Evaluation of Outbreak Prediction, Detection and Annotation

Focus Group AI for Health – Topic Group Outbreaks ITU-D Emerging Tech Week – 9 July 2021

Auss Abbood Robert Koch Institute (RKI) abbooda@rki.de

Stéphane Ghozzi Hemholtz Centre for Infection Research (HZI) stephane.ghozzi@helmholtz-hzi.de

Setting

Process

- reported (infectious disease) cases
- epidemic/outbreak vs. endemic
- "outbreak" = "epidemiologicaly linked"
- "endemic" = "background noise"

Tasks

- prediction = cases not yet observed
- detection = cases observed up to now
- annotation = cases in the past

Data (case) labels = outbreak IDs = 1, 2, 3, \otimes , \varnothing Signal labels: A, B, C, \otimes , \varnothing

Probabilities

Inputs

- ullet data cell x= coordinates in smallest relevant resolution
- data label, classes d_i = outbreak labels
- signal label, classes s_j

Outputs

- $p(d_i|x)$: probability of outbreak d_i in cell x, from the data
- $\hat{\mathbf{p}}(d_i|\boldsymbol{x})$: probability of outbreak d_i in cell \boldsymbol{x} , from the algorithm

Data

• $p(d_i|\mathbf{x}) = n(d_i,\mathbf{x}) / \sum_l n(d_l,\mathbf{x})$

Algorithm

- $\hat{\mathbf{p}}(d_i|\mathbf{x}) = \sum_j \hat{\mathbf{p}}(d_i|s_j,\mathbf{x}) \hat{\mathbf{p}}(s_j|\mathbf{x})$
- $\hat{\mathbf{p}}(s_j|\mathbf{x}) = w(s_j,\mathbf{x})/\sum_m w(s_m,\mathbf{x})$, with w the algo output
- $\hat{p}(d_i|s_j,x) = \text{information on outbreaks, depends on the algo}$

Scores (standard)

Regression

• of $\hat{\mathbf{p}}$ against p, e.g., RMSE = $\sqrt{\sum (\hat{\mathbf{p}} - \mathbf{p})^2/N}$

Mutual information

• between outbreaks and signals: $I = \sum_{d,s} \mathbf{p}(d,s) \log(\mathbf{p}(d,s)/\mathbf{p}(d)\hat{\mathbf{p}}(s))$

Classification (confusion matrix)

- class based
- ullet 2 thresholds: on \hat{p} and p
 - \implies TP, FP, TN, FN
 - \implies sensitivity, specificity, precision, F1, ...

Scores (epidemiology)

Weight individual cell

ullet e.g., according to number of outbreak cases

Space-time distance

- decreasing as function of distance
- e.g., timeliness (0 if signal is too early, reference = first case in a given outbreak)

Toy example

on previous grid, 4 simple scenarios and algo akin to anomaly detection, small thresholds:

- specific: no signal, three classes
- ullet sensitive: one overall certain signal, three classes
- $\bullet\,$ perfect 3: three signals, three classes, $w \equiv \mathbf{p}\,$
- perfect 1: one signal, one class, $w \equiv p$
- random: one signal with random w's, one class

scenario	F1	F1 *
specific	0.31	0.57
sensitive	0.13	0.10
perfect 3	0.70	0.83
perfect 1	1	1
random	0.56	0.67

^{*} weighted by # class cases

Outlook

- fairness (maximin) + ethics
- ullet simulations and implementation of standard algorithms
- software package
- real-world application

Thank you!

FG-AI4H: www.itu.int/en/ITU-T/focusgroups/ai4h

AA: abbooda@rki.de / @Auss_Abbood

 SG : stephane.ghozzi@helmholtz-hzi.de / @stephaneghozzi

Al for Natural Disaster Management

Monique Kuglitsch Fraunhofer HHI

The challenge

Natural disasters are damaging physical events caused by natural hazards.

The situation is exacerbated in **certain regions** and for certain **populations**; and is expected to **worsen**.

A view of the vast flooding in Guatemala after Hurricanes Eta and Iota struck one after the other last month.

2 Hurricanes Devastated Central America. Will the Ruin Spur a Migration Wave?

(4 Dec 2020, NYT)

The challenge

Natural disasters feature prominently in the activities of multiple **UN organizations** and **programmes** including

- SDGs
- policy-guiding publications (e.g., Sendai Framework, IPCC SREX)

Sendai Framework for Disaster Risk Reduction 2015 - 2030

The questions

Through tapping the **potential of AI**, can we improve our **understanding** of natural hazards, our ability to **detect** events in real-time, our ability to **forecast** events, and our ability to effectively **communicate** an impending or ongoing disaster?

What are the **best practices** and **limitations for** Al?

Training Data

- Generate new benchmarks
- Develop models that require less data
- Use synthetic and simulation data

Documentation and Sharing

- Standards and repositories to facilitate sharing and discovery
- Incentives, investments and enforcements

Challenges for Machine Learning in Earth Science

Model Development

- Incorporate physical constraints
- Develop architectures and frameworks to benefit from the characteristics of geospatial data

(Maskey et al., 2021)

The goals

Explore best practices in:

- data collection, monitoring, and handling for training and testing of AI-based algorithms;
- AI-based algorithms for reconstructing, detecting, and forecasting events; and
- effective communication.

Data

Some questions to explore are:

 what requirements should data meet when being used to train or test an AI-based algorithm?

• can AI-based algorithms be used to **enhance** data

quantity and quality?

Campbell Scientific

Al-based algorithms

Some questions to explore are:

 what is the current gold standard method to reconstruct, detect, or forecast events? How can AI-based algorithms bring these methods to the next level?

what should be considered when training and evaluating

an AI-based algorithm?

Communication

Some questions to explore are:

- once an event has been forecast or triggered, how can Al assist with the immediate response?
- how do we ensure that communication methods are reliable and trusted by the population? Are they accompanied by a clear set of protocols to ensure that individuals know how to respond?

! EMERGENCY ALERTS

3h ago

Emergency Alert

National Weather Service: TORNADO WARNING in this area until 245 AM EST. Take shelter now in a basement or an interior room on the lowest floor of a sturdy building. If you are outdoors, in a mobile home, or in a vehicle, move to the closest substantial shelter and protect yourself from flying debris. Check media.

Key deliverables

- Workshops
- Roadmap
- Glossary
- Three non-normative technical reports
- Educational materials

What is an ITU Focus Group?

- Supports the efforts of an associated ITU Study Group.
 Study Group 2 mandate includes "telecommunications for disaster relief/early warning, network resilience, and recovery."
- Provides a working environment for pre-standardization or standardization activities in a chosen area.
- Can be rapidly established and has freedom to choose working methods, leadership, financing, and desired outputs ("deliverables").

ITU/WMO/UNEP Focus Group on AI for Natural Disaster Management (FG-AI4NDM) converges the ICT expertise of ITU with natural disaster expertise from the WMO and UNEP.

Creates an atmosphere that is conducive to international, multi-stakeholder, and interdisciplinary collaboration.

Management Team

ITU TSB
Mythili Menon, Advisor &
Hiba Tahawi, Secretariat

WG-Data

WG-Modelling

WG-Comms

WG-Roadmap

Technical reports

TG-AI for flood monitoring and detection

TG-AI for landslide monitoring and detection TG-AI for tsunami geodetic enhancements to tsunami monitoring and detection

TG-AI for snow avalanche monitoring and detection

Use cases

TG-AI for volcanic eruption forecasting

TG-Al for wildfire monitoring and detection

multihazard communication technologies

Management Team

Chair Monique Kuglitsch Fraunhofer HHI, Germany

Vice Chair Elena Xoplaki University of Giessen, Germany

Vice Chair Srinivas Chaganti *DOT, India*

Vice ChairJuerg Luterbacher *WMO*

Vice Chair Muralee Thummarukudy UNEP

Vice Chair Rakiya Babamaji NASRDA, AU-DRR Af-STAG, & UNDRR-GRAF, Nigeria

Vice Chair Yan Chuan Wang China Telecom, China

Get involved!

Visit our website (https://itu.int/go/fgai4ndm)

Peruse our **onboarding document** for guidance on how to:

- Create a free ITU user account
- Join our low-volume mailing list
- Register for our workshops/meetings
- Use our remote participation platform (MyMeetings)
- Access our collaboration site
- Submit written contributions

Thank you!

Naomi Lee Co-Chair of ITU/WHO FG-AI4H The Lancet UK

Al for Health ITU-WHO Focus Group

What to do when supply < demand?

- WHO has made universal health coverage a top priority
- SDG3 is "Good Health and Well-being"
- WHO Constitution declares "highest attainable standard of health" a human right
- UN member states have pledged to "leave no one behind"

Al for Health ITU-WHO Focus Group

What to do when supply < demand?

 However, there are not enough healthcare workers to meet demand

Leverage digital technologies!

- Al solutions can assist with detection, diagnosis, and medical decision-making
- Combine new machine learning algorithms with big data from electronic health records
- Internet & smartphones spread to the most remote corners of the globe

But there are challenges...

Preliminaries of AI:

- Train once and use (linear deployment)
- Fixed input-output relationship (stationarity assumption)
- Reality of AI:
- Cyclical with updates
- Non-stationarity (data nor input-output)

Test

Apply

Data

Train

... that need to be addressed

Ethics

 Requires a joint effort from experts in **diverse** fields including:

AI/ML Public health Regulation Medicine Research and academia

ITU/WHO FG AI for Health

- Established in 2018 as collaboration between ITU and WHO to address the challenges of evaluating AI for health
- **Interface** between multiple fields: AI/ML, medicine, public health, government, regulation, statistics, ethics

Who is FG-AI4H?

Leadership:

- Thomas Wiegand, Fraunhofer HHI and TU Berlin, Germany
- Manjula Singh, ICMR, India
- Naomi Lee, The Lancet, United Kingdom
- Sameer Pujari, WHO
- Shan Xu, CAICT, China
- Stephen Ibaraki, ACM, Canada
- Ramesh Krishnamurthy, WHO

Members:

Experts from around the globe

Stakeholders and supporters include:

 WHO, ITU, IANPHI, IAP, IHF, Al4Good, WHS, philanthropists (Fondation Botnar), and IMDRF

FG-AI4H collaboration

5/2018 Al for Good Geneva	11/2018 Columbia Unive NYC	4/2019 rsity World Exp Shangha		1/2020 PAHO/WHO Brasilia	5/2020 Online	1/2021 Online
	10/2018 WHO HQ Geneva	1/2019 EPFL Lausanne	5/2019 Al for Good Geneva	CMR & NICF		9/2020 5/20 Online Onl

Online and on-site workshops and meetings

Mandate

- FG-AI4H recognizes that AI offers substantial improvements for public and clinical health
- FG-AI4H supports standardization of AI for health to foster safe use on a global scale

Structure

FG-AI4H working groups

Data and AI solution assessment methods (WG-DAISAM) Data and AI solution handling (WG-DASH) Ethical considerations on AI4H (WG-Ethics) Regulatory considerations on AI4H (WG-RC) Clinical evaluation (WG-CE) Operations (WG-O)

FG-Al4H topic groups 🚆

TG-Cardio TG-Derma TG-Falls TG-Histo TG-Neuro TG-Outbreaks TG-Ophthalmo TG-Psy TG-Snake TG-Symptom TG-Fertility	TG-TB TG-DiagnosticCT TG-Bacteria TG-Dental TG-Diabetes TG-Endoscopy TG-FakeMed TG-Malaria TG-MCH* TG-Radiology TG-POC*
TG-Symptom TG-Fertility	TG-Radiology
TG-Sanitation	TG-MSK+

^{*}MCH: maternal and child health +MSK: musculoskeletal medicine

[°]POC: point-of-care diagnostics

Working groups 📆

- Dedicated to overarching themes that affect all topic groups in a specific aspect of AI for health
- Create best practices, establish processes and related policies, define ways to successfully benchmark AI for health algorithms, and create reference documents

Topic groups 🔑

- Dedicated to a specific health use case in the context of AI
- Aim at producing evidence and case studies and bringing together experts and data
- Propose procedures to benchmark AI models for a given task within a health topic

• Draft topic description documents

AHG-Digital technologies for COVID health emergency

- Coordinators: Ana Riviere Cinnamond (PAHO) & Shan Xu (CAICT)
- Objectives: Collecting effective ways AI (and related digital technologies) are leveraged throughout the cycle of an epidemic emergency using COVID-19 as a case study
- Prevention & preparedness, outbreak early detection, surveillance and response, recovery, rehabilitation, mitigation

Deliverables/documentation

- Address overarching themes (e.g., ethical and regulatory considerations, clinical evaluation, and data specifications) or specific health topics
- Updated iteratively and pass through a rigorous review process
- Provide requirements needed to establish the benchmarking process of AI for health

Deliverables/documentation

No.	Title
00	Overview of the FG-AI4H deliverables
01	AI4H ethics considerations
02	AI4H regulatory considerations
03	AI4H requirements specifications
04	AI4H software life cycle specification
05	Data specification
06	Al training best practices specification
07	AI4H evaluation considerations
08	AI4H scale-up and adoption
09	AI4H applications and platforms
10	AI4H use cases: Topic description documents

Open-Code-Initiative (OCI)

- Develop software tools (e.g., data acquisition, data storage, annotation, prediction, benchmarking/evaluation, and reporting packages)
- Involve developers, regulators, and medical professionals
- Targeted towards a universal tool applicable across borders
- Usable by multiple stakeholders such as notified bodies and doctors

OCI-Collaboration

- International Team
 - 40+ contributors (including WG&TG-members)
 - various backgrounds (engineering, AI/ML-developers, reserachers, academia, medicine, regulation, etc.)
- Structure & workstreams
 - core package
 - data-storage & catalog package
 - data-annotation package
 - evaluation package
 - reporting package

OCI: End-To-end-solution

- OCI platform focuses specifically on healthcare
- covers additional aspects: ground truth annotation, data and metadata management, reporting for regulators of Al
- combines activities & output of FG-AI4H working- and topic groups

Data centers

- AI developers/evaluators face a lack of centralized pools of health data
- FG-AI4H is coordinating compilation of data in regional centers
- Federated and transfer learning affect AI updates

2021: AI4H-WEBINARS & CHALLENGES

AI4H webinars:

- Infrastructure of ITU AI for Good Global Summit
- Most pressing topics on AI & health
- Renowned speakers, like Regina Barzilay (MIT), Isaac Kohane (Harvard), Jeremy Howard (Fast.AI)
- AI4H challenges: coming soon...

Get involved!

- Join the <u>topic groups</u>, <u>working groups</u>, <u>ad hoc</u> group, and <u>Open Code Initiative</u>
- Contribute to deliverables
- Join <u>mailing list</u>
- Visit FG-AI4H website
- Read <u>Whitepaper</u> & commentary in <u>The Lancet</u>
- Consult the <u>onboarding document</u>
- Join the <u>AI4H webinar series</u>

TG-Malaria Rose Nakasi Makerere University, Uganda

Emerging Tech-week 5th-9th July 2021

Global malaria burden

•Globally, malaria accounts for over 229 million cases

Malaria burden

Currently in and many developing countries

- Malaria has been reported as one of the leading cause of death
- Patient in big numbers wait to be diagnosed

Microscopy challenge

In highly malaria endemic countries;

- There is lack of enough trained lab technicians
- In Ghana, 1.72 microscopes per 100,000 population, but only 0.85 trained laboratory staff per 100,000 population

Diagnostic challenge

- Standard Operating Procedure requires not to view more than 30-40 slides a day
- Microscopy is eye straining
- Less diagnosis throughput
- Variations in individual expert judgment

Digital imaging for malaria diagnosis

Set up

Automated detection of malaria

TG-Malaria activities

In order to standardize AI based detection of malaria

- Quality datasets needed
 - Have more datasets for training and testing
 - Well labelled datasets

Solution

- Al models and approaches related to malaria detection.
- Suggestions on scoring metrics.
- Improvements on the benchmarking framework.
- Support to the group on different aspects (data, methods, benchmarking, etc.) of this topic
- Extension of the solution to improve disease surveillance and prediction.
 - Heterogeneous Data needed

Benchmarking Al-Based detection of malaria

Benchmarking-Malaria platform

Support for uploading dataset

Sub-topic: Malaria surveillance

Malaria is a bio-hazard

Call for participation

Participation can be in form of:

- Provision of quality labelled data
- AI models and algorithms for benchmarking task on malaria
- General support on different aspects of this topic (data, methods, benchmarking, etc.)

Contact us

- TG-Malaria
 - fgai4htgmalaria@lists.itu.int
- TG-Driver
 - g.nakasirose@gmail.com