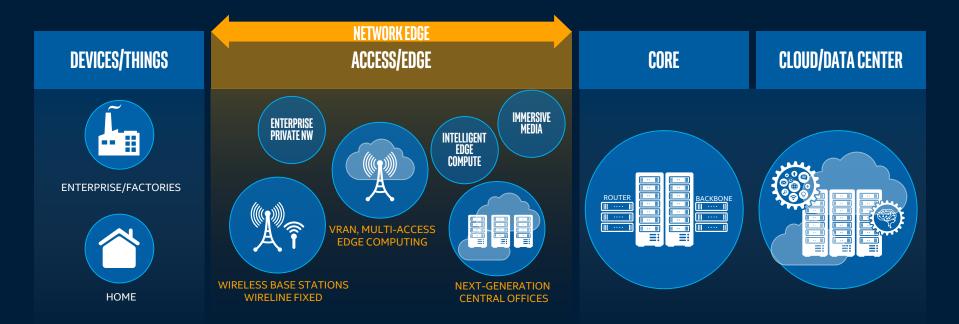


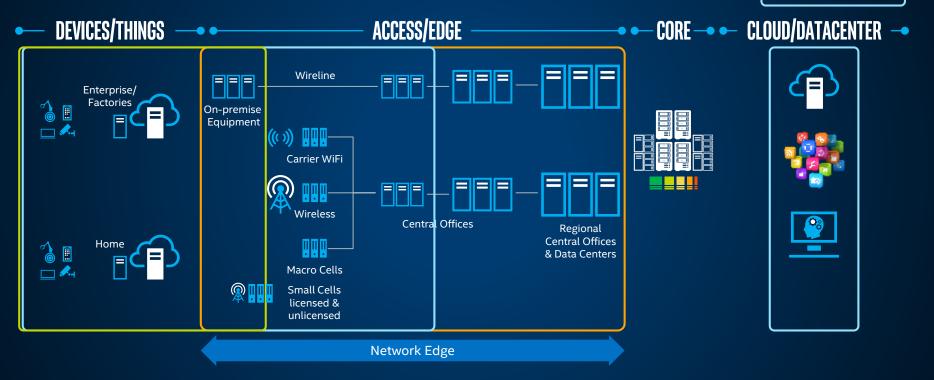
UNLEASHING THE VALUE OF 5G AND IOT


4th ITU Annual Forum on "IoT, Big Data, Smart Cities and Societies" for Arab region Dubai, UAE, 28-29 August 2019

Ignacio Astilleros, Global Account Director Telecommunications, Middle East, Turkey and Africa.

DISTRIBUTING CLOUD TECHNOLOGIES & ECONOMICS TO THE EDGE CLOUD

COMPUTE WORKLOAD PLACEMENT AT OPTIMAL LOCATION FOR RETURN


EDGE CLOUD SERVICES & APPLICATIONS CRITICAL TO DRIVE ROI ON EDGE INVESTMENT TO SERVICE PROVIDERS & ENTERPRISES

Where Is the Edge(s) Of The Future?

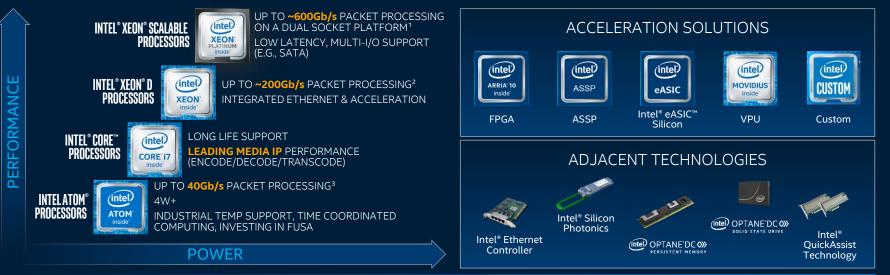
Enterprise View of Edge

Carrier's view of Edge

Cloud's view of Edge

EDGE(S) SERVICES TAXONOMY – 2020/2025

NFV 1	Internet of Things	Autonomous	AR/VR & Gamming	Data caching & Storage Gw
Flexible NFV (specifically VRAN/CRAN) De-Centralized Ran vEPC, UPF Resources: CPUs, storage, FPGAs, pNIC/SNIC Latency: To be analyzed	IoT devices in many fields such as factory automation, process automation, smart grids, V2V Resources: Communication, CPUs, storage, Movidius, SPH Latency: Factory automation : 0.25ms to 10ms Smart grids: 3-20ms / Process automation: 50-100ms	Assist in autonomous driving Examples: overtaking systems, V2V comm, navigation Resources: CPUs, storage, Mobileye, SPH Latency: Ideally <20ms, upto 100 ms	Process images (image recognition) from devices, wearables and annotate useful information Examples: Google glass Resources: CPUs, FPGAs, ATS Latency: seamless - <20 ms , sensitive- <25ms Tolerable 50- 100ms	Cache data at the edge for faster loading at user end Using Edge as main storage for the devices Examples: cache popular videos in a region, Netflix Resources: Storage, CPUs Latency: Not latency bound
Video/Video Analytics	FaaS Perform web page related pre- processing at the edge and send page to user device	8 Speech Recognition Speech-to-text, User commands, Biometric Recognition Resources: Communication,	9 Medical Applications Assist medical appliances through connectivity and analysis	10 Enterprise IMBD, Specific Enterprise WL (i.e Linked In) Resources: CPUs,
Examples: Traffic video analysis and alarm systems Resources: CPUs, FPGAs, storage, ATS, SPH for Inference?	Examples: web page rendering, ad block, content evaluation Resources: CPUs, FPGAs, Latency: Not slower than	CPUs, GNA-s, FPGA, SPH Latency: To be analyzed	Examples: Tele surgery Resources: CPUs, Communication, storage, ATS, SPH Latency: Tele surgery <150ms without haptic, <10ms with haptic feedback	Communication, storage, FPGA Latency: <10 ms



EXAMPLE OF ISV SOLUTIONS FOR EDGE PROOF OF CONCEPTS

Edge Use-case Category	ISV / Workload	Edge Value Prop
Content Delivery Networks	♦Qwilt NGINX	 Save backhaul traffic Use low latency + high BW for HQ content delivery
Video Analytics (Retail and Surveillance)	Vispera kitemetika.ai	 Save backhaul traffic Solution scaling
Smart Home / City	gestes MOD.CAM	 Save backhaul traffic Low latency connected components interaction
Speech Analytics	Vverbio	 Better user experience (latency) Virtual assistant scaling
Healthcare	EYE-D PHILIPS	 Data sovereignty and reliability Latency and user experience
Industry 4.0	infosim [®] 🔛 omnio	 Compute at low latency Faster analytics
Data Processing and Analytics		 Save backhaul traffic Data processing and integration with other solutions
V2X and ADAS	Sobiliya 🛁	 Latency critical applications Save backhaul traffic by data filtering and preprocessing
AR/VR and Gaming		 Real time user-experience with low-cost edge devices Integration with other use-cases such as speech analytics

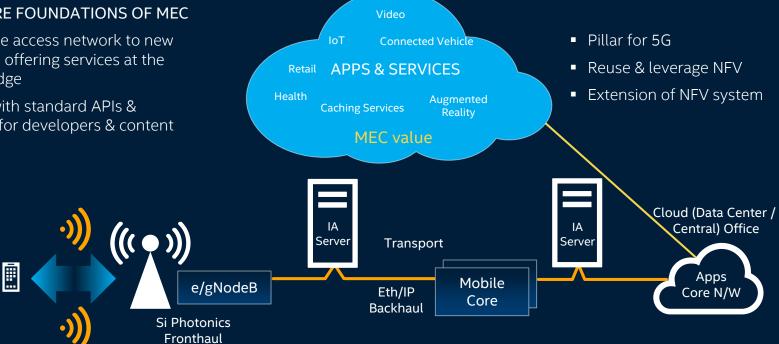
inte

HARDWARE: MOVE, STORE & PROCESS THE DATA

USE CONSISTENT, SCALABLE & HIGHLY PROGRAMMABLE ARCHITECTURE FROM EDGE TO DATA CENTER

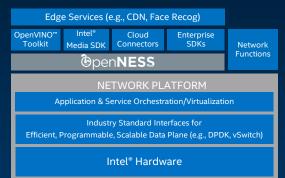
1. Up To 586Gb/s Packet Processing on a dual socket Platform: Results based on internal Intel testing as of 8/2/2018. Intel(R) Xeon(R) Platinum 8160 CPU @ 2.10GHz (DP), 12x Intel[®] XXV710-DA4 PCI Express Gen Dual Port 25GbE Ethernet controller (4x25GbE/card). Benchmark: DPDK v17.11 L3fwd sample application (IPv4, LPM, 3750000 flows). Score: 586Gbits/s packet forwarding at 512B packet size. 2. Up to 191Gb/s Packet Processing: Results based on internal Intel testing as of 5/1/2018. Intel(R) Xeon(R) D-2187NT CPU @ 2.0GHz, 4x Intel[®] XXV710-DA2 PCI Express Gen Dual Port 25GbE Ethernet controller (2x25GbE/card). Benchmark: DPDK v17.11 L3fwd sample application (IPv4, LPM, 2048 flows). Score: 191Gbits/s packet forwarding at 512B packet size. 3. Up to 40Gb/s Packet Processing: Results based on internal Intel testing as of 8/14/2017. Intel(R) Atom(tm) Processor C3958 @2.0GHz, 2x Intel[®] X70-DA2 PCI Express Gen Dual Port 10GbE Ethernet controller (2x10GbE/card). Benchmark: DPDK v17.02 L3fwd sample application (IPv4, LPM, 1024 flows). Score: 40Gbits/s packet forwarding at 512B packet size. Disclaimer: Performance results may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information usit http://www.intel.com/performance.

MULTI ACCESS EDGE COMPUTE (MEC)


NFV+SDN ARE FOUNDATIONS OF MEC

- Unlocks the access network to new ecosystem offering services at the network edge
- Platform with standard APIs & interfaces for developers & content providers

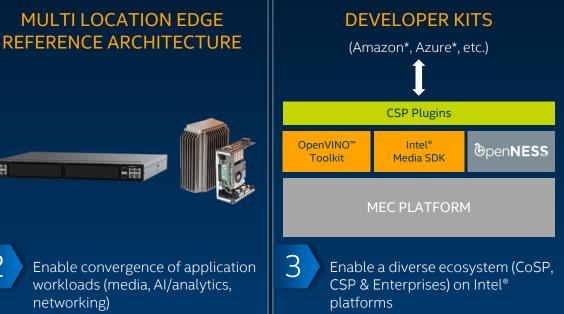
ÐÒ


▦

....

EDGE SERVICES: ENABLING ECOSYSTEM & DEVELOPERS

EDGE SERVICES **REFERENCE SOFTWARE**


Make it easy for developers to create applications & services by abstracting the complexity of the network

H

Enable convergence of application workloads (media, AI/analytics, networking)

- HH

ADDRESS NEW SERVICES & APPLICATIONS IN TOP VERTICALS -MEDIA, INDUSTRIAL, RETAIL, SMART CITY & OTHERS

*Other names and brands may be claimed as the property of others.


PARTNERSHIPS: WINNING 5G WITH THE ECOSYSTEM

USE INDUSTRY LEADING ECOSYSTEM PROGRAMS TO DRIVE EDGE TRANSFORMATION & ENABLE DEVELOPERS

*Other names and brands may be claimed as the property of others.

