB}$ at 20-30°C			
LNA gain flatness over the frequency range of interest	< 0.4 dB	< 0.4 dB	< 0.5 dB	
AGC	Measurement outputs should ha	ve no AGC applied		
Electromagnetic compatibility of the measurement set-up including computers and interface	All interference produced and received by the set-up should be > 10 dB below the average noise to be measured			

⁽¹⁾ This noise figure applies to the LNA.

When an LNA is used, the requirements in Table 4 have to be met by the whole combination of receiver and LNA. The system noise figure of the combination is dominated by the noise figure of the LNA.

Care should be taken not to overload the receiver or the LNA. An external band pass filter has to be applied to prevent overloading. Below 30 MHz, signals with the highest input level originate from broadcast stations. The attenuation of the band pass filter throughout the broadcast bands should be at least 20 dB.

The IF selectivity between 6 and 60 dB should be accurately known to calculate the equivalent noise bandwidth when measurements with different IF filters have to be compared. If specified, the noise bandwidth can be taken out of the receiver specifications. This is the bandwidth of a (theoretical) rectangular filter that passes the same noise power as the filter of the receiver or analyser.

7.2 Antennas

According to Recommendation ITU-R P.372, the noise level is stated as a noise figure (in dB above thermal noise) rather than field strength. This noise figure is per definition referenced to a "lossless" antenna. Regarding noise sources that are evenly spread over the horizontal plane or that are received under relatively small vertical angle, the most commonly used antenna is a vertical tuned dipole. However, a tuned ground plane antenna and a sleeve antenna are preferable for noise measurements above 30 MHz to avoid the influence of a coaxial cable and a metallic antenna mast on the isotropy of the radiation pattern.

Below 30 MHz, vertical dipoles are not practical as they become too big in size. Also, they are only ideal if they are far enough away from the ground which again would be hard to realize. Recommendation ITU-R P.372 therefore uses a short vertical monopole on perfectly conducting ground as a reference antenna for frequencies below 30 MHz. It is recommended to use a short vertical monopole with a height of less than one tenth of the wavelength as the measurement antenna. This short monopole, however, has to be electrically matched to the input impedance of the receiver (usually 50 Ω). This matching is usually done with active elements. It is important that no extra amplification is included in the antenna as this would make the antenna subject to overloading from strong broadcast signals.

Applying the model that noise sources are received uniformly from all angles, a possible directivity of the measurement antenna does not have to be corrected. Even most directive antennas like Yagis only achieve their gain in the preferred direction by suppressing signals from other directions accordingly, so the average gain for the noise environment is zero. It is therefore possible to use directional antennas for the measurements in circumstances where noise is expected to be uniformly distributed as long as they are matched.

For the calculation of the external noise figure it is necessary to know the antenna factor that can be used to calculate the field strength from measured antenna voltage. Often this figure is given by the manufacturer, but the following issues have to be considered carefully:

- If the antenna is directive, the antenna factor given by the manufacturer only applies to the direction of the main beam. However, for the calculation of noise field strength only the average¹ antenna factor from signals coming in from any direction has to be used.
- Especially at low frequencies it is important that the conditions are met under which the manufacturer states the antenna factor. Things like distance of the antenna from the ground, obstructions in close vicinity of the antenna and earthing can significantly alter the antenna factor.

When the antenna factor is not known, it may also be measured using a reference antenna with known antenna factor, but the above considerations always apply. A practical way to determine the antenna factor is to compare the levels from measurement and reference antenna for a large number of emissions from random directions and average the results for each frequency band.

With regard to the reference antennas in Recommendation ITU-R P.372 and to match with practical receiving situations, the feeding point of the measurement antenna should be on or close to the ground for frequencies up to 60 MHz, and at least 5 m above the ground for higher frequencies.

¹ Where the noise sources are uniformly distributed, the noise power received by a directive measurement antenna and by a theoretical isotropic antenna will be the same. This, in this context, the average antenna factor is obtained by applying an appropriate correction for the antenna gain in the specific direction.

8 Uncertainty analysis

The end result of the measurement should reflect a real value that can be reproduced even when another measurement set-up is used. Not only the average accuracy but also the limits in which the values can change are required. An uncertainty budget containing all contributors to the total uncertainty should be made for each measurement. Information about this can for example be found in the ISO "Guide to the Expression of Uncertainty in Measurements".

9 Measurement process

9.1 Selecting measurement locations

Even on one frequency the radio noise level, especially when dominated by MMN, varies depending on the time and location. In frequency bands below 30 MHz, noise levels mainly change over time due to propagation conditions. Therefore, in general multiple measurements at different location have to be made. Recommendation ITU-R P.372 defines four different location categories. To reflect the resulting differences in MMN level, measurement sites should be selected according to their categories. However, for the benefit of more detailed evaluation it is recommended to classify noise measurements in the following categories:

TABLE 5

Selection criteria for outdoor measurement locations

Category	Definition
Remote rural	No obvious civilization, no buildings, no traffic, no electrical installations within 5 km
Rural	Open countryside with largely agricultural activity, building density < 1/ha, no major roads, no electrified railways
Residential	Villages and pure residential areas with no commercial or industrial activities. No electrified railways and no major roads and no high voltage overhead lines or facilities within 1 km
Urban	Dense residential buildings including minor commercial or industrial activities and shops. No electrified railways, major roads and high voltage overhead lines or facilities within 500 m
City	Dense commercial or industrial buildings and offices. Major roads and railways can be in the vicinity, but should not be dominating
Industrial area	Areas with dense factory sites and heavy industry
Railway	Locations with dominant electrified major railways
Road	Locations with dominant road traffic, e.g. highway

Measurement results should be evaluated separately for each location category. To allow a reasonable statistical statement about the radio noise level, measurements should be made on at least 10 locations per category.

All of the above measurement locations should be outdoors. To estimate the average radio noise level from multiple sources indoor, the results from measurements taken outdoors can be reduced by the expected building attenuation for the respective frequency.

Experience shows, however, that indoor noise levels tend to be even higher than those measured outdoor. This is due to the domination of a few single noise sources coming from inside the building where the measurement is taken. If this environment is to be investigated, the location

categories in Table 5 are not applicable since it is not important whether the building is in a city, residential or rural surrounding. Instead, the different categories of buildings as shown in Table 6 are recommended.

It should be noted that indoor measurements always measure the sum of noise and interference from single sources. In most cases, emissions from single sources inside the house will be dominant. According to current definitions in Recommendation ITU-R P.372, these emissions are not MMN. However, radiocommunication services have to cope with all unwanted signals, whether it is noise or interference, to function properly. For practical reasons it may therefore be desirable to measure the sum of both.

TABLE 6

Category	Definition
Domestic	Single house or flat with typical electrical and electronic appliances for private use
Office	Electrical and electronic appliances for business use, IT and telecommunication equipment, e.g. computers, printers, local area networks
Shopping centre	Locations with shops and supermarkets
Railway station	Major railway stations inside roofed platform area
Airport terminal	Major airports, inside terminal building
Factory	Inside factory buildings dominated by electrical machinery
Hospital	Locations dominated by medical appliances

Selection criteria for indoor measurement locations

9.2 Frequency selection

It is possible to perform measurements on one single frequency (channel) or in a certain frequency band (e.g. 100 kHz); these observations can be made automatically and the results processed according to a pre-defined protocol.

In the HF frequency band, it is virtually impossible to find a frequency that is free of wanted emissions for the whole 24 h measurement period. The simplest way to find a suitable frequency or band is to use information from test measurements or historical data. However, it is not guaranteed that all measurement samples can be used because unforeseen occupancy could occur during the actual survey. Instead of selecting a fixed frequency or band for the measurement, it is therefore desirable that a scan over the band of interest is made to determine the WGN level. The frequency that had the lowest level in the scan range should then be measured in single frequency mode for a time of at least 0.5 s to determine the IN level. Especially in the frequency range below 30 MHz with varying occupancy over the day, it is recommended to repeat this frequency selection before each measurement.

In the frequency range above 30 MHz, wanted emissions usually come from national sources and occupancy is known. In this case, a fixed frequency with no active assignments may be used.

The example in Fig. 1 shows the spectrum around 142 MHz with a few emissions from frequency users, recorded MaxHold with two different RBWs (upper trace: 300 kHz, lower trace: 10 kHz). The marked frequency is selected for noise measurements as it is assumed to be free from emissions and far enough away from used channels.

Especially when performing unattended automatic survey and frequency selection, it cannot always be assumed that the selected frequency contains only noise. Selecting a frequency band which

mostly consists of background noise having Gaussian amplitude distribution enhances the accuracy of the measurement of the noise power level. The most reliable way to prove whether a frequency (band) contains only WGN is to apply the mathematical concept of Singular Value Decomposition (SVD). This method includes constructing an autocorrelation matrix estimate from the received signal and then evaluating the results obtained from the application of SVD to the estimated autocorrelation matrix.

FIGURE 1

SM.1753-01

The most practical way to select a proper frequency (band) is to first find a possible candidate band by scanning the desired frequency range and identify the frequency (band) with the lowest level. The usability of this frequency (band) can be verified by applying the SVD process. If the SVD reveals that the scan contains mostly WGN, the measurement can be used. If not, an alternative frequency (band) has to be selected.

The details of the SVD method are described in Attachment 1.

If it is expected that even in the VHF/UHF ranges, the selected frequency with the lowest level may contain wanted signals during the actual measurement, it is advisable to measure on up to five closely spaced frequencies for each targeted frequency band. After calculating the r.m.s. WGN level at each of these frequencies, the results exceeding the lowest obtained r.m.s. level by more than a threshold level (e.g. 2 dB), are discarded (see also § 10.5).

9.3 Analyser/receiver settings

Recommended equipment settings are given in Table 7:

TABLE 7

Analyser/receiver settings

Measurement time	It is practical to produce a result every 10 to 30 s. For WGN measurements with an r.m.s. detector a sweep time or scan time of 10 to 20 s is useful. For raw data sampling it is practical to run one scan of at least 0.5 s length every 10 to 30 s. During the scan, sample amplitudes have to be taken at a very fast rate (sampling frequency at least 1/RBW).
Frequency range	The observation frequency range depends fully on the use of the chosen frequency band; this frequency band can even be split in subbands or frequencies depending on the frequency band.
RBW	If the frequency band scanning is used, the bandwidth of the applied filter depends on the frequency span divided by the required resolution. The raw sampling principle dictates a RBW of half of the sampling frequency. The shape factor of the filter should be determined to make it possible to compare measurement results from different receivers. For recommended RBW values, see Table 8.
VBW	If possible, any video filter should be switched off. If using a spectrum analyser, the VBW should be set to ten times the RBW or more. If the VBW is too small, the shape of the APD graph for probabilities above 37% may be incorrect. If a VBW setting of 10*RBW is not possible, a calibration measurement with a white noise source should be done to determine an appropriate correction.
Detector	For WGN measurements a true r.m.s. detector is necessary, any other detector is unsuitable. Some manufacturers also label this detector as average (r.m.s.). It is important that the detector averages power, not voltage. These detectors are generally based on a sampler of which the sampling rate is based on the filter bandwidth. The r.m.s. power is calculated from these samples over a defined time period. This time period is the measurement period. When a non sampling r.m.s. detector is used the integration time of this detector has to be $10/2B_N$ (kHz) if 1% uncertainty is expected. So, if the noise bandwidth B_N is 500 Hz, the minimum integration time has to be 10 s. Special attention to this has to be given when receivers of an older generation are used. When the measured values are less than 10 dB above the equipment noise floor this detector requires a custom calibration. The raw data principle has to use a sample detector because the processing including r.m.s. calculations are done afterwards.
Attenuator	3 dB An external attenuator between antenna and LNA is recommended to set a defined receiver/LNA input impedance to guarantee a low measurement uncertainty. If it can be assured that the antenna exactly matches the input impedance of the LNA, the additional attenuation is not needed.
Pre-selector	On (if switchable)

TABLE 8

Measurement bandwidths

Frequency range	RBW for measurement Type A (WGN only)	RBW for measurement Types B and C (WGN and IN)
300 kHz – 30 MHz	100 Hz	10 kHz
30 MHz – 450 MHz	1 kHz	100 kHz
450 MHz – 1 GHz	1 kHz	300 kHz
1 GHz – 3 GHz	10 kHz	5 MHz
> 3 GHz	10 kHz	10 MHz

In this context, RBW is the equivalent noise bandwidth of the nominal 3 dB bandwidth.

Using larger RBWs as indicated in Table 8 produces larger amounts of data to be processed because of the higher necessary sampling speed. However, IN may be seen more clearly. If measurement Types B and C are performed it is still recommended to use the narrower bandwidth for the WGN measurement and the higher bandwidth for the IN measurement only.

9.4 Measuring period

The measuring period should be chosen considering the time in which significant changes in the measured noise can be expected. For example to include day and night differences of HF propagation and temporarily used equipment the standard measuring period should be 24 h. To take into account variation due to seasons HF measurements may be repeated a number of times each year. For frequencies above 30 MHz, a minimum survey period of 10 h during working daytimes is recommended.

9.5 Separation of man-made and atmospheric noise (measurement Type C only)

Below 30 MHz, significant parts of the IN component can originate from atmospheric noise such as lightning. If measurements are to determine only the MMN, the atmospheric noise would have to be subtracted from the measurement result. This, however, is only possible for IN. To identify the origin of IN it is necessary to measure at two different locations at the same time:

- the measurement location; and
- the reference location.

The distance between both locations should be more than the range of typical MMN emissions but close enough to assume the same skywave propagation conditions (recommended: 500 m to 10 km).

The measurement equipment from both locations has to be exactly time-synchronized (maximum offset: 100 ms). Examples on how to achieve exact time synchronization are:

- Periodically switching the measurement receiver to a standard time signal (e.g. DCF77);
- Using the time signal from an attached GPS receiver.

The transmitted time can be used to adjust the internal processor's clock or an offset between processor's clock and the transmitted real time can be calculated and used to correct the time stamp that has to be stored with every measurement scan.

By means of these time stamps each scan can later be compared with the respected scan at the other location. If a signal shows up on both measurement locations it is assumed to be atmospheric noise or a wanted emission received via the skywave and is eliminated from the results before further

processing. Signals that are only received at the measurement location are assumed to be MMN from nearby sources.

9.6 Data collection and post processing

9.6.1 WGN measurements with r.m.s. detector (Measurement Type A)

A spectrum analyser scans a frequency band in a number of steps (frequency bins). A normal number of bins with modern spectrum analysers is 500-10 000. If the scan time for instance is 10 s the results of the measurements is a database (matrix) of 500×8 600 to $10\,000 \times 8\,600$ measurement samples per day. To have the possibility to exclude certain parts of the measurement and to apply different statistical methods, this database should be processed afterwards with dedicated software.

9.6.2 WGN + IN measurements with raw data sampling (Measurement Types A, B and C)

To allow a complete evaluation of impulses, it would be necessary to sample so fast that each single pulse is captured at least once. However, this would result in a very large amount of data to be stored. For a statistical evaluation, continuous observation of the frequency range is not necessary. Instead, the survey can be divided into individual scans (of one frequency or one band). One scan should be at least 0.5 s long during which the momentary signal level is captured as fast as possible ($Ts \le 1/RBW$). Then, a pause of a few seconds can be introduced during which nothing is measured, until the next scan starts. This method still produces many million samples per survey that have to be statistically evaluated by dedicated software.

10 Data processing

10.1 Overview

Table 9 presents the different processing steps for the different measurement principles.

TABLE 9

Processing steps

Processing step	r.m.sWGN measurement	Raw data sampling
Correction for equipment noise	X	X
Determination of the WGN level using the "20% method"	X	
Validation of the 20% cut-off value	X	
Separation of MMN from wanted emissions		optional
Plotting the amplitude probability distribution (APD) of the raw samples		Х
Calculation of F_a	х	Х
Separation of IN samples from WGN		optional
Combination of impulse trains to bursts		optional
Separation of MMN pulses from atmospheric noise		optional
Calculation of pulse parameter distribution		optional

10.2 Correction for equipment noise

The signals we measure are in fact signals superimposed on the equipment noise. To determine the difference between external and equipment noise, a manual measurement can be performed to determine the correction as follows:

- a) using an r.m.s. detector on a currently "free" frequency, measure the level of the WGN;
- b) replace the antenna with a 50 Ω load and measure the sum of the system noise and load thermal noise, using the same settings as before.

If the result difference of from measurement a) and b) is K dB or more, no additional correction for the equipment noise is necessary. If it is less, the equipment noise from measurement b) has to be linearly subtracted from all external noise values:

$$p_{WGN} = p_a - \frac{f-1}{f} p_b \tag{2}$$

where:

- p_a : noise level from the measurement a) in linear units
- p_b : noise level from the measurement b) in linear units
- *f*: equipment noise factor.

The coefficient *K* can be calculated as:

$$K(dB) = 10 \log \frac{11(f-1)}{f}$$
 (3)

Equipment specifications usually provide a noise figure F. Because this is the noise factor expressed in decibels, the noise factor f can be calculated as follows:

$$f = 10^{\left(\frac{F}{10}\right)} \tag{4}$$

The calculated curve in Fig. 2 gives the value of K as a function of the noise figure.

FIGURE 2 Threshold for equipment noise correction

10.3 Determination of the WGN level using the "20% method" (r.m.s.-WGN measurement only)

Especially below 30 MHz it cannot be assumed that the measurement frequency (or range) is free for the whole measurement period. It is therefore recommended to do a scan over a small frequency range instead of measuring on one frequency alone. Unwanted occupancies can be eliminated from the result by using only the samples with the lowest 20% levels and discard the other 80%. This, however, also discards some noise containing samples and would therefore result in too low noise levels unless a correction is applied. The necessary correction is determined by connecting a white noise source to the receiver, take some measurement samples and determine the average r.m.s. level from all (100%) samples. Then the upper 80% are cut off and the average r.m.s. level from the lowest 20% samples is calculated. The correction to be applied is the difference between both average r.m.s. levels (100% and 20%). A detailed description is presented in Attachment 2.

10.4 Validation of the 20% cut-off value (r.m.s. WGN measurements only)

For HF 20% of the lowest values is a practical value to determine the noise level. For other frequency ranges it may be checked whether this 20% value is correct or should be changed to another value. Some methods to validate the cut-off value are described in Attachment 2.

10.5 Separation of man-made noise from wanted emissions (measurement Types B and C)

When radio noise must be measured in frequency ranges where wanted emissions might also be present, the influence of the wanted emissions should be eliminated from the measured data.

Applying the SVD method can determine whether the measured radio noise is Gaussian or not. By applying the following two methods to an analysis of the data, the influence of emissions can be eliminated.

Determine the median value of the data samples in consecutive periods. Then exclude data samples in the period where the median value is larger by a specific margin (e.g. 6 dB) than the r.m.s. of the entire data sample.

- Measure the radio noise at two or more frequencies in the frequency band of interest. Then determine the r.m.s. value at each measurement frequency and exclude all data samples in which the r.m.s. value is a specified amount (e.g. 2 dB) larger than the lowest r.m.s. value.

A detailed description of separating the measured noise from any intentional emissions is presented in Attachment 3.

10.6 Plotting of the APD (raw data sampling only)

If raw data sampling is used to determine the WGN, the r.m.s. level can theoretically be determined by linear averaging the power levels of all samples measured in a certain (integration) time. However, this is only correct if nothing else than WGN was present during the measurement. Especially in HF, this can often not be assumed. In these cases, the r.m.s. level of WGN can be determined by plotting the raw data in a so called "Amplitude Probability Distribution" graph: This graph shows the percentage of measurement samples that exceed a certain amplitude (see Fig. 3).

SM.1753-03

The x-axis of the APD graph has a Rayleigh scaling. With this scaling, it is easy to separate the different types of noise: White Gaussian noise shows up as a straight sloping line. It can be shown mathematically that the gradient of this line is -10 when both scales are converted to linear. This means that the line falls by 10 dB between 0.1%, 37%, 90% and 99%.

The rising edge to the left indicates impulsive noise. When single-carrier noise and/or wanted emissions are included in measurement data, the slope of the APD plot on WGN part will become larger than -10, and the plot is elevated, as shown by the dotted red line in Fig. 3.

When no single carrier noise or narrow-band wanted emissions are present, the overall r.m.s. level is the value at the point where the curve crosses 37% on the abscissa.

When the APD is displayed as in Fig. 4, it can be seen that the APD is influenced by the presence of single-carrier noise or wanted emissions. In this case, the level of the WGN cannot easily be determined from this graph.

SM.1753-04

To enhance accuracy, measurement values taken over time can be transformed into the frequency domain by applying a Fourier Transform. A second APD graph is built from the resulting frequency domain values and again a tangent is fitted to the middle part of the graph. The r.m.s. level of the WGN is also the 37% value of the frequency domain APD. When wanted signals or single carriers were present during the measurement, only one of the two APD graphs is raised, depending on the nature of the signals. The exact overall WGN is then the lower of both 37% values. This evaluation method is especially necessary when noise measurements are taken inside frequency bands occupied by wanted signals. When frequencies are selected so that no dominant carriers and wanted emissions are present, the FFT transform is usually not necessary.

10.7 Calculation of F_a

In line with Recommendation ITU-R P.372, the noise level is expressed as a noise figure of a lossless antenna due to external noise F_a in dB above thermal noise.

The thermal noise can be calculated as:

$$P_0 = 10 \, \log(K * t * b) \tag{5}$$

where:

- *K*: Boltzmann constant $1.38*10^{-23}$ (J/K)
- *t*: ambient temperature (K)
- b: noise equivalent bandwidth of the measurement filter (Hz).

At a reference temperature t_0 of 290 K (17°C), P_0 becomes -174 dBm in 1 Hz bandwidth.

The measured noise level is the sum of external noise and noise originating from the measurement system, mainly consisting of receiver noise and, in case an LNA is used, of the noise from the LNA. The external noise factor f_a can be calculated using the equations in Recommendation ITU-R P.372. In real measurement environments it is realistic to assume that the temperature of all parts of the measurement system is equal. Furthermore, it can be set to the reference temperature t_0 of 17° C without introducing a considerable error except for special cases with extreme temperatures. Under these assumptions, the key equation that can be used for the calculation of f_a is:

$$f_a = f - f_c f_t f_r + 1 \tag{6}$$

where:

f: measured total noise factor in linear units (p_{meas}/p_0)

- f_c : noise factor associated with antenna (antenna output/available input power)
- f_t : noise factor associated with transmission line (cable input/output power)
- f_r : noise factor of the receiving system (receiver and LNA, if used).

All lower-case parameters are given in linear units, not dB. To arrive at the more commonly used logarithmic units, it should be noted that all parameters are power levels, so for the conversion the rule:

$$F_a (dB) = 10 \log(f_a) \tag{7}$$

applies.

In some practical measurement situations the following assumptions can be made:

- The antenna can be regarded as lossless ($f_c = 1$), especially when matched antennas are used (e.g. tuned dipoles for frequencies above 30 MHz).
- The transmission line loss can be neglected ($f_t = 1$), especially for frequencies below 30 MHz.
- The receiver noise can be neglected $(f_r = 1)$ when the measured noise power is at least 10 dB above the receiver noise (see § 10.2).

In these cases the measured noise power is practically equal to the external radio noise power.

When measured in dBm, the noise figure F_a in dB can then be calculated to:

$$F_a = P_n - P_0 \tag{8}$$

where:

 P_0 : thermal noise power (dBm)

 P_n : external noise power (dBm).

For frequency ranges above 60 MHz, when a vertical tuned dipole is used, F_a can indeed be calculated as stated above. For lower frequencies, however, it is usually not possible to use a lossless antenna.

In this case, the external noise figure can be calculated when applying the average antenna factor (see § 7.2):

$$E = U + AF$$
 $dB(\mu V/m)$ (9)

where:

E: field strength $dB(\mu V/m)$

U: antenna terminal voltage $dB(\mu V)$

AF: antenna factor (dB)².

When AF is known, F_a can be calculated from the measured noise level as follows:

$$F_a = P + AF - 20 \log(f) - 10 \log(b) + 202.5 \qquad \text{dB}$$
(10)

where:

 F_a : antenna noise figure due to external noise (dB)

P: r.m.s. level of the WGN (dBm)

AF: antenna factor (dB)

f: measurement frequency (MHz)

b: measurement bandwidth (Hz).

The above formula was developed using formula (7) of Recommendation ITU-R P.372 for a short vertical monopole as a reference antenna, formula (9) above and assuming a 50 Ω measurement system with $P (\text{dBm}) = U (\text{dB}(\mu V)) -107 \text{ dB}$.

10.8 Separation of IN samples from WGN (measurement Types B and C only)

Experience shows that the IN from MMN does not fit properly in one of the mathematically described models. When sampled sufficiently fast, WGN also may have short peaks that extend well above the average level. To extract only those samples originating from IN, a threshold has to be applied that is well above the WGN peaks. This threshold is set to 13 dB above the r.m.s. WGN level as this is the usual CREST factor (difference between r.m.s. and peak value) for WGN. All measurement samples above the threshold are treated as IN.

20

² The antenna factor is usually simply given as a and is usually expressed in dB. It is recognized that this is dimensionally incorrect, but reflects usual engineering practice.

FIGURE 5 Separation of IN and WGN

10.9 Combining impulse trains to bursts (measurement Types B and C only)

When examining the RF amplitude of real pulses vs. time it can be seen that most pulses are in fact a series of short peaks or "pulse trains". Because measuring pulse levels for MMN focuses on the interference potential of a pulse it is necessary to integrate the peaks of a pulse train to a single event that is called a "burst". This integration is done as long as at least 50% of the measurement samples are above the threshold.

The length of each burst in a record is calculated in the following way:

- 1) As a first step, all subsequent samples that are above the threshold are combined (from now on called "pulses").
- 2) The centre of the first pulse, C_0 , is determined (in time). When the pulses have even number of samples, the later one should be determined as C_0 .

The consequence of these conditions is that certain peaks within irregular pulse trains are combined to one single, long burst.

The following figures show some examples:

SM.1753-05-1

- 3) Starting from the pulse centre C_0 to the right (in time), the number of samples above the threshold (N) is counted. This is equal to half of the samples in the pulses.
- 4) Starting from the sample at the end of pulses (E₀) (centre plus N samples to the right), it is checked whether there are additional samples above the threshold. If such samples are detected before N samples, the additional pulses are included in the original pulse and we have a new burst.

SM.1753-05-2

5) The centre of the new burst, (C_1) , is determined (in time).

SM.1753-05-3

SM.1753-05-4

6) In the right half of the new burst (in time), the number of samples above the threshold (Na) and the number of samples below the threshold (Nb) is counted and subtracted: Ni = Na-Nb.

7) Starting from the new right edge of the burst (E_1), for only up to Ni samples, additional samples above the threshold are searched. If any are found, they are also included and a new burst is formed. Then the centre of the new burst, (C_2), is determined. Steps 5 to 7 are repeated. If none are found, the right end of the burst is final.

SM.1753-05-5a

8) Steps 5 to 7 are repeated for the left end of the pulse (or burst).

SM.1753-05-6

9) Steps 2 to 8 are repeated for the next pulse and so on.

This procedure ensures that more than 50% of all samples inside each burst are above the threshold, but this condition is also continuously met all the way of "growing" the pulses. As a consequence, certain peaks within irregular pulse trains are combined to one single, long burst.

10.10 Separation of MMN pulses from atmospheric noise (measurement Type C only)

As said earlier, this separation is only possible if method 3 with time-synchronized measurement at two locations is applied. IN from atmospheric noise (mainly thunderstorms) will be received at both measurement and reference location, so the aim is to detect this kind of signals in the measurement results.

Because the time synchronization of the measurement equipment will never be as accurate as one sample, the exact time offset between both locations has to be determined first. This is done by comparing the start and end times of all impulse/burst samples from the measurement and reference location with each other and calculating a correlation value. Then all samples from the measurement location are shifted in time by one sample and the correlation value is calculated again and so on. The position with the highest correlation defines the exact time offset between both measurements. The following evaluation steps are applied only to those samples that have been measured at both locations (useful result length).

Example: The maximum correlation is achieved at an offset of +100 ms applied to the reference location. The measurement (scan) time was 1 s. The useful result length is then from 0.1 s to 1.0 s of the reference location and 0 s to 0.9 s of the measurement location (see Fig. 6)

Inside the useful result length, the impulse/burst start samples are investigated: If, for each impulse/burst, they occur within a tolerance of 50% of the impulse/burst length at both measurement and reference location, the impulse/burst is deleted from the results as it is assumed to be received over the skywave and therefore most probably of atmospheric nature. If a pulse/burst start point occurs only at the measurement location, it is kept for the IN processing.

SM.1753-06

10.11 Calculation of pulse parameter distribution (measurement Types B and C only)

As said earlier, to fully characterize IN, the following parameters are required:

– Impulse/burst level

- Impulse/burst repetition frequency or period
- Total impulse/burst time.

Because the first three parameters change randomly, their values have to be presented as a distribution plot.

10.11.1 Impulse/burst level

The total impulse/burst level (IN level) can only be measured correctly for Impulse/burst lengths of at least 1/RBW. Since an impulse/burst can only interfere with a modern digital communication system when it is at least as long as the symbol time, choosing an RBW according to Table 8 already results in measurement values that represent true interference potential. The IN level, however, is still dependent of the RBW. Therefore, the used RBW has to be stated when IN levels are presented. To be independent of the measurement bandwidth it is recommended to normalize the measured results to the RBW used and state the IN level as a level density. The y axis of the IN APD in then labelled in dB(μ V/MHz). To convert a measured IN value into IN level density, the following formula is applied:

$$Wg = U + 20 \log(1/b) \qquad dB(\mu V/MHz) \qquad (11)$$

where:

Wg: spectral density $dB(\mu V/MHz)$

U: measured noise voltage from a lossless antenna $dB(\mu V)$

b: noise bandwidth (MHz).

In case the antenna cannot be regarded lossless, the adequate correction to the measured noise voltage according to § 10.7 has to be applied.

There will be one IN distribution plot per frequency and location class according to Tables 5 and 6.

As with all samples, the momentary levels of IN bursts are taken. These are random levels and may be well below the peak level. This way it is ensured that the interference potential of IN is not overestimated. Figure 7 illustrates the interpretation of IN bursts. The top part is the true amplitude vs. time recording, the lower part is the interpreted result after sampling:

The APD graphs used to show the amplitude distributions are taken from the interpreted results of the measurement data (bottom half of Fig. 7). All samples contribute to the APD. Assuming a random distribution of momentary levels during a burst, the resulting APD will correctly reflect the times when certain levels are exceeded.

10.11.2 Impulse/burst length and period

Once impulse/burst start and end samples are identified, the length of each impulse/burst is calculated as:

$$N_1/f_s \tag{12}$$

where:

 N_1 : number of samples between impulse/burst start and end

 f_s : sampling frequency.

The impulse/burst period is calculated as:

$$N_2/f_s \tag{13}$$

where:

N₂: number of samples between consecutive impulse/burst start points

fs: sampling frequency.

10.11.3 Total impulse/burst time

The total impulse or burst time is given as a percentage of the total survey time:

$$i = (Ni / N) * 100 \tag{14}$$

where:

Ni: number of samples above the IN threshold

N: total number of measurement samples.

11 Result presentation

11.1 WGN measurements

Besides the presentation in terms of F_a , it is also common to give the noise level in terms of field strength, especially below 30 MHz. For this type of presentation it is necessary to convert the measured noise power using the following equation from Recommendation ITU-R P.372:

$$E_n = F_a + 20 \log(f / \text{MHz}) + B + 95.5$$
 (15)

where:

 F_a : noise figure due to external noise ($F_a = 10 \log(f_a)$)

- *f*: measurement frequency (MHz)
- *B*: logarithmic noise equivalent measurement bandwidth ($B = 10 \log(b)$).

Equation (15) is valid for short vertical monopoles. For matched dipoles, the value 95.5 has to be replaced by 99.0.

In frequency ranges below 30 MHz, the radio noise significantly changes over the time of day. Therefore the calculated results should be presented over 24 h.

Figure 8 shows an example of measurement results at 5 MHz (4.9-5.1 MHz). The maximum, average and minimum values over 24 h can be seen in the left hand plot and the spectrogram, containing all the scans over 24 h on the right side.

FIGURE 8

The results can also be integrated over periods of 1 h and presented in tabular form (one value every hour).

An alternative way to present the WGN results is the so called boxplot. For every hour, the maximum, upper 90%, median, lower 10% and minimum values are calculated and shown in a box.

SM.1753-09

The boxplot is particularly useful to present the results from multiple measurements in just one diagram.

Figure 10 shows a boxplot summarizing 23 measurements done at rural locations.

SM.1753-10

11.2 IN measurements

The impulse/burst level statistics are best presented as an APD graph like in Fig. 3. If all measurement samples are included in the APD (IN and WGN samples), the relative amount of impulses can be derived from the graph directly by reading the value where the graph leaves the straight line to the left. In the example of Fig. 3 this would be at 0.1%.

However, more detailed information about the level distribution of impulses can be taken from an APD that is produced from IN samples only and converted into level densities (see § 10.11.1).

The distribution of impulse/burst length and period can best be presented as a graph indicating the relative probability against the length or period itself, like in Fig. 11.

The example shows that most of the impulses have a length of $7 \,\mu s$.

The time resolution of this graph is equal to the sampling rate.

12 Limitations

The described approach to separate IN from WGN and calculate its key values result in the following limits for IN parameters:

TABLE 10

Limitations for measurable IN

Parameter	Value	
Lowest IN level	13 dB above WGN level	
Shortest pulse length	1/sampling frequency	
Longest pulse length	For measurements with sweep analysers: sweep time For continuous measurements: measurement time	
Lowest PRF	For measurements with sweep analysers: 1/sweep time For continuous measurements (e.g. FFT): 1/acquisition time	
Highest PRF	Sampling frequency/2	

Attachment 1

Verification of WGN frequency selection using SVD

SVD is an analytic method to determine if the noise measured is non-Gaussian. In general, SVD is a matrix approximation technique which filters out zero values and works with the singular values of the matrix. Matrices are related to signals and SVD separates efficiently the noise data from the signal data.

The application of the SVD to determine the Gaussian noise is a three step procedure:

Step 1: Using the *I* and *Q* measured signal values form a complex value x(n) with the length of *N*, an autocorrelation sequence (ACS) estimate with the length of *M* and an autocorrelation with that sequence are constructed with the measured signal values as follows:

First the order p of the size of the autocorrelation matrix R_x is determined. This size depends on the available data samples. If an ACS with the length of M has been calculated with N measured samples in a scan, the size of the autocorrelation matrix is (p + 1)*(p + 1) where M = p + 1. A number as low as p = 19 can be used, but in principle, a higher value for p results in a better classification.

Then the (generally complex) autocorrelation matrix estimate \hat{R}_k is constructed:

$$\hat{R}_{x} = \begin{bmatrix} \hat{r}_{x}(0) & \hat{r}_{x}^{*}(1) & \hat{r}_{x}^{*}(2) & \cdots & \hat{r}_{x}^{*}(p) \\ \hat{r}_{x}(1) & \hat{r}_{x}^{*}(0) & \hat{r}_{x}^{*}(1) & \cdots & \hat{r}_{x}^{*}(p-1) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \hat{r}_{x}(p) & \hat{r}_{x}(p-1) & \hat{r}_{x}(p-2) & \cdots & \hat{r}_{x}(0) \end{bmatrix} \in \mathbf{C}^{(p+1)\times(p+1)}$$
(16)

where:

$$\hat{r}_{x}(m) = \frac{1}{N-m} \sum_{n=0}^{N-m-1} x(n+m) x^{*}(n)$$
(17)

The * denotes a conjugate value. Note that since R_x is an autocorrelation matrix, p + 1 unique ACS values are used to fill the matrix. The unique values are constructed through equation (17). Each of these values uses up to N measurements.

Step 2: In this step, the singular values of the matrix of equation (16) are evaluated by application of SVD. From the SVD of \hat{R}_k , two auxiliary unitary matrices U, V and a diagonal matrix \sum of the same size are computed:

$$\hat{R}_{\rm r} = U\Sigma V^{\rm H} \tag{18}$$

There are p + 1 singular values σ_k of the matrix Σ which are either zero or positive. Note since Σ is a diagonal matrix, the singular values are simply the diagonal values.

Step 3: Evaluation of quantities based on the singular values as a metric to decide if the noise is Gaussian. Specifically, a metric v(k) and its index k are calculated using equation (19):

$$\nu(k) = \frac{\left\|\hat{R}_{k}^{(k)}\right\|_{F}}{\left\|\hat{R}_{k}\right\|_{F}} = \left[\frac{\sigma_{1}^{2} + \sigma_{2}^{2} + \dots + \sigma_{k}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2} + \dots + \sigma_{p+1}^{2}}\right]^{\frac{1}{2}}$$
(19)

where $\left\|\hat{R}_{k}\right\|_{F}$ is the Frobenius norm of a matrix \hat{R}_{k} .

Note that the Frobenius norm corresponds to the norm of a vector that results when stacking the columns of the matrix on top of each other.

The final step is to determine the reference index value k which satisfies v(k) = 0.95. Depending on the required confidence level, other values than the value 0.95 may be used. The confidence level increases as the value comes closer to 1. From the experiments 0.95 is recommended as a practical value.

If $k > \frac{p+1}{2}$, then only WGN exists in the measurement samples, otherwise signal(s) plus noise exist.

The maximum possible value of k is p + 1. Note that as k increases in equation (19), v(k) converges to 1. Figure 12 shows an example of this graph for a signal that contains only noise samples.

Figure 13 shows an example of a scan that contains noise mixed with some weak carriers.

SM.1753-12

FIGURE 13 Graph of v(k) for the case of four multi-carriers (channel power is -97 dBm)

SM.1753-13

It can be seen that although the S/N of the injected carriers is very low (the APD shows virtually a straight line), the v(k) curve shows a complete different behaviour compared to when only noise is present. The SVD method is therefore much more sensitive that purely evaluating the APD.

The method is also applicable to real value measurements.

Attachment 2

Verification of the cut-off value when using direct r.m.s. measurements

It is assumed that X% of the measurement values from a scan contain noise samples only. If the correct percentage of values are excluded from the evaluation process, the median and mean value of the remaining noise samples should be the same. A practical test is to plot the difference between the mean and median value, which is obviously influenced by non-noise signals.

As an example the graph in Fig. 14 shows the difference between mean and median values with a fixed percentage of 20% for all scans. The observation period is 24 h (00:00 to 23:59). During the hours 07:00 to 20:00 thunderstorms cause the distribution of the 20% selection to have large slopes and thus large differences between the median and mean power values.

Another test would be to plot the number of measurement samples of a certain level versus that level and check whether the curve at the right side of the "X%" cutoff point is smooth and has a small slope. An example is given in Fig. 15.

The selected cut-off value (vertical line) is at 800 out of 1 000 measurement samples which correspond to 20%. It can be seen that in this example the selection of the cut-off value is not critical: any value between 70% and 10% (300 and 900 samples) could have been chosen as this is the range where the curve has a steady slope.

Both test methods require some *a priori* calibration. Also a meaningful number of samples need to be used in the calculation, for example a single sample cannot be used in this type of test.

Attachment 3

Separating man-made noise from wanted emissions

In radio-noise measurement data obtained by time-domain sampling, samples may include wanted radio signals. To obtain accurate WGN and IN from measurement data, it is necessary to eliminate the influence of wanted radio signals. This Attachment shows methods for separating man-made noise from wanted emissions.

NOTE – These procedures are only applicable for data obtained with a raw data sampling method.

The following steps should be applied.

Step 1

When narrow-band radio applications such as AM and FM are included in measurement data, they can easily be distinguished from WGN, because the characteristics of the amplitude variation in the time domain differ from WGN. However, when wide-band radio signals such as those from Orthogonal Frequency-Division Multiplexing (OFDM) and Code-Division Multiple Access (CDMA) system, etc. are included, the amplitude variation in the time domain cannot be distinguished from WGN. In this case, the signals from such radio applications can be distinguished by processing the amplitude of the data samples in the time domain.

In this method, data samples are divided into consecutive sections (called "evaluation periods") with a certain time length (or certain number of data samples) as shown in Fig. 16, and the median value of the amplitude of the data samples within each evaluation period is determined.

Then, the evaluation period data samples whose median value exceeds a certain threshold value are excluded in order to eliminate the effects of wanted emissions. Also to be excluded is data from the two sampling periods immediately preceding and following the sampling period in which the median value exceeds the threshold. These additional exclusions are required because the median value of a sample period will be lower than the exclusion threshold if the wanted emissions occurring during the adjacent samples infiltrate into the samples in question for less than half their duration.

SM.1753-16

This allows the consideration of just those data samples that include only WGN and IN, by excluding the wanted emissions if the change in the median value exceeds the threshold.

An example of applying this method to the data from actual in-the-field measurements is shown in Fig. 17.

SM.1753-17

The APD before applying the data processing method varies steeply within small portions (0.1%) of the observation times (abscissa) due to wanted signals arriving at the antenna, and it is confirmed that the effect of these wanted signals is suppressed after applying the method. Thus the effectiveness of this method is verified with actual data obtained from in-the-field measurements.

Step 2

Figure 18 shows an example of the APD characteristics of the radio-noise data obtained by measurements in the actual field environment at two different frequencies being about 100 kHz apart.

SM.1753-18

The solid line that deviates from the straight dash line with a slope of -10 is influenced by continuous wanted emissions. The solid line that does not include the wanted radio signal is lower and also has a slope of -10. On the basis of this difference, the frequencies that include wanted emissions can be identified, and all of the data obtained at these frequencies can have the effects of wanted signals excluded by making parallel measurements of the radio noise at several frequencies in the specified frequency band and comparing the APD characteristics obtained at each measured frequency. This is possible even in an actual field environment. Thus the characteristics of the radio noise can be obtained, with the influence of wanted emissions excluded.

On the basis of these steps, the procedure to obtain the radio-noise characteristics by excluding the influence of wanted emissions is shown below.

- 1) Apply the method described in Step 1 to measurement data samples, and then exclude the data samples whose median value for the evaluation period is equal to or greater than the threshold.
- 2) Apply the method described in Step 2, and then exclude the data for all measurement frequencies that include the influence of wanted emissions.
- 3) Display the APD from data obtained in Step 2, and then read the value of the 37% point as the r.m.s. value of the WGN.

Table 11 shows an example of the threshold level and the number of samples in each evaluation period for applying the method described in Step 1.

Example of parameters in the exclusion method in Step 1

Number of samples	Threshold
50 samples	r.m.s. value* of WGN
	+6
	[dB]

* The value should be obtained before applying the exclusion procedures.

Limitations

The method described in this Attachment is able to separate noise from certain wanted emissions, especially analogue AM and FM signals that are present for a relatively long time. However, it is not possible to distinguish between pulsed TDMA signals and IN sources that also emit bursts with a length in the range of the TDMA bursts. Therefore, it is necessary to select a measurement frequency where short bursts of radiation, such as TDMA, do not appear. This can be implemented by checking the type of radio service allocated to the measurement frequency at the measurement location.

References

Recommendation ITU-R P.372 – Radio noise.

Report ITU-R SM.2055 - Radio noise measurements.

Report ITU-R SM.2155 – Man-made noise measurements in the HF range.

Report ITU-R SM.2157 - Measurement methods for power line high data rate telecommunication systems.