

ITU-CITET Regional Training Workshop on ICT and Climate Change Mitigation and Adaptation in Arab Region

Tunis, Tunisia 12-13 July 2017

Session 6: Green ICT Strategies

Dr Keith Dickerson

- This session introduces Green ICT Strategies and Mitigation in particular.
- It provides an understanding of the key technologies, applications, services and standards that will help mitigate against climate change.
- Sectors such as Smart Energy, Smart Buildings, Smart Agriculture and Smart Logistics are covered and their contribution to Mitigation identified.

- How a range of green ICT technologies can be used to reduce GHG emissions.
- What are the potential GHG savings from the introduction of green ICT technologies?
- Barriers to the introduction of green ICT technologies.
- How policy makers and regulators can promote and enable introduction of green technologies.
- How Standards can enable the deployment of green technologies.

Warm-up Exercise with Flip Chart/Power Point (2 minutes)

Which green technologies can you think of?

Your Answers

• 1)

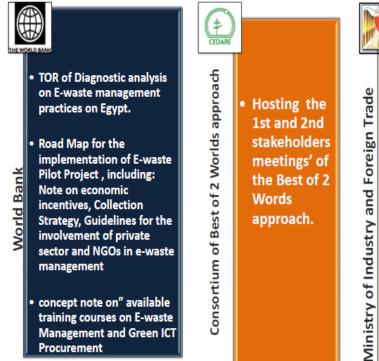
• 3)

 How would these save energy and GHG
 emissions?

To start: What is a Green ICT Strategy?

Green ICT Strategy

- A Green ICT strategy can be designed to achieve economic, social and environmental goal in an interrelatec and coherent fashion without seeing them as trade-off.
- For example a green building is energy efficient, saves cost and is comfortable to occupants and is a good example of achieving the triple bottom line goals of sustainability.
- The objectives of Green ICT strategies include:
 - Pollution prevention: minimizing or preventing pollution from ICT.
 - Product stewardship: considering environmental impacts throughout the ICT lifecycle including raw-material sourcing, product design, and development processes (LCA)
 - Clean technology: developing and deploying ICT solutions with a view to reducing the level of environmental impact along a product's lifecycle from design to consumption (Greening by ICT)
 - Sustainability vision: using ICT in envisioning a sustainable development.

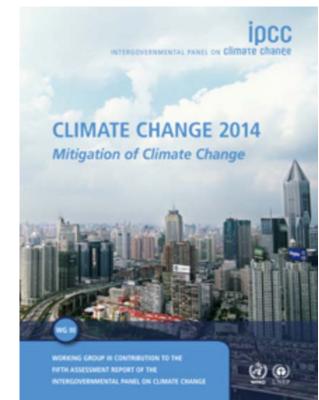

- E-waste sustainable Management Actions
 - Conduct E-waste assessment report covering the whole of Cairo.
 - Implement a program for raising the community awareness about Ewaste threats and opportunities.
 - Support the participation of IT companies and institutions to start the implementation of pilot projects for e-Waste Management.
 - Participate in proposing legislation and laws to support the rational management of electronic waste.

Egyptian Green ICT Strategy Achievements

In cooperation with the ministry of ministry of Industry and foreign trade", a study has been conducted on " assessing the ministerial decree No 384 for year 2012 on the prohibition of importing used computers and its peripheral which issued by ministry of Industry and

Manteloy of State For S

- Opening the ITG –E-waste recycling factory (the 1st in Egypt and middle East);
- Launching the first campaign of collection from home (Recyclobekia & Resala);
- Supporting Spear Ink
 company. The first factory in
 Egypt in the field of re
 manufacturing cartridges and
 producing ink and toner
 refilling machines


Next: The importance of Mitigation in Green ICT Strategy

W The importance of Mitigation

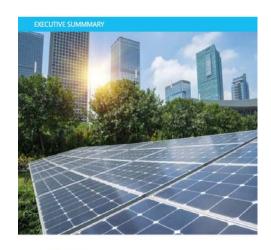
- Without additional efforts to reduce GHG emissions beyond those in place today, emissions growth is expected to persist driven by growth in global population and economic activities.
- Mitigation scenarios reaching about 450 ppm CO₂e in 2100 typically involve overshoot of atmospheric concentrations, as do many scenarios reaching about 500 ppm to about 550 ppm CO₂e in 2100.

www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_summaryfor-policymakers.pdf

Mitigation: Emission reductions possible in other sectors using ICTs

Categories	Effects
Consumption of	By reducing materials consumption (dematerialization), the environmental load related
materials	to goods production and disposal as well as waste generation can be reduced.
Power / energy consumption	By enhancing the efficiency of power and energy use to reduce consumption, the environmental load related to power generation, power transmission, etc. can be reduced.
Movement of people	By reducing the movement of people, the environmental load required for transportation can be reduced.
Movement of materials	By reducing the movement of materials, the environmental load required for transportation can be reduced.
Improved efficiency of office space	By using office space efficiently, power consumption for lighting, air conditioning, etc. can be reduced, thus reducing environmental load.
Storage of goods	By reducing storage space of goods, power consumption for lighting, air conditioning, etc. can be reduced, thus reducing environmental load.
Improved work efficiency	By enhancing work efficiency, the environmental load can be reduced.
Waste	By reducing waste emissions, the environmental load required for environmental preservation as well as for waste disposal can be reduced.

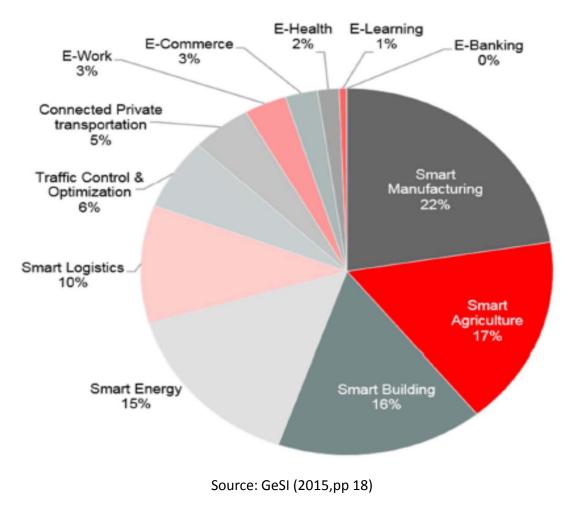
Source: ITU-T Recommendation L.1400 "Overview and general principles of methodologies for assessing the environmental impact of ICT" <u>www.itu.int/rec/T-REC-L.1400</u>

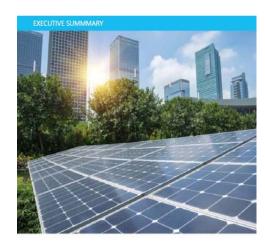


- ICT can enable a 20% reduction of global CO₂e emissions by 2030, holding emissions at 2015 levels.
- ICT emissions as a percentage of global emissions will decrease to 1.97% of global emissions by 2030, compared to 2.3% in 2020.
- ICT could generate over \$11 trillion in economic benefits per year by 2030.

Source: GeSI: SMARTer2030 ICT Solutions for 21st Century Challenges, 2015.

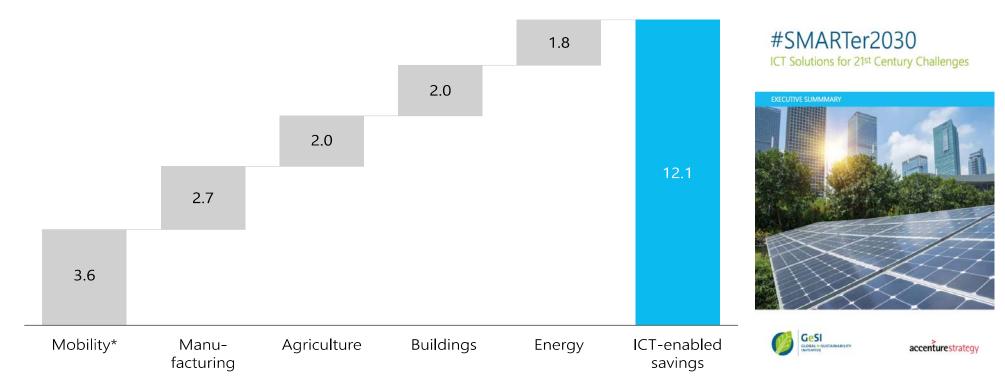
#SMARTer2030 ICT Solutions for 21st Century Challenges


accenturestrategy



ICT CO₂e abatement potential (2030)

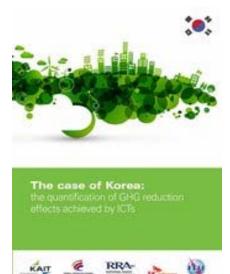
#SMARTer2030 ICT Solutions for 21st Century Challenges



accenturestrategy

CO₂e abatement potential by sector (2030)

Source: GeSI: SMARTer2030 ICT Solutions for 21st Century Challenges, 2015.



Korea's Green ICT Strategy

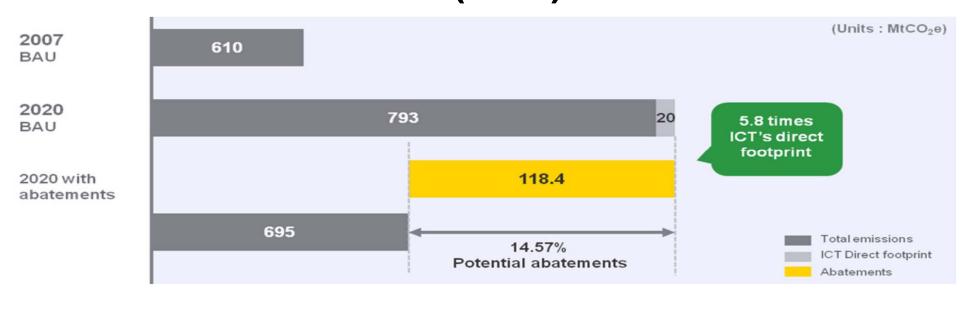
- Smart grids
- Telepresence
- E-commerce
- E-civil service
- E-logistics
- Real-time navigation
- E-government
- Smart motors

- Home energy management systems
- Digital contents
- Smart work
- E-learning
- Bus information systems
- E-health care

ITU Report: "The case of Korea - The quantification of GHG reduction effects achieved by ICTs", 2013 – <u>www.itu.int/pub/T-TUT-ICT-2013-08</u>

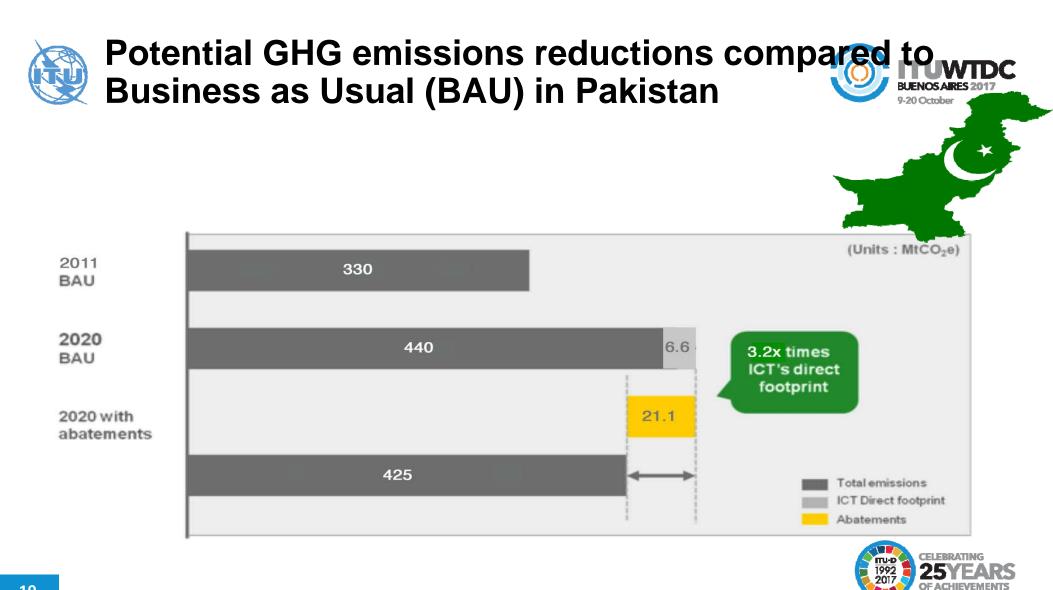
Potential GHG emission reductions arising from the introduction of 14 ICT services

ICT services	Year 2011	Year 2020	
	GHG abatement (Units: million tCO ₂ e)	GHG abatement (Units: million tCO₂e)	
1. Smart grid	1.98	68.70	
2. Telepresence	0.86	11.03	
3. E-commerce	1.09	7.93	
4. E-civil service	0.47	6.11	
5. E-logistics	1.34	4.79	
6. Real-time navigation	0.59	3.57	
7. E-government	0.15	3.48	
8. Home energy management system	0.76	2.96	
9. Smart motor (Industrial)	1.61	2.89	
10. Digital contents	0.52	2.05	
11. Smart work	0.17	1.89	
12. E-learning	0.69	1.61	
13. Bus information system	0.25	1.40	
14. E-health care	0.02	0.04	
Total	10.3	118.4	


www.itu.int/pub/T-TUT-ICT-2013-08

Potential GHG emission reductions compared to Business as Usual (BAU)

www.itu.int/pub/T-TUT-ICT-2013-08



Potential GHG emission reductions from the wide introduction of ICT services in Pakistan Buenos Alles 2017

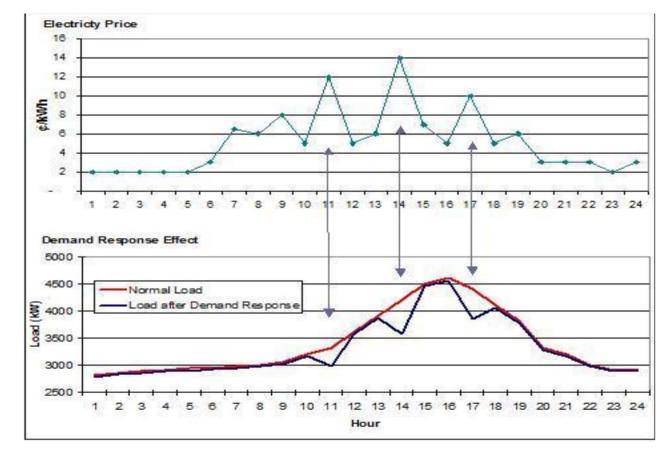
Smart Meters		3.87 MtCO ₂ e
Smart Grids		$4.36 \text{ MtCO}_2 \text{e}$
RTN		0.86 MtCO ₂ e
e-logistics		0.36 MtCO ₂ e
Telepresence		0.01 MtCO ₂ e
Bus Information Systems		5.46 MtCO ₂ e
e-government		0.59 MtCO ₂ e
e-commerce		$5.15 \text{ MtCO}_2 \text{e}$
Home Energy Management Systems		0.41 MtCO ₂ e
	Total	21.05 MtCO ₂ e

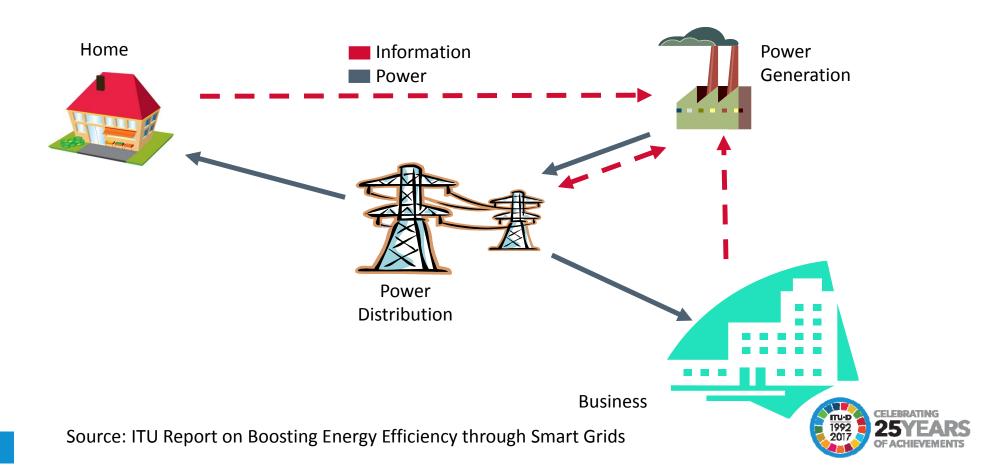
Next: Green ICT Technologies

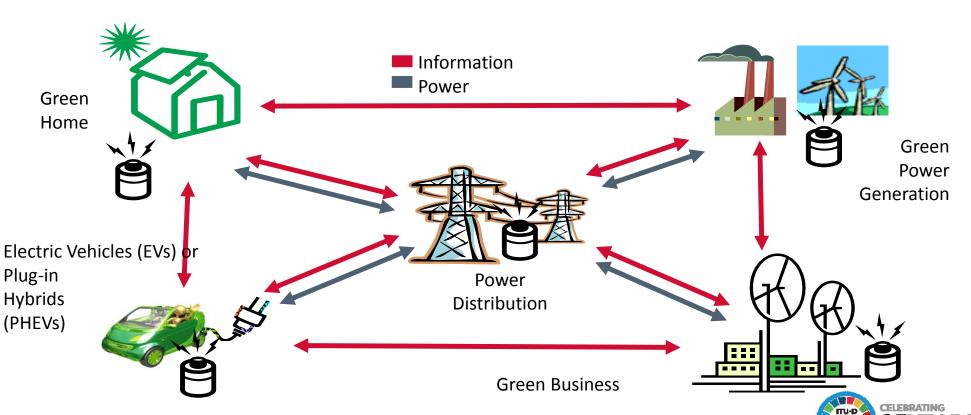
- A 'smart grid' is a set of software and hardware tools that enable generators to route power more efficiently, reducing the need for excess capacity and allowing two-way, real time information exchange with their customers for real time demand side management (DSM).
- Demand control (electricity) by load shifting via smart meters and appliances
 - Reduces peak demand saving hot standby power stations
 - E.g. temporary turn off, for refrigerator, dishwasher etc. (future electric vehicle charging)
 - Requires communication to meters and appliances

Smart Grid Vision and Roadmap for India:

http://indiasmartgrid.org/en/resourcecenter/Reports/Smart%20Grid%20Vision%20and%20Roadmap%20for% 20India.pdf






A Simplified View of "Smart Grid": Today One-way Flow of Power and Information

The Simplified "Smart Grid": Tomorrow Full Bi-directional Flow of Energy & Information

OF ACHIEVEMENTS