

Methodology Slides: Should the following slides be moved to Session 7?

How to assess potential GHG savings from the introduction of green technologies

- ITU-T Rec. L.1410 provides a common methodology for assessing the ICT carbon footprint.
- Basis of methodology is to compare the GHG emissions from a Business as Usual (BAU) scenario and a scenario which includes the ICT service.
- Must be carried out over the full life cycle (LCA).
- Helps to establish the business case to go green.

Using the Methodology: E-commerce

- Example Country: Pakistan
- Scenario: Customers are able to purchase a variety of goods and services without visiting stores.

- This leads to:
 - reduced fuel consumption of vehicles,
 - reduced electricity consumption for lighting, heating and cooling in buildings,
 - increased fuel consumption and GHG emissions caused by parcel delivery service since number of parcel deliveries will increase,
 - may be a rebound effect where customers do other things with the time not spent visiting stores (and therefore use energy).

Calculating the change in GHG emissions

Data required to calculate savings for e-commerce:

- Population who have PCs or smartphones and could use online shopping is around 20 million.
- Proportion of these customers that might adopt e-commerce: assume 75%.
- Number of customers adopting e-commerce: 15 million.
- number of visits per customer per year that would be replaced by e-commerce: assume 20.
- round-trip distance to visit stores to purchase goods: around 11 km.
- extra travel distance to deliver parcels (using a light delivery van): assume 2km per parcel delivered.
- energy consumption for lighting, cooling and heating in stores.

Comparative assessment of ecommerce

Functional unit	Baseline scenario	ICT service scenario
To allow 50% of the population in Pakistan to shop and purchase goods	Purchasing carried out by consumers visiting the store.	Consumers order online and then have their shopping delivered without going to the store.
Travel distance of private vehicles	27.5 billion km	13.75 billion km
Travel distance of delivery vehicles	zero	2.5 billion km
Electricity consumption	3 billion kWh	2.8 billion kWh

- This results in a reduction of 13.75 billion km in distance travelled by private vehicles.
- Assuming the office space which is not needed is closed, there will also be a reduction of 293 million kWh of electricity usage to heat, light and air-condition the retail stores.
- This all adds up to a reduction of 1.93 MtCO₂e of GHG emissions which is potentially one of the largest savings of any e-service in Pakistan.

Source: ITU Report: "Enabling Energy Efficiency through ICTs: The case of Pakistan"

Teleworking example: Japan

Typical CO₂ emissions per unit area of office space:

1. CO₂ emissions per unit area of office space

	Energy Consumption [Mcal/m²/year] A	Basic Unit of CO ₂ Emissions [kg-CO ₂ /Mcal]	CO ₂ Emissions [kg-CO ₂ /m ² /year] A x B
Electricity	136	0.441	59.9
Urban gas	44	0.237	10.4
Heavy oil A	9	0.309	2.8
Kerosene	2	0.299	0.6
District heat and cooling	17	0.324	5.5
Total	208		79.2 ⁽¹⁾

2. Space occupied by an office worker for cierical work
13.6 m²/person²

3. Basic unit of office space

(1) \times (2) = 1,078 kg-CO₂/person/year

* If the annual working hours are 2040 hours (170 h x 12 m),

CO₂ emissions are estimated to be 0.528 kg-CO₂/person/ hour when an office worker works for one hour in Japan.

Tele-working example: Japan

- Case study given in ITU-T Recommendation
 L.1410 (3/12) where ICTs have been used to substitute for movement of people in Japan.
- The first is where tele-working from home has been used to substitute for travel to the office.
- An office worker in Japan emits 0.528 kg CO2/person/per hour.
- For the home office, the environmental impact intensity was calculated as: 0.21 kg-CO2/person/per hour
- The saving is 0.318 kg-CO2/person/per hour

Teleworking example: USA

Typical CO₂ emissions per unit area of office space:

1. CO₂ emissions per unit area of office space

	Energy Consumption [Mcal/m²/year] A	Basic Unit of CO ₂ Emissions [kg-CO ₂ / Mcal] B	CO ₂ Emissions [kg-CO ₂ /m ² /year] A x B
Electricity	134	0.66	88.8
Natural Gas	79	0.21	16.6
Fuel oil	9	0.29	2.5
District heat	24	0.31	7.5
Total	246		115.4 ⁽¹⁾

- 2. Space occupied by an office worker for cierical work: 21.4 m²/person 🕮
- 3. Basic unit of office space

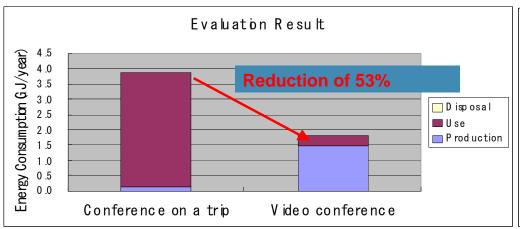
(1) \times (2) = 2,470 kg-CO₂/person/year

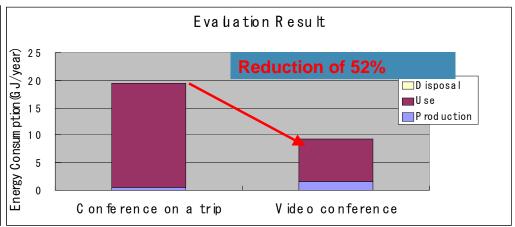
* If the annual working hours are 2040 hours (170 h x 12 m),

CO₂ emissions are estimated to be 1.21 kg-CO₂/person/ hour when an office worker works for one hour in USA.

Tele-working example: USA

- Case study given in ITU-T Recommendation L.1410 (3/12) where ICTs have been used to substitute for movement of people in the USA.
- The first is where tele-working from home has been used to substitute for travel to the office.
- An office worker in USA emits 1.21 kg CO₂/person/per hour
- For the home office, the environmental impact intensity was calculated as: 0.80 kg-CO₂/person/per hour
- The saving is 0.41 kg-CO₂/person/per hour


Videoconferencing



Scenario: Video conference between Tokyo and Yokohama with two participants from each office:

Case a) once a week (48 times / year) for one hour.

Case b) every working day (240 times / year) for eight hours.

