SES[^]

EMERGING TECHNOLOGY SOLUTIONS

Bringing new digital experiences in remote areas via satellite

PRESETNED BY:

PRESENTED ON:

Alan Cheng, Sales Manager, SES Networks 7 July 2021

SES Proprietary and Confidential

Connectivity landscape

SES

Pacific's digitalisation

▲ SATELLITE

- Before 2014, GEO connectivity
- Beginning 2014, O3b MEO became available

▲ CABLE & OTHER NETWORKS

 Government Aid, World Bank/Asian Development Bank Funding a proliferation of undersea cables

▲ FUTURE OF CONNECTIVITY

- NGSO constellations
- Proven NGSO System in O3b mPOWER is coming

Comparing orbits

SES^A

What works best?

GEO ~ 36,000km	O3b MEO ~ 8,000km	NGSO LEO ~ 1,000km
Readily available, provides traditional connectivity in the region	Providing high-throughput, low latency connectivity in the Pacific since 2014	Hundreds of satellites launched Consumer broadband focused
High latency (~700 msec)	Low latency (~150 msec)	Very low latency (~50 msec)
Continental gateways (HTS for data)	Regional gateways (high throughput)	Many local gateways (low throughput)
100s Mbps per terminal	Multiple Gbps per terminal	100s Mbps per terminal

Advancements in Gateways and Terminals

SES[^]

Ground infrastructure is the key

Transportable Government Gateways

Smaller, lighter and more cost-effective antennas

Flat panel phased array technology

Software integration and intelligence

Multi-orbit satellite fleet strategy

More opportunities to extend networks and drive digitalisation

54GEO widebeam

One network offering differentiated capabilities delivering value to our customers' businesses & missions

11 O3b mPOWER 99% global coverage

- ▲ Fully digitised payload
- ▲ Electrically steered beam-forming
- ▲ High throughput (10Mbps+ to 10Gbps+) per end user
- ▲ Terabit per second scalable system
- ▲ Flexible forward-to-return throughput ratio
- ▲ Low latency MEO (<150msec)
- ▲ Inherently secure & flexible

- Currently being manufactured by Boeing
- First launch in 2H 2021
- Full operational readiness 2H 2022

SES Proprietary and Confidential | Emerging technology solutions:

nces in remote areas TITU 7 July 202

Digitalisation via advanced satellite technologies

Satellites play a crucial role in extending connectivity and bring digitalisation to both urban and remote areas

Use of new satellite technologies—including next-generation, multi-orbit satellite communication systems—can help accelerate digitalisation timelines by bringing the best of technology to the Asia-Pacific region.

Collaboration between operators, in market access, and a good partner ecosystem are equally important to achieve digital access.

THANK YOU!

Alan Cheng
Alan.cheng@ses.com

SES Asia-Pacific apac@ses.com

SES Proprietary and Confidential

Dhiraagu 5G Implementation

Strategy, Experience and Learnings

Maldives

dhiraagu

Geography

- A chain of coral atolls
- 26 geographical atolls
- 860 km long, 80 -120 km wide
- over 80% of land area less than 1m above mean sea level
- Island size: from 0.5 to 2 sq.km
- Total land area: less than 1%
- Small population: ~400,000

Telecom Challenges

- International connectivity
- Connectivity between islands
- Submarine cable option expensive for all islands
- Microwave Radio capacity limitation for high traffic services like FTTH, 5G, IPTV, etc.

Dhiraagu

- Dhivehi Raajjeyge Gulhun Public Limited (Dhiraagu) established in 1988
- First and Leading Telecom Operator in the Maldives
- Mobile Network
 - 2G, 3G and 4G nation-wide coverage
 - 4G+ in main islands
 - 5G introduced
- Fixed cable network (FTTH and ADSL) in 60+ main islands (80% of the households)
- Dhiraagu IPTV in 55 main islands
- 2 International Submarine Cable Networks
- Domestic Submarine Cable Network (9 cable landing stations)
- Microwave Radio Network connecting all islands

dhiraagu

Promise of 5G Network

5G Network Offers

- Enhanced Mobile Broadband
- Ultra-reliable Low Latency communication
- Massive Machine Type communication

Key Techniques used to realize this enhancement

- Massive MIMO with beam forming
- Multiple Carrier Aggregation
- High Radio Frequency bandwidth (100MHz)
- Virtual Network Functions and Network Slicing

5G speed (https://i.pinimg.com)

Enhanced Mobile Broadband

5G use case families (source: ITU-R, 2015).

5G Implementation

dhiraagu

Show customers our commitment to provide latest technology when available

5G Trial

- First 5G demonstration in the Maldives 2018
- Showcase and experience 5G air interface and RAN capabilities
- Millimeter wave frequency range
- Throughput reached 5-6 Gbps
- Handset availability: used 5G capable test terminal

5G Introduction

- 5G Introduction in 2019
- First commercial 5G service in Maldives and South Asia
- The main objective was to create hotspots and allow customers to use
 5G network
- Use as Enhanced Mobile Broadband

5G Introduction - Strategy

- Limited location create hotspots
- Site Selection
 - Limited
 - Strategically selected locations
 - Cover Greater-Malé area where population is heavily concentrated
 - Cover more open areas where people gather like parks and cafés
 - Off-Malé highly populated Islands
 - An island without FBB for Fixed Wireless Internet
 - A Resort
 - Place sites where infrastructure and backhaul change is minimal

Hulhumalé

dhiraagu

5G Introduction – Design and Preparation

Design

- Deployment of a SA core is costly and time consuming
- Deployment is done with NSA Option 3x. This does limit the radio vendor to existing 4G radio vendor in collocated sites
- Frequency Band: 3.6-3.8GHz, Bandwidth: 200MHz, 64T64R MIMO

Preparation

- Space in the equipment cabinet and tower for 5G equipment were made
- Power and cooling capacity was upgraded
- Transmission was made available from nearest node site (with either direct fiber, GPON or Microwave)
- Both Core Network and RAN software needed to be upgraded to Support 5G

Option 3x

- Avoid impact to Legacy
 LTE for user data
- Use 4G for signaling

AAU5613(C-Band)

- Frequency Band: 3.6-3.8GHz
- Bandwidth: 200MHz
- Max output power: 200W
- 64T64R MIMO
- Weight: 40kG

5G Introduction – Testing

Functional Tests

- Cell radius around 200m- matched initial planning
- Throughputs of more than 1Gbps observed from all sectors
- CSFB is successful from 5G to 4G to 3G
- Cell reselection from 4G to 5G is successful
- Handover between 5G cells are successful

© DOWNLOAD 1053 Mbps © UPLOAD 94.5 Mbps Data used 866 MB © UPLOAD 94.5 Mbps Data used 71.6 MB © PACKET LOSS 13 1 0.0 ms ms % Connections Multi Dhiraagu Maldives Male © DhiMobile User Location Lat: 4,2134 Lon: 73.5421

Effect of 1Gbps transmission on Access Speeds

- Transmission of gNodeB moved to 1Gbps interface
- Speed reaches over 900Mbps

Broadband for non-Fiber locations with limited transmission over Microwave:

- A gNodeB installed in an island with a 200Mbps microwave transmission capacity
- Throughput reaches the transmission capacity

Challenges

Satellite TV related

- C band also use by Satellite TV operators
- 5G spectrum interfere with satellite TV reception
- Mitigation Action
 - Use C band LNB with 5G filter to avoid full band saturation
 - Obtain lower band for 5G outdoor coverage

Handset related

- Handset verification requires manufacturing giants takes over six months.
- Even with verification all supported models are not readily approved.

Coverage

- Indoor coverage is poor due to high penetration loss 5G spectrum used
- Buildings with glass fronts get acceptable coverage
- 5G Coverage gets easily shaded by buildings and vegetation

What's Next?

dhiraagu

Rollout of 5G Coverage

- Expand 5G coverage to all areas in phases
- Explore more cost effective 5G solutions
- NSA core to 5G SA core to deploy an NFV solution
- Deploy VoLTE and Vo5G to enhance voice experience

New Services

- IoT based smart city services
- Network slicing can be offered to government, law enforcement, emergency services and major corporate customers
- Real-time applications

Network Slicing (https://www.viavisolutions.com)

Thank you

JOURNEY SO FAR

We began by focusing on community videos

OUR APPROACH

We believe that smallholder farmers are the heroes

In every community, we begin with assessment and diagnosis

- Work with community organizations
- Listen to their experience and assess systems already in existence
- Find ways to use technology as an entry point

We don't create systems in parallel to existing ones

- Integrate solutions into existing ones
- Work through partnerships
- Test & iterate to find what works for the community

We listen closely to the data we collect

- Collect data continuously
- Invest in analysis to adapt our approach
- Use learnings to galvanize stakeholders to advance broader agriculture development

COMMUNITY-BASED VIDEO APPROACH

Digital Green

OUR SOLUTIONS

Integrated Digital solutions for rural communities around the world

WhatsApp Chatbot

Customized automated advisories in text, audio and video forms

WhatsApp Groups

Virtual groups for easy and ongoing interaction

SMS

Timely reminders for farmers with limited connectivity

IVR

Personalized messages for the semiliterate with limited connectivity

INITIAL EXPERIMENTS

WhatsApp groups for sharing advisories

Chatbot-based micro-learning modules

Chatbot-based Customized Advisories

CUSTOMIZED DIGITAL ADVISORY SERVICES

- Need for customized information in both agriculture and health was evident
- Receiving timely information was crucial for farmers and rural communities
- Information shared in various formats, audio, video and text was helpful

A USE CASE

IMPACT AT THE FIELD

- 95% (out of ~250,000 farmers) of those who received advisories through digital tools reported to actually listening/watching audio and video messages they received across India, Ethiopia and Nepal
- An increase by almost 10% in adoption of promoted practices and 12% increase in yield in Andhra Pradesh where customized advisories were provided over generic advisories
- 90% of farmers who were onboarded on the chatbot in Jharkhand continued engaging with the bot, 97% wanted to recommend it to other farmers and 99% wanted to continue the service in the next season
- 48% farmers who received customized advisories through chatbot adopted the promoted practices, where the typical rate of adoption through traditional extension system is 10%

FINDINGS FROM THE FIELD

- Rural communities are increasingly getting access to smart devices and internet connectivity, including women community members
- Onboarding users to a new digital channel is challenging

 issues range from those of trust to limited digital skills.
- Designing the service responsive to rural communities' needs see a high uptake, or else there are high dropouts
- Users have to see high value to continue using the service – timely, personalized services are valued.
 Technology adoption is not necessarily the biggest barrier

WAY FORWARD

FarmStack

organizations

government, private sector, civil society, policy makers, research agencies

1

Securely share data on their own terms

2

Access farmer feedback and relevant data from other sources

3

Use data assets to build and offer refined solutions and apps

farmers

Access customized services/content via multiple channels

2

Trust that their data remains secure and private

3

Share data/feedback with organizations to enable more choice

- Enabling more choice for rural community members on how they want to access information and services
- Delivering content via multiple channels that complement each other and address rural communities' issues of access
- Keep farmers and communities in the center when using data – ensuring data privacy and security
- Sharing data between different actors more securely, with consent of each actor to deliver high value to the end-user – the rural community

