Preparing for 5G:

Evolution of RF-EMF Compliance Standards and Regulations for Mobile Devices

About the MWF

 The MWF is an international non-profit association of telecommunications equipment manufacturers with an interest in mobile or wireless communications.

5G: Promise and Challenge

- Meets the huge growth in data and connectivity*
 - Globally 5.7B subscribers and 7.9B subscriptions;
 - Smartphones account for more than 60 percent of all mobile phone subscriptions;
 - 1.9 billion 5G subscriptions by the end of 2024.
- Increased speed, responsiveness and capacity
- Key infrastructure for IoT and emerging technologies,
 - e.g. autonomous vehicles, smart manufacturing, virtual reality
- Conformity challenges to be addressed, e.g.
 - Beamforming and MIMO make RF exposure highly variable in time and space;
 - Compliance of multiple IoT systems.

5G: Not Only Above 6GHz

- Below 6GHz "sub-6"
 - Operate in same way as existing networks.
- Above 24GHz "mmWaves"
 - Existing uses of mmWaves include:

Speed Radars

Medical Treatment

Airport Screening

Accident Avoidance Systems

Research Relevant for 5G-Frequencies

- EMF Research has been undertaken for 60+ years.
- Below 6GHz (sub-6):
 - EMF-Portal: 28,000 published scientific articles on the biological and health effects of EMF and 2,500 studies on mobile communications.
- Above 24GHz (mmWaves):
 - Recent review identified 470 studies @ mmWaves
 - Conclusions:
 - mmWaves are entirely absorbed in the epidermis and the dermis
 - Effects = thermal

Growing Body of Scientific Evidence

Overview of MWF Research Efforts

Specific Absorption Rate (SAR) Limit and Established Adverse Health Effect

What's the Threshold?

Established biological and health effects in the frequency range from 10 MHz to a few GHz are consistent with responses to a body temperature rise of more than 1°C.

This level of temperature increase results from exposure of individuals under moderate environmental conditions to whole-body SAR of approximately 4 W kg⁻¹ for about 30 min. A whole-body average SAR of 0.4 W kg⁻¹ has therefore been chosen as the restriction that provides adequate protection for occupational exposure. An additional safety factor of 5 is introduced for exposure of the public, giving an average whole-body is SAR limit of 0.08 W kg⁻¹.

WHO supports ICNIRP 1998 Limits for Mobile Phones

To date, **no adverse health effects** have been established as being **caused by mobile phone use**.

How to assess:

Compliance of Mobile Devices up to 6 GHz (SAR)

Mobile Phones: SAR Measurement

- IEC/EN 62209-1 Ed.2
 - Measurement procedure for the assessment of specific absorption rate
 of human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices Part 1: Devices used next
 to the ear (frequency range of 300 MHz to 6 GHz)
- IEC/EN 62209-2:2010+AMD1:2019 CSV
 - Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)

Mobile Phones: SAR Compliance Testing

- Mobile phone compliance is tested at highest power level possible.
- Intended use position

next to the ear: EN 50360:2017

body-worn: EN 50566:2017 up to 5 mm

- Reasonably foreseeable conditions
 - Article 3(1)a in conjunction with Article 17(1) Radio Equipment Directive

SAR Measurement - Next Level: IEC/IEEE 62209-1528*

- Methods for the assessment of electric, magnetic and electromagnetic fields associated with human exposure (4 MHz – 10 GHz)
- Fully harmonising SAR measurement (IEC & IEEE dual logo)
- Specifies protocols and test procedures for SAR testing with
 - single or multiple transmitters,
 - proximity sensors,
 - time averaging,
 - fast SAR and test reduction,
 - uncertainty analysis
- Representative for entire population including children
- Use of hand-held or body-worn wireless communication devices when used next to the ear, in front of the face or mounted on the body

SAR Measurement Equipment

SAR measurement video: http://www.emfexplained.info/?ID=25593

How to assess:

EMF compliance for devices > 6 GHz

EMF compliance challenges for devices > 6 GHz

- Change of exposure metric
- Assessment of incident power density in close proximity of a device
- Efficiency of compliance assessment methods

SAR & Power Density: Metric and Frequency

Status: 29 November 2019 | SAR - Specific Absorption Rate | PD - Incident Power Density

Assessment of Incident Power Density in close proximity of a device

- Different methods available (IEC Technical Report 63170), e.g.:
 - Measurement of both electric and magnetic fields on the evaluation surface
 - Measurement of the amplitude of the electric fields on the evaluation surface (phase reconstruction)
 - Measurement of the electric fields (amplitude and phase) at a larger distance of the evaluation surface (field back-projection)

Complexity of compliance assessment

Antenna f < 6 GHz (LTE, WCDMA, 5G NR WiFi,

Complexity of compliance assessment

- Measurements are extremely time-consuming.
- Multiple transmitters below and above 6 GHz
 - Antenna arrays require combination of fields
 - Total exposure ratio includes contributions from below and above 6 GHz
- Compliance tests for 5G devices require a large number of field combinations and configurations.
- Need to combine numerical methods and measurements.

Mobile Devices: Incident Power Density (1)

- IEC Technical Report 63170:2018
 - Measurement procedure for the evaluation of power density related to human exposure to radio frequency fields from wireless communication devices operating between 6 GHz and 100 GHz
 - Published in 2018
- Content:
 - State of the art measurement techniques and test approaches for evaluation of local and spatial-average incident power density in close proximity to the user
 - Guidance for testing portable devices in applicable operating position(s) near the human body (methods may also apply to exposures in close proximity to base stations)
 - How to assess exposure from multiple simultaneous transmitters operating below and above 6 GHz, including combined exposure of SAR and power density

Mobile Devices: Incident Power Density (2)

- IEC / IEEE 63195 Ed1
 - Measurement procedure for the assessment of power density of human exposure to radio frequency fields from wireless devices operating in close proximity to the head and body – Frequency range of 6 GHz to 300 GHz
 - Publication expected in early 2021
- IEC / IEEE 62704-5 Ed1
 - Determining the power density of the electromagnetic field associated with human exposure to wireless devices operating in close proximity to the head and body using computational techniques, 6 GHz to 300 GHz
 - Publication expected in early 2021
 - most likely published as 'IEC / IEEE 63195 part 2'

Mobile Devices: Incident Power Density (3)

- IEC/IEEE 63195 and IEC/IEEE 62704-5 are inter-dependent.
 - Measurement standard 63195 to validate simulations.
 - Simulation standard 62704 to define conservative cases for measurements.
- Power density compliance assessment requires simulations.
 - Many antennas involved, antenna array, beam forming and steering options, assessing devices that use frequencies below and above 6 GHz, including combined assessment of SAR and PD

PD Measurement Equipment

How to create trust:

Transparency and Compliance Reporting

MWF Recommendation on 'SAR Reporting'

- 2001 2010: Phase 1
 - SAR value in user manuals and on dedicated websites
- 2011 2019: Phase 2
 - SAR-Tick website
 - Mobile phone user manual:
 - Additional note on SAR in the front part of the user manual
 - Extended text with Head-SAR and Body-SAR details
 - World Health Organisation advice for concerned users
- 2020 onwards: Phase 3
 - User manual with additional note on Power Density (PD)

SAR-Tick.com

Michael Milligan

Thank you

