

Delivery Technologies and Business Models for Mobile Television Services 2015

Bangkok, Thailand

Dr AMAL Punchihewa

Director ABU Technology Asia-Pacific Broadcasting Union

A Vice-Chair of World Broadcasting Union – Technical Committee (WBU-TC) Distinguished Lecturer of IEEE Broadcast Technology Society

Dr Amal Punchihewa © Distinguished Lecturer of IEEE Broadcast Technology Society

Session 2: Introduction on MTV standards

Dr Amal Punchihewa

PhD, MEEng, BSC(Eng)Hons, CEng, FIET, FIPENZ, SMIEEE, MSLAAS, MCS Postgraduate Studies in Business Administration

Director ABU Technology

Asia-Pacific Broadcasting Union, Kuala Lumpur, Malaysia A Vice-Chair of World Broadcasting Union – Technical Committee (WBU-TC) Distinguished Lecturer of IEEE Broadcast Technology Society

Dr Amal Punchihewa © Distinguished Lecturer of IEEE Broadcast Technology Society

Aim

To provide insight into the network architecture and functionality of the different MTV technologies

- T-DMB
- ISDB-T (OneSeg/mm)
- DVB-T2 Lite
- Wi-Fi offload
- Hybrid MB Tower Overlay over LTE-A+
- Application in different countries Japan, Korea, Europe....

How to deliver content ?

- Over-the-air (OTA) most efficient
- Over-the-cable (OTC) most secured
- Over-the-broadband or Over-the-top (OTT) growing form of delivery

- How to access content?
 - Free-to-access
 - Pay-to-access

Casting – Information delivery

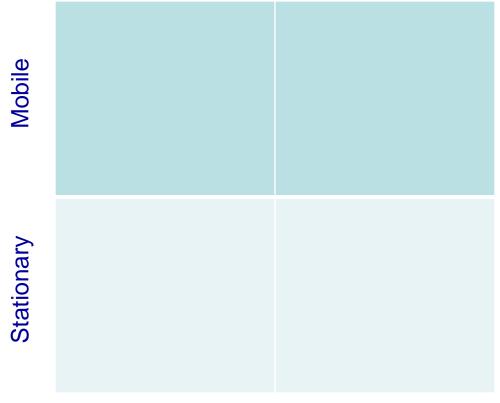
- Unicast is the term used to describe communication where a piece of information is sent from one point to another point. In this case there is just one sender, and one receiver.
- Multicast is the term used to describe communication where a piece of information is sent from one point to a set of other points.
- Broadcast is the term used to describe communication where a piece of information is sent from one point to all other points. In this case there is just one sender, but the information is sent to all receivers.

Network Architecture

- Internet network of networks enables P2P
 Communication
- Mobile/Cellular are networks enables P2P Communication via BS (Base Station)
- Both above networks are not designed for broadcasting
- Mobile/Cellular networks for unicasting
- Internet for unicasting and multicasting
- Broadcasting NWs has been designed to broadcast Radio, Television and Data Broadcasting (NWs are broadcast networks by design)
 - Architecture is high tower high power (in general)

Digital Broadcasting Transmission Technologies

- DVB
- ISDB
- ATSC
- DTMB
- Delivery
 - Terrestrial
 - Satellite
 - Cable
 - Virtual pipe IP


- DAB
- DAB+
- T-DMB
- Delivery
 - Terrestrial
 - Satellite

Media/TV consumption to be served

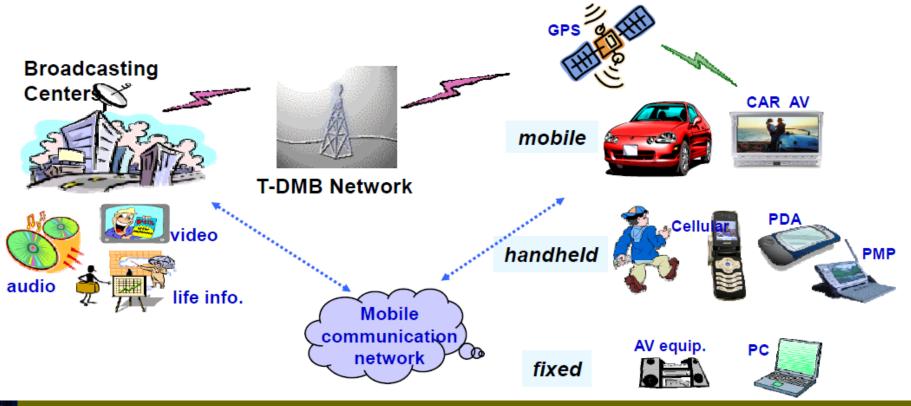
- Stationary vs. Mobile
- Linear vs. Nonlinear

Linear Nonlinear
Source: Dr Amal Punchihewa © MMRG

MTV - Mobile Television Services

- T-DMB 2005
- ISDB-Tmm April 2012
- ATSC-M -
- DVB-T2 Lite

DVB-T 1997, DVB-H 2004, T-DMB 2005, DVB-T2 in 2008, DVB-T2 Lite



NBTC_

What is T-DMB?

- Video standard extension of Digital Audio Broadcasting (DAB)
- Fully compatible with Eureka-147

- Commenced around May 2005
- Provides video and data services as well as CD-quality audio service

T-DMB Service Features

Mobile multimedia broadcasting services

· anytime, anywhere with any devices

Personalized services by handheld receivers

• Mobile phone, PDA, Notebook PC, PMP, etc.

Bi-directional interactive services linked with mobile communication networks

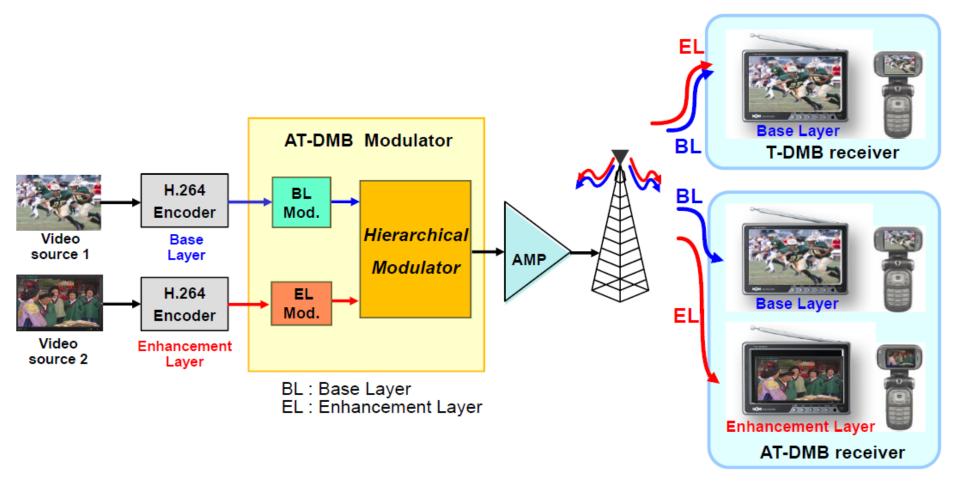
TTI, PPV, on-line shopping, internet access, etc.

Personal Mobile Interactive Multimedia Broadcasting Services

TTI : Traffic and Travel Information, PPV: Pay Per View

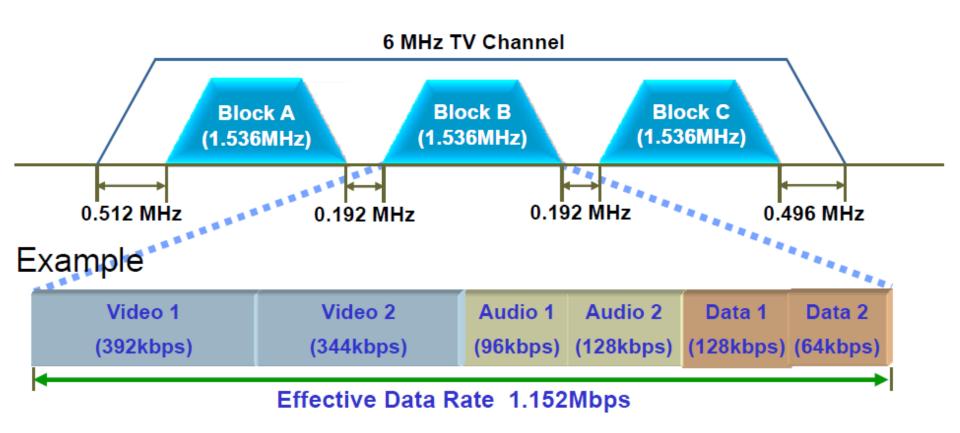
Eureka 147 Specifications

Signal		COFDM					
Modulation		DQPSK					
Channel Coding		Convolutional : variable rate, constraint length = 7					
Time Interleaving	ms	Depth = 384					
Frequency Interleaving	MHz	Width = 1.536					
Effective Data Rate	Mbps	0.8 ~ 1.7 Mbps					
System Bandwidth	MHz	1.536 MHz					
Transmission Mode		I	II	Ш	IV		
Application		Terrestrial (SFN)	Terrestrial /Satellite	Terrestrial /Satellite	Terrestrial /Satellite		
Frequency Band	GHz	< 0.375	< 1.5	< 3	< 1.5		
Sub carriers		1,536	384	192	768		
Sub carrier interval	KHz	1	4	8	2		
Guard interval	μs	246	62	31	123		
Symbol length	μs	1,000	250	125	500		
Frame length	ms	96	24	24	48		

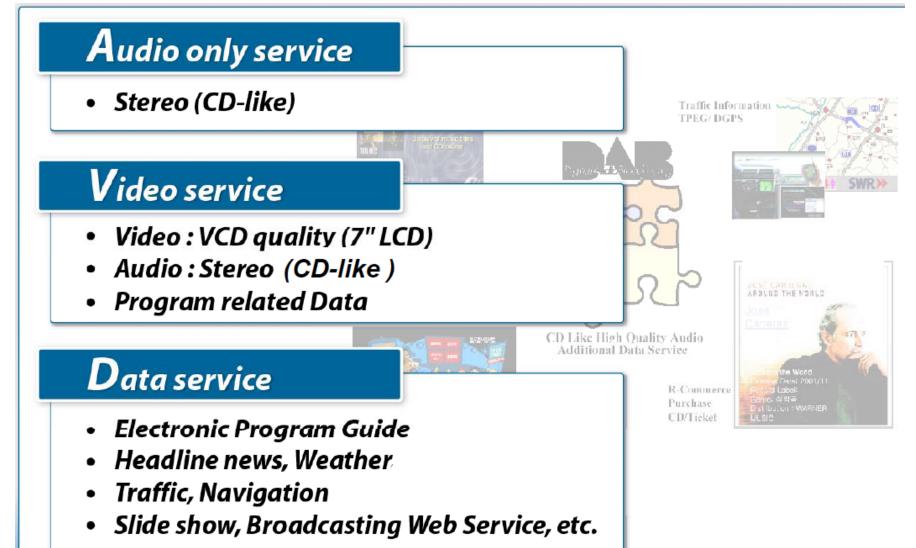


Dr Amal Punchihewa © Distinguished Lecturer of IEEE Broadcast Technology Society

T-DMB



T-DMB Frequency Allocation



T-DMB Services

T-DMB Devices

Dr Amal Punchihewa © Distinguished Lecturer of IEEE Broadcast Technology Society

ISDB-Tmm - Services

Services

- Real-time service
- Download service

Store contents to your mobile handsets.

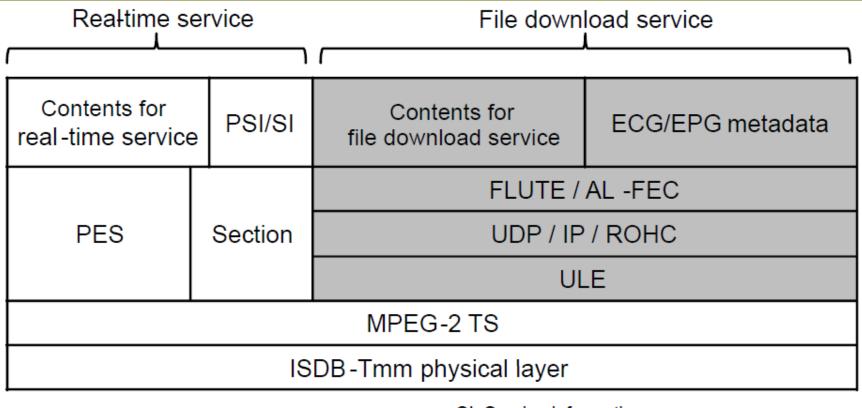
Technical Features of ISDB-Tmm

(1) High Quality Media Coding	(2) Advanced Inter-media Interaction	
•ITU-T H.264 / MPEG-4 AVC	 Interaction between communications	
•MPEG HE-AAC, MPEG Surround	and broadcasting	
(3) High Efficiency File Delivery	(4) Advanced Power Saving	
Protocol	Mechanism	
•Efficient File Transmission for Mobile	 Partial segment reception is supported 	

Environments with AL-FEC

•Lost data in broadcast channel can be compensated with communication channels Partial segment reception is supported
Intermittent reception for file download is supported by using advanced metadata

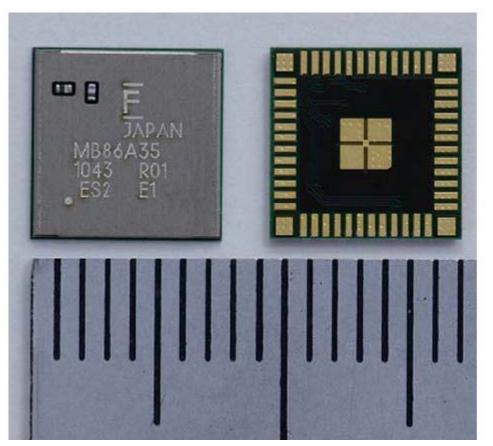
Technical Specifications of ISDB-Tmm


	ISDB-Tmm	ISDB-T (Terrestrial Digital TV, "One-seg")		
Segment Allocation	Any combination of 13-seg/1-seg format 6/7/8MHz Partial Reception 13-seg format ISDB-T ARIB STD-B31 / ITU-R BT1833 ARIB STD-B31 / ITU-R BT1833	6/7/8MHz (13 segments) Oneseg Partial Reception e.g. 2-layer Hierarchical Reception (including partial reception)		
Multiplexing	MPEG-2 Systems			
Modulation	OFDM (DQPSK, QPSK, 16QAM, 64QAM)			
Frequency Band	VHF Band	UHF Band		
Transmission Data Rate	7.3Mbbps / 13 segments (16QAM) 561kbps / 1 segment(16QAM)	One-seg∶416kbps / 1 segment (QPSK)		

ISDB-Tmm Protocol Stack

UDP: User datagram protocol IP: Internet protocol ROHC: Robust header compression ULE: Unidirectional lightweight encapsulation TS: Transport stream

- SI: Service information
- PSI: Program specific information
- EPG: Electronic program guide
- ECG: Electronic contents guide
- PES: Packetized elementary stream
- FLUTE: File delivery over unidirectional transport
- AL-FEC: Application layer forward error correction

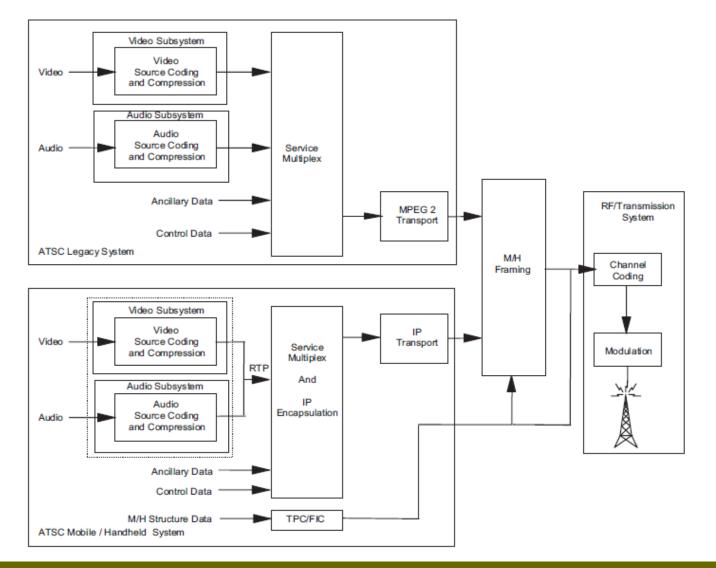


Tuner Hardware

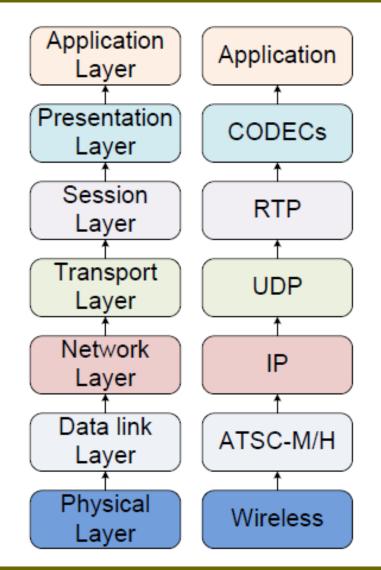
• Advances in chip design...

- ISDB-T
- ISDB-T (One-seg)
- ISDB-Tsb
- ISDB-Tmm
- DVB-T
- 6/7/8MHz multi-band

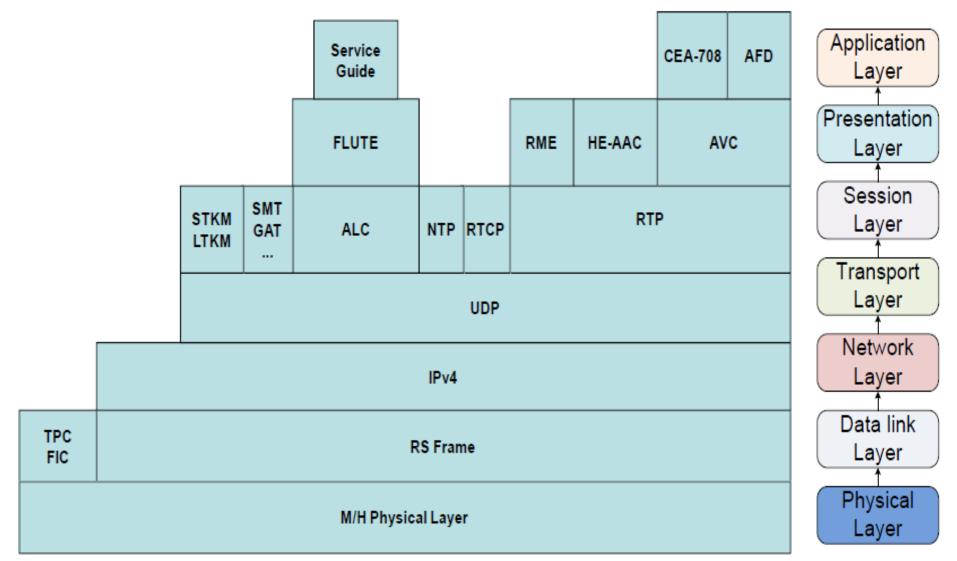
In a single mobule


Source: http://jp.fujitsu.com/

ATSC-M

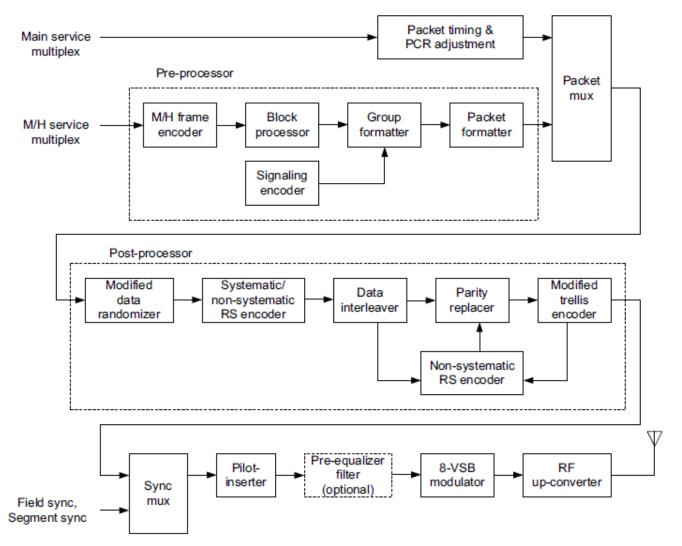


OSI reference model with ATSC-M/H components



Dr Amal Punchihewa © Distinguished Lecturer of IEEE Broadcast Technology Society

ATSC Protocol stack



ATSC-M Transmission

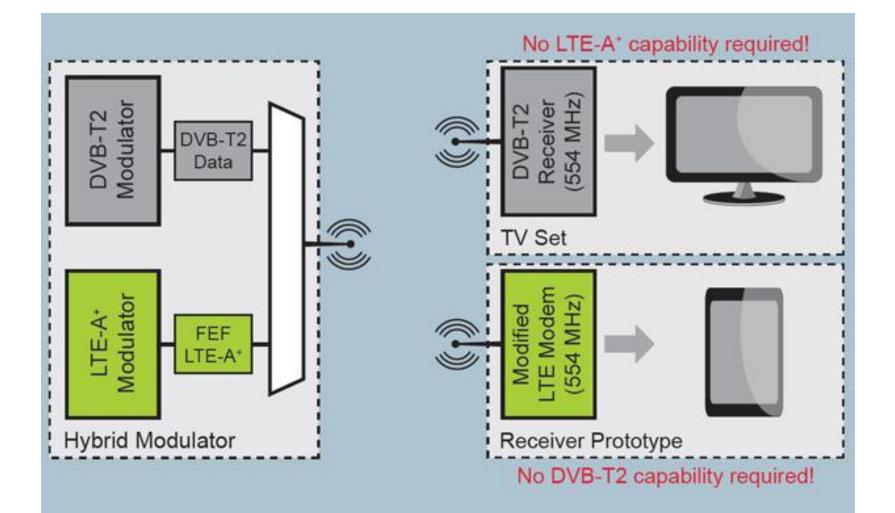
DTV-T

Technology	Main Features
ATSC	 A 8-VSB Transmission technology developed by ATSC Suitable for HDTV
DVB-T	 COFDM transmission technology developed by Europe's DVB Group Advantageous in mobility
ISDB-T	 BST OFDM(Band-segmented Transmission OFDM) transmission technology Developed by Japan

T2

NGH

T2-


Lite

Broadcasting to Mobile - NGH

- DVB-T2 covers fixed as well as mobile use cases
- DVB-T2-Lite is basically a subset of T2 to support mobile for terrestrial broadcasters
 - Ideal solution for a broadcast network to start mobile services
 - Will be supported in DVB-T2 chipsets
 - FEF-TDM structure allows total flexibility
- NGH is the ultimate air interface for all types of mobile broadcast
 - Can be combined with T2
 - Highest efficiency and operational flexibility

DVB-T2 Lite

T2 Transmission Parameters

	DVB-T2	T2-Lite	
Data rate	25.24 Mbit/s	1.02 Mbit/s	
Channels	1 x UHD TV	Mobile TV	
Video coding	HEVC	H.264	
Number of carriers	16K	16K	
Modulation	256 QAM	QPSK	
Inner coding	2/3	1/2	
Guard interval	1/128	1/128	
Pilot Pattern	PP7	PP7	
Frame Length (data symbols)	70	70	
Required C/N Ratio	20.3 dB	2.9 dB	

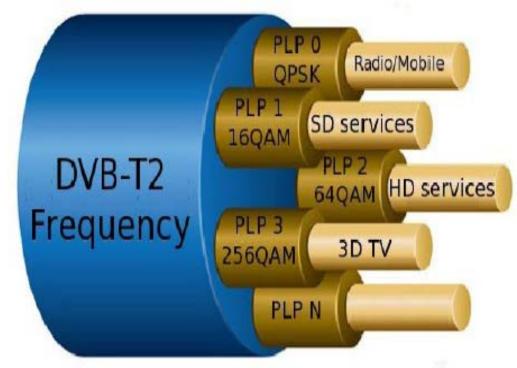
DVB-T2 Lite specifications

- A maximum bitrate of 4 Mbits/sec for each service
- Limitations on the FFT size to exclude the 1K and 32K carrier modes
- Prohibition of the use of rotated constellations in 256-QAM
- Possibility for only short FEC frames (NIdpc = 16200)
- Limitation of the size of the time interleaver memory (approximately half the size of normal DVB-T2).
- two new LDPC error control code rates, 1/3 and 2/5, more options for mobile reception
- Through use of FEF allowing different FFT size and Guard interval in transmissions
- T2 lite signal ignored by normal DVB-T2 receiver

Mobile reception

- The commercial focus on DVB-T2 is primarily on stationary reception (beyond SDTV), but DVB-T2 is also designed to work well in mobile/handheld conditions
 - deep time interleaving
 - supports power saving by time slicing
 - enables the introduction of "T2-Lite" or DVB-NGH services via Future Extension Frames (FEF)
 - T2-Lite is part of the DVB-T2 standard (from v.1.3.1)
 - DVB-NGH is based on DVB-T2

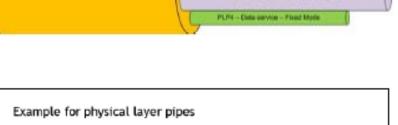
Reduced complexity leads to smaller silicon size (-50%) and lower power consumption



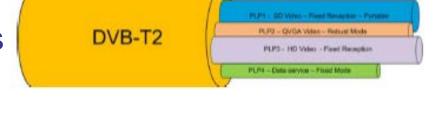
Wide range of bitrate vs. robustness

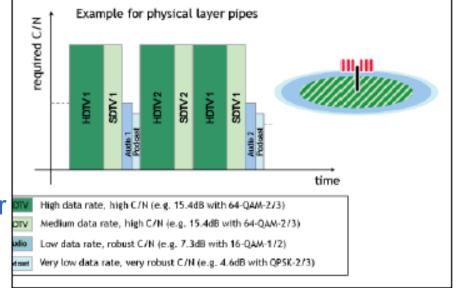
Space division multiplexing

Common parameters : 8 Mhz channel, FFT size 8K, pilot pattern PP1 and Guard Interval 1/4						
PLP	Content	Reception	Modulation	Code rate	Bit rate	C/N
1	HD/3D	Rooftop antenna	256 QAM	3/4	18.6 Mbps	23 dB
2	SD	Indoor antenna	16 QAM	3/5	4 Mbps	11 dB
3	Mobile/radio	Mobile reception	QPSK	1/2	0.5 Mbps	3 dB

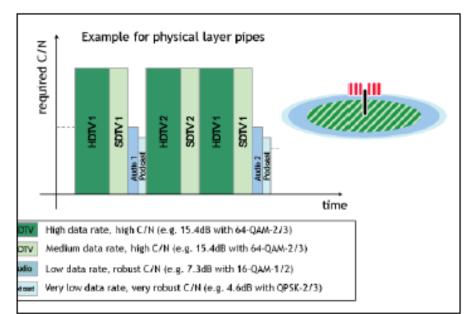


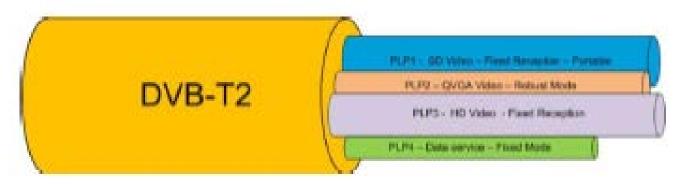
Multiple PLPs


Broadcasting Union


Asia-Pacific

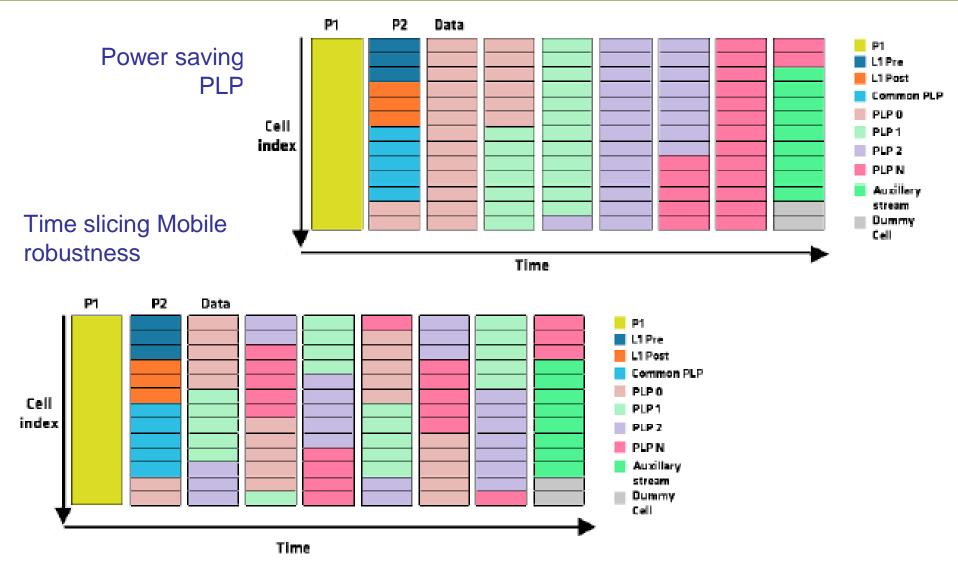
- Possibility to prioritize robustness for selected "high-priority" services prioritized services (e.g. public service) will "serve longer" in bad reception conditions
- Capacity and coverage can be further improved by Time Frequency Slicing (TFS), which uses multiple PLPs
 - Each PLP is frequency hopping over several RF channels creased frequency diversity
- allowed
- Limitation is different FFT size not





Multiple PLPs

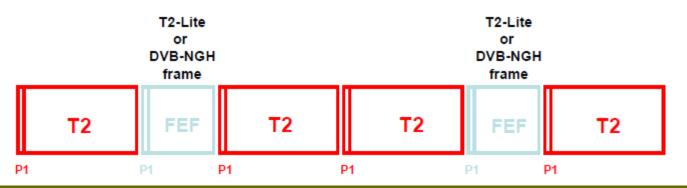
- Possibility to reach different kinds of receivers and reception conditions with a single RF signal
 - HDTV to roof-top directional antennas in PLPs with "normal" robustness PLPs
 - Mobile receivers with robust PLPs



PLP for various services

Future Extension Frames (FEF)

- DVB-T2 is based on a Frame structure
- Each Frame starts with a P1 preamble specifying the content type
- FEF allow to mix different FFT sizes and guard intervalls in one channel.
- FEF allow to combine different technologies in one frequency channel
- FEF could also support LTE frames together with T2

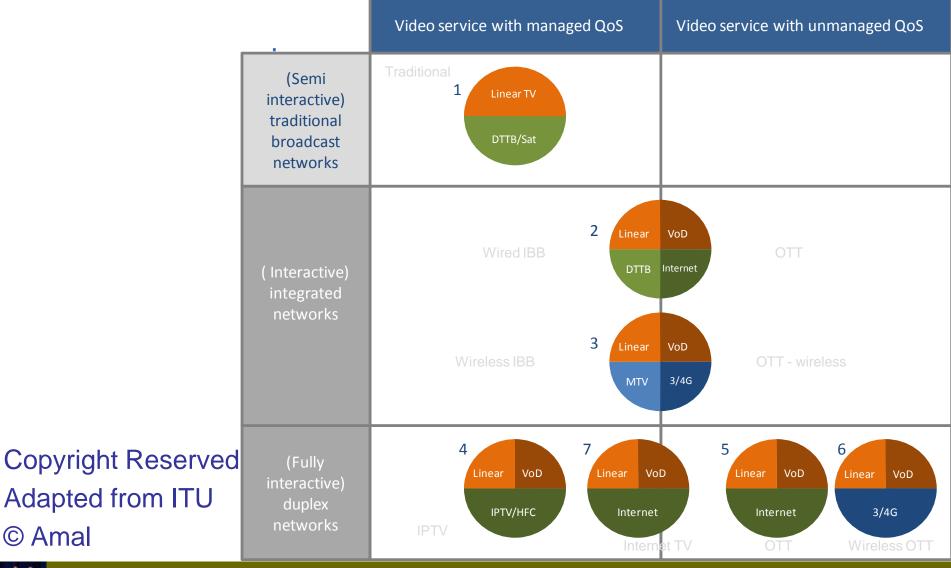


Future Extension Frames (FEFs)

- A mechanism that allows a future system to be sent as "Future Extension frames" in T2 time slots
 - No restrictions in the allowed content of the FEF
 - FEF may use DVB-T2 Lite (mobile, specified subset of DVB-T2)
 - Future transmission of the DVB Next Generation Handheld (DVB-NGH) standard currently developed by DVB
- The FEF mechanism does not exist in DVB-T
- Allows flexible capacity allocation to fixed and mobile services by adjusting the size of T2 frame and FEF

Future Broadcasting NGB

- Countries starting digital should consider DVB-T2
 - "no point" to start DVB-T today
- Multiple PLP:s- common infra structure for Radio and TV?
- DVB-T2 with 1.7 MHz BW to replace T-DAB
- Chinese Digital TV system standard DTMB will present a new DTMB-A, which is a similar to DVB-T2- but probably has a few years to implementation



1

Asia-Pacific Broadcasting Union

Classification of Media Delivery

Dr Amal Punchihewa © Distinguished Lecturer of IEEE Broadcast Technology Society

NBTC_

To summarise

- T-DMB, ISDB-Tmm, ATSC-M and DVB-T2 lite
- Efficient and effective broadcasting to mobile devices is possible

