

Mobile TV: Technology Developments and Trials

Sharad Sadhu

Media Specialist ITU Expert

NBTC/ITU Asia-Pacific Regional Seminar

Delivery Technologies and Business Models for Mobile Television Services

8 August 2015, Bangkok

Mobile TV: A bit of History

T-DMB System

T-DMB Broadcasting

Source: KBS

Mobile Experience is always Exciting

Source: KBS, 2005

KBS Mobile

Interactivity **Audience** Participation 서바이벌 정글특급 KBS 😂 Response

Source: KBS

1-Seg System

1-Seg Concept

DVB-H System

DVB-H: "Layered" Concept

• DVB family system

Time Slicing

- Time slicing battery saving in receivers
- MPE-FEC protection at DATA link level

FEC at the level of Base Band data

- 4K network planning flexibility (large SFNs)
- DVB-H delivery in DVB-T multiplexes

4K fft (8K, 2K)

Source: DVB

DVB-H IP Multicast

Source: Nokia

DVB-H Receiver

Nokia 7710*

* Prototype 2005

Source: Nokia

MediaFLO System

MediaFLO Mobile M-M

Mobile solution (2007)

- FLO technology used high power MDS
- Good coverage from single high power transmitter
- OFDM, QPSK / 16 QAM, SFN
- In USA, spectrum allocated 700MHz, L-Band
- Files, multimedia via IP datacasting
- 15-20 video channels (350 kbps), 10 audio streams, 11.8 Mbps in 6 MHz

MediaFLO Services

Source: Qualcomm

ATSC Mobile

ATSC 2.0 Mobile

Retrofitting

- DTV broadcast towers retrofitted to deliver mobile TV signal
- Local, full-motion digital TV on multiple mobile devices
- "In-band", mobile TV as part of ATSC services DTT in 6 MHz channel

ATSC Mobile

https://www.nab.org/mobiletv/learnMore.asp

DVB-T2 Lite System

DVB-T2 Lite: Future

Extension Frames

Allows a future system as "FEF" in T2 time slots

- No restrictions in content in FEF
- May use DVB-T2 Lite (mobile, specified subset of DVB-T2)

Source: DVB

Fixed, Mobile Services

ISDB-T_{MM} System

NOTTV Service Layout

Source: NOTTV

Receivers

Source: NOTTV

DTMB TV System

DTMB System

System Overview

- Supports mobile digital broadcasting
- Bit-rate: 4.813 to 32.486 Mbps
- Time, frequency domain data-processing
- Low-Density Parity Check (LDPC) encoding
- Time Domain Synchronization -OFDM

Main Issues with Mobile TV

Why Mobile Broadcasting did not Fly?

Market issues

- Mobile phone manufacturers reluctant to include chip
 - Cost factor
 - Battery drain
 - Time sharing with calls
- B'caster + Telco joint ventures are rare
 - B'casters offered low revenues
 - Japan: Example of successful joint venture

Mobile did not Fly

Business issues

- B'casters did not develop a viable business model
 - Sat-mobile b'casting services closed down
 - FTA mobile b'casting services do not generate enough revenue
- Telco offer video services
 - Easy to access
 - Paid services
 - But network congestion limits access

Mobile did not Fly

Technical issues

- Mobile broadcasting needs different approach
 - HPHT network unable to meet coverage needs
 - Cellular approach is required to ensure mobile, indoor coverage
 - Capital intensive
 - Most b'casters experimented with HPHT
 - Or combined mobile with DTT

Developments in Mobile Multimedia

ATSC 3.0 (Proposed)

ATSC 3.0 System

New system: Possible FoB System?

- ATSC developing a new standard with advanced performance
- New functionalities
- To maximize point-to-mp broadcasting attribute
- Provide robust mobile services to un-tethered devices

ATSC 3.0 System..2

Features in ATSC 3.0

- Internet Protocol based
- Core technologies with broad international acceptance, global interoperability
- Robust delivery to multiple platforms
- Will accommodate future improvements
- Not backward compatible

ATSC 3.0

Broadcasting becomes part of Internet

ATSC 3.0

Source: ATSC

ATSC 3.0

Better pictures, sound, more services

- Allows UHD and /or HD multicast
- Super-4k HEVC (18 30 Mbps)
- **Super-HD − HEVC (8 − 12 Mbps)**
- HD HEVC (3 8 Mbps)
- **SD HEVC** (1 2 **Mbps**)
- Immersive Audio

ATSC 3.0

HDR, Internet experience, personalized

Source: ATSC

LTE Mobile Offload

LTE Mobile (LMO) in Broadcast

- Technology also known as "Tower Overlay"
- Shifts content payload from cellular Low Power Low Tower (LPLT) networks to large coverage High Power High Tower (HPHT) networks
- Created at Technical University of Braunschweig

LTE Mobile in Broadcast ... 2

- Key system functionalities of DVB-T2, LTE-A used to realize LMO
 - DVB-T2: Future Extension Frames (FEF)
 - LTE-A: Carrier Aggregation (CA)
- LTE-A formatted content inserted into broadcast DVB-T2 multiplex using FEF
- LTE in-band signaling (via mobile network) instructs LTE receiver
 - to receive, decode at broadcast frequency being used

LMO Modulator Transmitter

Integration of LTE P-MP carrier into DVB-T2 FEF

Source: Gates Air

LTE Mobile in Broadcast ...

• Will reduce congestion in wireless broadband use in UHF spectrum

- Telcos may partner with broadcasters:
 - Offer fixed services in one channel
 - LMO mobile services in another channel

eMBMS

eMBMS: How it Works

- An add-on to LTE-Unicast, shares LTE technology
 - Same capacity achieving FEC code
 - Supports SFN operation
 - Extended cycling prefix (GI) up to 33 μs
 - Allows anonymous free-to-air reception without
 Sim card
 - Shares carrier bandwidth flexibly with unicast services (60% for eMBMS)
- Not optimum for covering large areas

eMBMS ..2

- eMBMS enables unicast, broadcast service blending
- eMBMS major advantage
 - Same content can be received by many users simultaneously
- Bandwidth consumption independent of number of users
 - Depends on number of simultaneous channels 'broadcast'

eMBMS ..3

- To maximize bandwidth, eMBMS utilizes three concepts:
 - Time eMBMS activation triggers allocation of radio resources on "as-needed" basis
 - Location eMBMS can be activated for small geographical locations
 - Resource allocation up to 50% for eMBMS transmission

Unicast, Broadcast Service Blending

Mobile Coverage

Source: Fraunhofer

eMBMS: Complementary Service

- Possible scenario: complementary service types
- HPHT serving high-capacity content
- eMBMS cover indoor, mobile environments
- Rooftop reception provided by HPHT
- Back-haul by HPHT transmitter

Impact of eMBMS

Potential impact on mobile broadcasting

- eMBMs will make inroads in point-mp (broadcast) video networks
- Now keen interest from mobile operators
- Service dynamics support live streaming, filedelivery, M2M connectivity, control
- P-to-MP architecture (eMBMS) is part of 3GPP
- Several pilots, trials

Recent Trials

DVB-T2 Lite Trials

Danish T2-Lite Trial

DVB-T2-Lite (2010) UHF

- First phase of the trial: Broadcast from single 100 M high antenna, 600W ERP in Copenhagen
- Mobile TV channels same as those available on DTT UHF channel 35
- T2 Lite as a subset of DVB-T2

Danish T2-Lite Trial ..2

DVB-T2-Lite (2011) VHF

- Trial deploys T2-Lite video, audio content to mobile devices in VHF Band III
- Used 1.7MHz VHF Channel 9D in Greater Copenhagen region
- Included T2-Lite TV and radio channels
- Carried up to 16 PLPs

Source: http://www.connectedtv.eu

India: DVB-T2 Lite Trial

DVB-T2-Lite trials in India

- Classical broadcasting transmission infrastructure HPHT
- Reception on mobile phones
- Use of dongles

Source: Prasar Bharati

India: Field Measurements

Delhi

India: Field Measurements ..2

Chennai

LMO Trials

LMO Trial

Trial in Paris

- The LTE Megacell Overlay model proven to work using current DVB-T2 system
- Possibility for incorporation into other advanced systems (e.g. ATSC 3.0)
- Partners: GatesAir, T U of Braunschweig, TDF, RAI, IRT, some others

eMBMS Trials

Qualcomm LTE Broadcast Demo at CES

At CES 2013

- High-quality live and non-real-time media services over LTE broadcast (eMBMS) enabled networks
- With Verizon, Ericsson

Ericsson LTE Broadcast Tests

In Poland 2014

- With Polkomtel, streaming 2014 World Volleyball Championship to 300 selected guests in Warsaw
- Devices received several video feeds
 - sports match replay
 - sporting network news
 - horse racing coverage
 - large files using the single LTE Broadcast channel

Verizon-Ericsson at Indy

In US 2014

- United States' first LTE Multicast (emBMS) over commercial 4G LTE network
- Live video from trackside, in-car cameras and real-time information
- LTE Multicast in ultra-dense user environment showcases ideal deployment scenario

Source: Verizon

eMBMS trial in Netherlands

Amsterdam

- KPN-Ericsson trial first live LTE broadcast in Amsterdam Arena football stadium
- Objective: Deliver high quality video to large groups of people
- Qualcomm, Samsung, IBM joined video delivery in mobile networks

AT&T Demo in Dallas

US 2014

- College football in Stadium
- 85000 spectators at the game
- 4G network broadcast simultaneously to multiple users on mobile devices, 6.4 TB
- Capturing, sharing in real-time scenes with compatible devices
- Viewers see game from many camera angles
- Catch replays

Huawei, Vodafone in Kiel: eLTE, eMBMS

Germany 2014

- Kieler Woche international sailing event
- 4G-based broadband integrates voice, video and data
- Distributed base stations set-up across race course (sea) for live footage captured by smart phones
- Audience got close-ups, not otherwise possible

Telestra starts LTE Broadcast Channels

Australia May 2015

- Telstra started enabling permanent LTE Broadcast channels at key venues, major events
- Initially for testing, customer access on compatible devices
- eMBMS trials by Telstra show 3 or 4 video (and data) channels can be streamed with with HEVC
- Uses 10 % of 20MHz carrier to cover all users

Ericsson-Singtel Pilot LTE Broadcast

Singapore June 2015

- The first end-to-end LTE Broadcast (eMBMS) trial in Singapore uses commercial network
- SEA Games: Live broadcasts of sporting event
- eMBMS, HEVC, MPEG DASH enabled efficient, high quality media services over LTE

Ericsson-Singtel Pilot LTE Broadcast- eMBMS

- Enhanced end-user experience by highestquality video content, guaranteed delivery (no buffering)
- Served mobile devices in dense areas where unicast cannot cope

Source: Ericsson

Other Use Cases

Other use cases that can create new business opportunities

- TV terminals inside elevators, waiting halls, airports, bus stops for location-based media services
- Content delivery to automobile screens, software updates
- Digital signage for periodic media updates
- Emergency alerts, news, updates
- Displays in stadiums for in-venue media services

Finally

- eMBMS will enable commercial deployment of entertainment services over LTE for mass market
- Allow operators to drive new revenue streams
- Partner content owners can meet demands for exceptional video experience
- Efficiently utilize available LTE spectrum, network resources

My Introduction

General Manager, Telecommunication Consultants India

Senior Director Engineering, Doordarshan India, Public TV broadcaster (23 years)

Prof. of TV Operations, Film and TV Institute of India

Former Vice-Chair, World Broadcasting Unions-TC, Steering Board Member, DRM, World DMB Forum

Senior Expert ITU: RASCOM, DTV, DR, EWS
Editorial Board, IJDTV

Advisor Tech & International Relations, CEO, Prasar Bharati, India

THANK YOU

FOR YOUR ATTENTION