LTE

Network Design Suggestions for Developing Countries and Case Studies

LTE Consulting

KT has provided LTE network design, implementation and strategy for emerging markets with field-proven know-hows

LTE Design & Implementation for Developing Countries

- Need for a cost effective and futuristic TOOL for economic development
- The Economic impact of ICT technology in developing countries is greater
 - → Rationale to strengthen ICT infrastructure, especially Mobile Broadband
- Growing demand for a cost effective LTE network

General LTE Design Criteria

CAPEX & OPEX

Simpler & Robust Network

Design Criteria					
1	Mobile Ecosystem	Device Availability			
Frequency	Frequency Characteristics	Lower bands vs. Higher Bands			
Selection ⁻	Existence of Interference	Risk Management			
2. Type of Technology		FDD vs. TDD			
3. Service Coverage Design		Considering Terrain and Morphology			
4. RAN Architecture		S-RAN vs. C-RAN			
5. Core Architecture		Complementing Coverage and Service Quality			
6. Infra	astructure Sharing	Passive vs. Active			

Factors to Consider for Developing Countries

Factors

- 1 Not enough Fixed Network Infrastructure
- 2 Insufficient Electric Power Supply
- 3 Open Device Market
- 4 Limited Service Coverage in Rural Areas
- 5 Low Technology Maturity

Methodology

1 Identify
Specific requirements
for LTE design criteria

- 2 Evaluate and Suggest appropriate technology or methods
- Prove our suggestions with real life cases

1. Frequency Selection Strategy

Requirements	Suggestions		
1. Maximizing Accessibility	To adopt the most widely used frequency band		
2. Minimizing CAPEX	To use lower frequency band if available		
3. Minimizing Risk of Interference	To pre-investigate / band shifting or clearing source		

Global Ecosystem

Frequency characteristics

Interference

Service Quality Degradation

Delay in Commercial Launch

Solution!

- Band shifting
- Clearing interference source

1. Frequency Selection Strategy: Rwanda Case

Frequency Utilization Plan

Selected 800 MHz as 1st Carrier for nationwide LTE deployment and reserved 1,800 MHz for capacity expansion in the future.

- Both frequency bands were globally used and supported by most devices.
- 800MHz was advantageous for service coverage.

Interference Avoidance

Avoided interference by the other operator's CDMA MiFi in the capital city by shifting frequency band.

- Only used 20MHz out of 30MHz from 800MHz band.
- Postponed 1,800 MHz launch till clearing interference sources at the border.

2. Type of Technology (FDD vs. TDD)

- 1. Eco-system+Coverage-focused deployment
- 2. Few technical challenges/ easy optimization

FDD

FDD (TDD has potential self-inference issue)

Coverage

% source: Qualcomm, "LTE-TDD-the global solution for unpaired spectrum" 2014

Global Ecosystem

FDD/TDD use by operators worldwide

***** source: GSA report Feb, 2016

 FDD/TDD use by operators in 48 least developed countries.

Mitigating Self-Interference by TDD Transmission: India Case

Widening Buffer btw. DL and UL (SSP* Re-configuration)

90km point

SSP5 (GP 643us, 193km)

DL GP UL

-->
Delay

90km point

- Compensated propagation delay by re-configuring SSP with longer guard period.
 - Trade-off: DL throughput degraded 29%.

Adjusting Over-shooting Cells without field tests

- neighbor cells using ANR and located overshooting cells.
- In one of the major cities, cells with more than 10km RF transmission, were defined as overshooting cells and down-tilted.
- NRT* Counts in city X

(Distance unit: km)

3. Service Coverage Design

Maximizing Single Cell Coverage: Rwanda Case

4. RAN Architecture

Minimizing CAPEX/OPEX

Hybrid architecture, C-RAN (Centralized)+ S-RAN (Stand-alone)

S-RAN: 1 DU and 1 RU at one site

 Cooling system, Cabinet, Generator, Battery and Electricity needed for each site.

Korea Case

Nationwide C-RAN

- CAPEX Saving: equipment and facilities
- OPEX Saving: rent and electricity

	Rent	Electricity	Battery
Average saving per site	55%	66%	59%

C-RAN: Centralized DUs and RUs at each site

Cooling system, Cabinet and Generator are NOT NECESSARY at each site

3,600W

Rwanda Case

Power

C-RAN in major cites Deployment plan and expected savings S-RAN C-RAN* Total 552 Sites 85 467 C-RAN Savings S-RAN RU + Battery + Generator RU + **Space Rent ▼ 83%** + Cooling Sys. Battery

2,100W

5. Core Architecture

**CSFB: Circuit Switched Fall Back **MNO: Mobile Network Operator **SPID: Subscriber Profile ID

Voice Coverage Complementation

CSFB* with Multiple MNO*s using SPID*

VoLTE only Network

CSFB

Voice Coverage Compliment Methods: Rwanda Case

Multi-MNO CSFB using SPID (KT patent)

- **Technical Issue:** Subscriber UE doesn't know which 2G/3G network to redirect for CSFB.
- Solution:
- In eNB, SPID to distinguish each MNO's frequency implemented.
- Using SPID, eNB can distinguish which MNO the UE should redirect for voice service and provides target 2G/3G frequency information to UE for successful CSFB.

Core Architecture

Supporting In-building/non-VoLTE device users

Vo-WiFi / VoLTE application / Mi-Fi

In-building/Non-VolTE user supporting methods: India Case

6. Network Infrastructure Sharing

Minimizing CAPEX/OPEX

Actively Sharing Network Infrastructure (promotiion by the government)

Passive: Sites and Incidentals Sharing

Active: Network Sharing

Passive Sharing: Korea Case (2015)

In-building Feeder and Antenna Sharing						
No. of sharing sites	Cost if not shared	Allotted share	Savings			
3,931	US 25 million	US 15 million	▼ US 10 million (40 %)			

KT's Fixed Network Consulting

KT provides optimum solution for fixed networks from strategy, establishment to operation.

Thank you

